ACHIEVEMENT TEST 2023-24

Class:10

MATHS

[Max. Marks : 100 Time : 1.30 Hrs.

	,		a A then o
1	If the roots of the equation $q^2x^2 + p^3x + r^2 = 0$ are to	the squares of the roots of	the equation $qx^2 + px + r = 0$, then q
2.	P. r are in (a) A. P (b) G. P	(c) Both A. P and G. P	(d) none of these
	Graph of a linear polynomial is a (a) straight line (b) circle	(c) parabola	(d) hyperbola
3.	Transpose of a column matrix is (a) / unit matrix (b) diagonal matrix	(c) column matrix	(d) row matrix
4.	For the given matrix A = 2 4 6 8	the order of the matrix	A ^r is
	[9 11 13 15] (a) 2 × 3 (b) 3 × 2	(c) 3 x 4	(d) 4 x 3
· 5. '	The number of points of intersection of the qua	adratić polynomial x² + 4x	+ 4 with the X axis is
6.	(a) 0 (b) 1 If A is a 2 x 3 matrix and B is a 3 x 4 matrix, he	(c) 0 or 1 ow many columns does A	B have
7	(a) 3 (b) 4	(c) 2	(a) 5
7.	If number of columns and rows are not equal in (a) diagonal matrix (b) rectangular matrix	n a matrix then it is said to rix	(d) identity matrix
8.	Find the matrix is a [1 3] = [5 7]	inx, (c) oquale maini	
0.	Find the matrix X if 2X + $\begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 9 & 5 \end{bmatrix}$ (a) $\begin{bmatrix} -2 & -2 \\ 2 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$	[4 2]	[2 1]
	(a) $\begin{bmatrix} -2 & -2 \\ 2 & -1 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix}$	(c) $\begin{vmatrix} 1 & 2 \\ 2 & 2 \end{vmatrix}$	$(d)\begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix}$
9.	Which of the following can be calculated from	the given matrices	
	$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix},$	(i) A ² (ii) B ² (ii	i) AB (iv) BA
	[5 6] 7 8 9		
*	(a) (i) and (ii) only (b) (ii) and (iii) only	(c) (ii) and (iv) only	(d) all of these
:10.	If $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$ $B = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 0 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 0 & 2 \end{bmatrix}$	0 1 which of the fo	llowing statements are correct?
	[3 2 1] [0 2]	[2 5]	(iv) (AB) $C = \begin{bmatrix} -8 & 20 \\ -8 & 13 \end{bmatrix}$
	(i) AB + C = $\begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix}$ (ii) BC = $\begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$	3 (iii) BA + C = [3 0]	$(N) (AB) C = [-8 \ 13]$
	(a) (i) and (ii) only (b) (ii) and (iii) only	(c) (iii) and (iv) only	(d) all of these
11.	If α , β are the roots of $ax' + bx + c = 0$, $a \neq 0$, then the wrong stateme	nit is
	(a) $\alpha^2 + \beta^2 = \frac{b^2 - 2ac}{a^2}$ (b) $\alpha\beta = \frac{c}{a}$	(c) $\alpha + \beta = \frac{b}{a}$	$(d) \frac{1}{\alpha} + \frac{1}{\beta} = -\frac{1}{c}$
12.	If α and β are the roots of $ax^2 + bx + c = 0$, the second of $ax^2 + bx + c = 0$.	hen one of the quadratic	equations whose roots are $\frac{1}{\alpha}$ and
	$\frac{1}{B}$ is, (a) $ax^2 + bx + c = 0$ (b) $bx^2 + ax + c$		
13.	Let b = a + c. then the equation $ax^2 + bx + c$		
10.	/ /	(a) a = 2a	(d) a = -2c
14.	(a) $a = c$ (b) $a = -c$ Matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ is a square matrix if	(a) m < n (b) m >	n (c) m = 1 (d) m = n
15.	If $A = (1 - 2 - 3)$ and $B = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ then $A + B$		
	If $A = (1 -2 3)$ and $B = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ then $A + B$		
	(a) $(0\ 0\ 0)$ (b) $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	(c) (-14)	(d) not defined
	(0)	And the second of the second	
16. 17.	If a matrix is of order 2x3, then the number of If A is of order 3x4 and B is of order 4x3, then	n the order of BA is	is (a) 5 (b) 6 (c) 2 (d) 3
• • • •	(a) 3x3 (b) 4x4	(c) 4x3	(d) not defined
18.	If A is of order mxn and B is of order pxq, ad (a) $m \neq p$ (b) $n = q$	dition of A and B is possi (c) n = p	ble only if (d) m = p, n = q
	(7 2) (-1 0)		
19.	If $A = \begin{pmatrix} 1 & 3 \end{pmatrix}$ and $A + B = \begin{pmatrix} 2 & -4 \end{pmatrix}$ then	n the matrix B =	(0.2)
	(a) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} 6 & 2 \\ 3 & -1 \end{pmatrix}$	$(c)\begin{pmatrix} -0 & -2 \\ 1 & -7 \end{pmatrix}$	$ (d) \begin{pmatrix} 8 & 2 \\ -1 & 7 \end{pmatrix} $
20.	(-1)		Year Property of the Control of the
20.			
	(a) 7 (b) -7	(c) =	(d) 0

21.	In the adjacent figure ∠BAC = 90° and AD ⊥ BC then	
• • • •	(a) $BD.CD = BC^2$ (b) $AB.AC = BC^2$	
	(a) BD.CD = BC ² (b) AB.AC = BC ² (c) BD.CD = AD ² (d) AB.AC = AD ² Two poles of heights 6m and 11 m stand vertically on a plane ground. If the distance between their feet is 12m, (b) 14 m (c) 15 m (d) 12.8 m What is the distance between their tops? (a) 13 m (b) 14 m (c) 15 m (d) 12.8 m What is the distance between their feet is 12m, (a) 13 m (b) 14 m (c) 15 m (d) 12.8 m	
22.	(c) BD.CD = AD ² (d) AB.AC = AD ² Two poles of heights 6m and 11 m stand vertically on a plane ground. If the distance between their tops? What is the distance between their tops? (a) 13 m (b) 14 m (c) 15 m (d) 12.8 m (b) 14 m (c) 15 m (d) 12.8 m (c) 15 m (d) 12.8 m (d) 12.8 m (d) 12.8 m (e) 13 m (f) 14 m (f) 15 m (f) 14 m (f) 15 m (g) 15 m (g) 16 m (h) 12 m (h) 13 m (h) 14 m (h) 15 m (h) 16 m (h) 17 m (h) 18 m (h) 19 m (ŀ
	What is the distance between their tops? (a) 13 m (c) m and QA = 8cm. Find 2.	
23. 🎺	In the given figure PR = 26 cm, QR = 24 cm, ZPAQ = 90°, 17°	
	(a) 80° (b) 85° (d) chord	
24.	(a) 60° (b) 63° (c) 75° (d) 90° (d) 90° A tangent is perpendicular to the radius at the (a) centre (b) point of contact (c) infinity How many tangents can be drawn to the circle from an exterior point? (d) zero (ADR = 70° then the	*
24. 25.	A tangent is perpendicular to the radius at the (a) centre (b) point? How many tangents can be drawn to the circle from an exterior point? (b) the circle from an exterior point? (c) infinite (d) zero (d) zero (d) zero (d) zero	
L O.	How many tangents can be drawn to the circle from an exterior point? (d) zero (a) one (b) two (c) infinite (d) zero (d) 130° (e) 120° (d) 130° (c) 120° (c) 120° (d) 130° (e) 120° (c) 120° (c) 120° (d) 130° (e) 120° (e) 120° (f) 120° (f) 120° (g) 120° (h) 110° (h)	
26.	The two tangents from an external points P to a circle with centre at O alor (c) 120° (d) the circle at R.	
	The two tangents from an external points P to a circle with centre at O and (c) 120° (d) 120° (d) 120° (e) 110° (e) 110° (f) 110° (f) 110° (g) 110°	
27.	In figure CP and CQ are tangents to a circle with centre at O. AND to	
	(a) 6 cm (b) 5 cm	
00	(c) 8 cm (d) 4 cm In figure PQ is tanget to the circle at P and O is the centre of the circle, then ∠POQ is (a) 120% (b) 100°	
28.	(a) 120° (b) 100° (c) AP = 5cm AP =	
	(c) 110° (d) 90° (d) 90° (e) 110° (e) 110° (e) 110° (f) 90°	
29.	(a) 120° (b) 100° (c) 110° (d) 90° AB and CD are two chords of a circle which when produced to meet at a point P such that AB = 5cm, AP = AB and CD = 2 cm then PD = (a) 12 cm (b) 5 cm (c) 6 cm (d) 4 cm	
	8 cm, and CD = 2 cm then PD = (a) 12 cm (b) 5 cm (c) 6 cm (d) 4 cm, PC = 6 In the adjoining figure, chords AB and CD intersect at P. If AB = 16 cm, PD = 8 cm, PC = 6 and AB > PB, then AP = (a) 8 cm (b) 4 cm	•
30.	In the adjoining figure, chords AB and CD intersect at P. ITAB = 10 cm.	
	and AP > PB, then AP = (a) 8cm (b) 4 cm	
~	and AP > PB, then AP = (a) 8cm (b) 4 cm (c) 12 cm (d) 6 cm A point P is 26 cm away from the centre O of a circle and PT is the tangent drawn from P to the circle is 10 cm, (d) 24 cm (e) 36 cm (b) 20 cm (c) 18 cm (d) 24 cm	
31.	then OT is equal to (a) 36 cm (b) 20 cm (c) 18 cm	
32.	In the figure, if ∠PAB = 120° then ∠BPT =	
٠.	(a) 1200 (b) 300 · \\///	
	(c) 40° (d) 60° If the tangents PA and PB from an external point P to circle with centre O are inclined to each other at an angle (c) 50° (d) 60° (c) 50° (d) 60° (d) 60°	
33.	if the tangents PA and PB from an external point P to circle with Centre C (c) 50° (d) 60°	
	of 400 then $\angle POA = (a) 70^{\circ}$ (b) 80° (c) 50° (d) 40° (b) 40° (b) 40° (c) 40° (c) 40° (d) 40° (e) 40° (e) 40° (f) 40° (f) 40° (e) 40° (f) 40°	
34.	In the figure PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the	
34.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to	
34.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm	
	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm ABC is a right angled triangle where AB = 90° and BD \(\perp AC\). If BD = 8 cm, AD = 4 cm, then CD is	
34. 35.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm ΔABC is a right angled triangle where ∠B = 90° and BD ⊥ AC. If BD = 8 cm, AD = 4 cm, then CD is	
	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm \triangle ABC is a right angled triangle where \angle B = 90° and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has	
35. 36.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm \triangle ABC is a right angled triangle where \angle B = 90° and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (fithe ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has if the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (a) 45° (b) 30° (c) 90° (d) 60° (d) 60°	
35.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm \triangle ABC is a right angled triangle where \angle B = 90° and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (fithe ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has if the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (a) 45° (b) 30° (c) 90° (d) 60° (d) 60°	
35. 36.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm \triangle ABC is a right angled triangle where \angle B = 90° and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (d) 8 cm If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (a) 45° (b) 30° (c) 90° (d) 60° The electric pole subtends an angle of 30° at a point on the same level as its foot, At a second point'b' metres above the first, the depression of the foot of the tower is 60°. The height of the tower (in metres) is equal to	
35. 36.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm \triangle ABC is a right angled triangle where \angle B = 90° and BD \bot AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (d) 8 cm (fithe ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (a) 45° (b) 30° (c) 90° (d) 60° The electric pole subtends an angle of 30° at a point on the same level as its foot, At a second point'b' metres above the first, the depression of the foot of the tower is 60°. The height of the tower (in metres) is equal to	,
35. 36.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm \triangle ABC is a right angled triangle where \angle B = 90° and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (fithe ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (a) 45° (b) 30° (c) 90° (d) 60° The electric pole subtends an angle of 30° at a point on the same level as its foot, At a second point'b' metres above the first, the depression of the foot of the tower is 60°. The height of the tower (in metres) is equal to (a) $\sqrt{3}$ b (b) $\frac{b}{3}$ (c) $\frac{b}{2}$ (d) $\frac{b}{\sqrt{3}}$,
35. 36. 37.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm ABC is a right angled triangle where \angle B = 90° and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (d) 8 cm (fitheratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (a) 45° (b) 30° (c) 90° (d) 60° (d) 60° The electric pole subtends an angle of 30° at a point on the same level as its foot, At a second point'b' metres above the first, the depression of the foot of the tower is 60°. The height of the tower (in metres) is equal to (a) $\sqrt{3}$ b (b) $\frac{b}{3}$ (c) $\frac{b}{2}$ (d) $\sqrt{3}$ A tower is 60 m height. Its shadow is x metres shorter when the sun's altutide is 45° than when it has been as the circle drawn from an external point P. Also CD is a tangent to the circle drawn from an external point P. Also CD is a tangent to the circle drawn from an external point P. Also CD is a tangent to the circle drawn from an external point P. Also CD is a tangent to the circle drawn from an external point P. Also CD is a tangent to the circle drawn from an external point P. Also CD is a tangent to the circle drawn from an external point P. Also CD is a tangent to the circle drawn from an external point P. Also CD is a tangent to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 200 is a tangent to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 200 is a tangent to the circle at Q. If PA = 200 is a tangent to the circle at Q. If PA = 200 is a tangent to the circle at Q. If PA = 200 is a tangent to the circle at Q. If PA = 200 is a tangent to the circle at Q. If PA = 200 is a tangent to the circle at Q. If PA = 200 is a tangent to the circle at Q. If PA = 200 is a tangent to the circle at Q. If PA = 200 is a tangent to th	
35. 36. 37.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm \triangle ABC is a right angled triangle where \angle B = 90° and BD \bot AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (d) 8 cm (fithe ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (a) 45° (b) 30° (c) 90° (d) 60° The electric pole subtends an angle of 30° at a point on the same level as its foot, At a second point'b' metres above the first, the depression of the foot of the tower is 60°. The height of the tower (in metres) is equal to (a) $\sqrt{3}$ b (b) $\frac{b}{3}$ (c) $\frac{b}{2}$ (d) $\sqrt{3}$ A tower is 60 m height. Its shadow is x metres shorter when the sun's altutide is 45° than when it has been 30°, then x is equal to (a) 41.92 m (b) 43.92 m (c) 43 m (d) 45.6 m The angle of elevation of a cloud from a point h metres above a lake is β . The angle of depression of its reflection	
35. 36. 37.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm $ \Delta ABC \text{ is a right angled triangle where } \angle B = 90^{\circ} \text{ and } BD \perp AC. \text{ If } BD = 8 \text{ cm, } AD = 4 \text{ cm, then } CD \text{ is} $ (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (d) 8 cm If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (a) 45° (b) 30° (c) 90° (d) 60° The electric pole subtends an angle of 30° at a point on the same level as its foot, At a second point'b' metres above the first, the depression of the foot of the tower is 60° . The height of the tower (in metres) is equal to (a) $\sqrt{3}$ (b) $\frac{b}{3}$ (c) $\frac{b}{2}$ (d) $\frac{b}{\sqrt{3}}$ A tower is 60 m height. Its shadow is x metres shorter when the sun's altutide is 45° than when it has been 30° , then x is equal to (a) 41.92 m (b) 43.92 m (c) 43 m (d) 45.6 m The angle of elevation of a cloud from a point h metres above a lake is β . The angle of depression of its reflection in the lake is 45° . The height of location of the cloud from the lake is	
35. 36. 37.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm ABC is a right angled triangle where \angle B = 90° and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (d) 8 cm (fithe ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (a) 45° (b) 30° (c) 90° (d) 60° (d) 60° The electric pole subtends an angle of 30° at a point on the same level as its foot, At a second point'b' metres above the first, the depression of the foot of the tower is 60°. The height of the tower (in metres) is equal to (a) $\sqrt{3}$ b (b) $\frac{b}{3}$ (c) $\frac{b}{2}$ (d) $\frac{b}{\sqrt{3}}$ A tower is 60 m height. Its shadow is x metres shorter when the sun's altutide is 45° than when it has been 30°, then x is equal to (a) 41.92 m (b) 43.92 m (c) 43 m (d) 45.6 m The angle of elevation of a cloud from a point h metres above a lake is β . The angle of depression of its reflection in the lake is 45°. The height of location of the cloud from the lake is (a) $\frac{h(1+\tan\beta)}{1+\tan\beta}$ (b) $\frac{h(1-\tan\beta)}{1+\tan\beta}$ (c) h tan (45° - β) (d) none of these	
35. 36. 37. 38. 39.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm ABC is a right angled triangle where $\angle B = 90^{\circ}$ and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (d) 8 cm If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (a) 45° (b) 30° (c) 90° (d) 60° The electric pole subtends an angle of 30° at a point on the same level as its foot, At a second point'b' metres above the first, the depression of the foot of the tower is 60° . The height of the tower (in metres) is equal to (a) $\sqrt{3}$ b (b) $\frac{b}{3}$ (c) $\frac{b}{2}$ (d) $\sqrt{3}$ A tower is 60 m height. Its shadow is x metres shorter when the sun's altutide is 45° than when it has been 30° , then x is equal to (a) 41.92 m (b) 43.92 m (c) 43 m (d) 45.6 m The angle of elevation of a cloud from a point h metres above a lake is β . The angle of depression of its reflection in the lake is 45° . The height of location of the cloud from the lake is (a) $\frac{h(1+\tan\beta)}{1+\tan\beta}$ (b) $\frac{h(1-\tan\beta)}{1+\tan\beta}$ (c) h tan $(45^{\circ}-\beta)$ (d) none of these	
35. 36. 37.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm ABC is a right angled triangle where \angle B = 90° and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has if the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has reasonable in the electric pole subtends an angle of 30° at a point on the same level as its foot, At a second point'b' metres above the first, the depression of the foot of the tower is 60°. The height of the tower (in metres) is equal to (a) $\sqrt{3}$ b (b) $\frac{b}{3}$ (c) $\frac{b}{2}$ (d) $\frac{b}{\sqrt{3}}$ A tower is 60 m height. Its shadow is x metres shorter when the sun's altutide is 45° than when it has been 30°, then x is equal to (a) 41.92 m (b) 43.92 m (c) 43 m (d) 45.6 m The angle of elevation of a cloud from a point h metres above a lake is β . The angle of depression of its reflection in the lake is 45°. The height of location of the cloud from the lake is (a) $\frac{h(1+\tan\beta)}{1+\tan\beta}$ (b) $\frac{h(1-\tan\beta)}{1+\tan\beta}$ (c) h tan (45° - β) (d) none of these The angle of depression of the top and bottom of 20 m tall building from the top of a multistoried building are 30° and 60° respectively. The height of the multistoried building and the distance between two buildings (in	
35. 36. 37. 38. 39.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm ΔABC is a right angled triangle where $\angle B = 90^{\circ}$ and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (fithe ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has reasure (a) 45° (b) 30° (c) 90° (d) 60° (d) 60° (e) 90° (d) 60° (first, the depression of the foot of the tower is 60°. The height of the tower (in metres) is equal to (a) $\sqrt{3}$ b (b) $\frac{b}{3}$ (c) $\frac{b}{2}$ (d) $\frac{b}{\sqrt{3}}$ A tower is 60 m height. Its shadow is x metres shorter when the sun's altutide is 45° than when it has been 30°, then x is equal to (a) 41.92 m (b) 43.92 m (c) 43 m (d) 45.6 m The angle of elevation of a cloud from a point h metres above a lake is β . The angle of depression of its reflection in the lake is 45°. The height of location of the cloud from the lake is (a) $\frac{h(1+\tan\beta)}{1-\tan\beta}$ (b) $\frac{h(1-\tan\beta)}{1+\tan\beta}$ (c) h tan (45° - β) (d) none of these The angle of depression of the top and bottom of 20 m tall building from the top of a multistoried building are 30° and 60° respectively. The height of the multistoried building and the distance between two buildings (in 20.30.10 $\sqrt{3}$)	
35. 36. 37. 38. 39.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm (d) 8 cm (d) 8 cm (e) 24 cm (e) 16 cm (for a single where \angle B = 90° and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is \triangle ABC is a right angled triangle where \triangle B = 90° and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (d) 8 cm (e) 24 cm (e) 45° (b) 30° (c) 90° (d) 60° (d) 60° (e) 90° (
35. 36. 37. 38. 39.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to this circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm ABC is a right angled triangle where \angle B = 90° and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (fithe ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (a) 45° (b) 30° (c) 90° (d) 60° (d) 60° (e) 90° (fin metres) is equal to (fin metres) is (fin metres) is (fin metres) is (fin metres) is (fin metres) (fin metres) is (fin me	
35. 36. 37. 38. 39.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm (d) 8 cm (d) 8 cm (e) 24 cm (e) 16 cm (for a single where \angle B = 90° and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is \triangle ABC is a right angled triangle where \triangle B = 90° and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (d) 8 cm (e) 24 cm (e) 45° (b) 30° (c) 90° (d) 60° (d) 60° (e) 90° (
35. 36. 37. 38. 39.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm (d) 8 cm (e) 24 cm (from the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has first ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (a) 45° (b) 30° (c) 90° (d) 60° (c) 90° (d) 60° (d) 60° (e) 90° (d) 60° (from the electric pole subtends an angle of 30° at a point on the same level as its foot, At a second point b' metres above the first, the depression of the foot of the tower is 60° . The height of the tower (in metres) is equal to 30° (c) 30° (d) 30° (e) 30° (from 30° (
35. 36. 37. 38. 39.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm	
35. 36. 37. 38. 39.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm andCQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm ΔABC is a right angled triangle where $\angle B = 90^\circ$ and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (d) 8 cm (d) 8 cm (e) 24 cm (fifthe ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has if the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has (c) 90° (d) 60° (e) 90° (d) 60° (figure) (figure) (g) 90° (d) 60° (g) 90°	
35. 36. 37. 38. 39.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm andCQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm Δ ABC is a right angled triangle where \angle B = 90° and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is Δ ABC is a right angled triangle where \angle B = 90° and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (d) 8 cm (d) 8 cm (e) 24 cm (fifthe ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has lift the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has level as its foot, At a second point'b' metres above the first, the depression of the foot of the tower is 60°. The height of the tower (in metres) is equal to (a) $\sqrt{3}$ b (b) $\frac{b}{3}$ (c) $\frac{b}{2}$ (d) $\frac{b}{\sqrt{3}}$ A tower is 60 m height. Its shadow is x metres shorter when the sun's altutide is 45° than when it has been 30°, then x is equal to (a) 41.92 m (b) 43.92 m (c) 43 m (d) 45.6 m (d) 45.6 m (e) 41.92 m (e) 43 m (e) 43.92 m (e) 43 m (figure) 43	
35. 36. 37. 38. 39.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm andCQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm ΔABC is a right angled triangle where $\angle B = 90^\circ$ and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (d) 8 cm (d) 8 cm (e) 24 cm (fifthe ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has if the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has (c) 90° (d) 60° (e) 90° (d) 60° (figure) (figure) (g) 90° (d) 60° (g) 90°	
35. 36. 37. 38. 39. 40. 41.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm and CQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm (d) 38 cm (d) 8 cm (d) 8 cm (d) 8 cm (e) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (d) 8 cm (e) 24 cm (from the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has fifthe ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has fifthe ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (a) 45° (b) 30° (c) 90° (d) 60° (d) 60° The electric pole subtends an angle of 30° at a point on the same level as its foot, At a second point b' metres above the first, the depression of the foot of the tower is 60° . The height of the tower (in metres) is equal to (a) $\sqrt{3}$ b (b) $\frac{b}{3}$ (c) $\frac{b}{2}$ (d) $\sqrt{3}$ (c) 40° (d) 40° (e) 40° (f) 40° (f) 40° (g) 40° (
35. 36. 37. 38. 39.	In the figure, PA and PB are tangents to the circle drawn from an external point P. Also CD is a tangent to the circle at Q. If PA = 8 cm andCQ = 3 cm, then PC is equal to (a) 11 cm (b) 5 cm (c) 24 cm (d) 38 cm Δ ABC is a right angled triangle where \angle B = 90° and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is Δ ABC is a right angled triangle where \angle B = 90° and BD \perp AC. If BD = 8 cm, AD = 4 cm, then CD is (a) 24 cm (b) 16 cm (c) 32 cm (d) 8 cm (d) 8 cm (d) 8 cm (e) 24 cm (fifthe ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has lift the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has level as its foot, At a second point'b' metres above the first, the depression of the foot of the tower is 60°. The height of the tower (in metres) is equal to (a) $\sqrt{3}$ b (b) $\frac{b}{3}$ (c) $\frac{b}{2}$ (d) $\frac{b}{\sqrt{3}}$ A tower is 60 m height. Its shadow is x metres shorter when the sun's altutide is 45° than when it has been 30°, then x is equal to (a) 41.92 m (b) 43.92 m (c) 43 m (d) 45.6 m (d) 45.6 m (e) 41.92 m (e) 43 m (e) 43.92 m (e) 43 m (figure) 43	

44.	A Man is 28.5 m away from a tower. His eye level above the ground is 1.5 m. The angle of elevation of the tower from his eyes is 45°. Then the height of the tower is (a) 30m (b) 27.5 m (c) 28.5 m (d) 27 m
45.	In the adjoining figure, $\sin \theta = \frac{15}{17}$. Then BC =
44.	(a) 85 m (b) 65 m
	(c) 95 m (d) 75 m
46.	The curved surface area of a right circular and of height 45 am and have diameter 16 cm is
47.	If two solid richiispheres of same hase radius qualte are leight together along their hases, then curved sufface
	dica of the control o
48.	(a) 13 cm will be
49.	if the radius of the base of a right circular adjudents in the radius of the valume
40.	of the symbol thas obtained to the volume of original cylinder is
	(a) 1:6 (d) 1:8
50.	The total surface area of a cylinder whose radius is $\frac{1}{3}$ of its height is (a) $\frac{9\pi h^2}{8}$ sq.units (b) $24 \pi h^2$ sq.units (c) $\frac{8\pi h^2}{9}$ sq.units (d) $\frac{56 \pi h^2}{9}$ sq.units
	9πh²
	(a) $\frac{1}{8}$ sq.units (b) 24 mh^2 sq.units (c) $\frac{8\pi n^2}{9}$ sq.units (d) $\frac{56 \text{ mh}^2}{9}$ sq.units
51.	In a nollow cylinder, the sum of the external and internal radii in 14 am and the width in 4 am If its height is
,	20011, the volume of the material in it is
	(a) $5600 \pi \text{cm}^3$ (b) $11200 \pi \text{cm}^3$ (c) $56 \pi \text{cm}^3$ (d) $3600 \pi \text{cm}^3$
52.	(a) made 6 times (b) made 18 times (c) made 12 times (d) unchanged
53.	The total surface area of a hemi - sphere is how much times the square of its radius,
50.	(a) (b) 4/L (c) 3/4 (d) 3/4
54.	A solid spriere of radius x cm is melted and cast into a shape of a solid cone of same radius. The height of the
	Colle is (a) 3x cm (b) y cm (c) 4y cm (d) 2x cm
55.	A frustum of a right circular cone is of height 16 cm with radii of its ends as 8cm and 20cm. Then the volume of the frustum is (a) 3328π cm³ (b) 3228 π cm³ (c)3240π cm³ (d) 3340 π cm³
56.	of the frustum is (a) 3328π cm ³ (b) 3228π cm ³ (c) 3240π cm ³ (d) 3340π cm ³ A shuttle cock used for playing badminton has the shape of the combination of (a) a cylinder and a sphere
50.	(b) a hemisphere and a cone (c) a sphere and a cone (d) frustum of a cone and hemisphere
57.	A Sprietrical ball of radius r, units is melted to make 8 new identical balls each of radius r, units. Then r, : r, is
	$(a) 2 \cdot 1 \qquad (b) 1 \cdot 2 \qquad (c) 4 \cdot 1 \qquad (d) 1 \cdot 4$
58.	The volume (in cm³) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 cm
	and height 5 cm is (a) $\frac{4}{3}$ π (b) $\frac{10}{3}$ π (c) 5π (d) $\frac{20}{3}$ π
59.	The height and radius of the cone of which the frustum is a part are hounits and rounits respectively. Height of
	the trustum is n_2 units and radius of the smaller base is r_2 units. If $h_1:h_2:h_3=1:2$ then $r_1:r_2:h_3=1:2$
	(a) 1.3 (b) 1.2 (c) 2.1 (d) 3.1
60.	() 4.0.0
61.	
01.	(a) $\pi \text{ cm}^2$ (b) $2\pi \text{ cm}^2$ (c) $3\pi \text{ cm}^3$ (d) 2 cm^2
62	
	(a) 400 cm^3 (b) 16 cm^3 (c) 200 cm^3 (d) $\frac{400}{3} \text{ cm}^3$
00	
63	of its height and radius is (a) 20 cm (b) 25 cm (c) 30 cm (d) 15 cm
64	
•	(a) $\pi a^2 b$ sq.cm (b) $2\pi ab$ sq.cm (c) 2π sq.cm (d) 2 sq.cm
65	
	(a) 10 cm (b) 20 cm (c) 30 cm (d) 96 cm
66	The total surface area of a solid hemisphere of diameter 2 cm is equal to (a) 12 cm^2 (b) $12 \pi \text{ cm}^2$ (c) $4 \pi \text{ cm}^2$ (d) $3 \pi \text{ cm}^2$
67	. If the volume of a sphere is $\frac{9}{16}\pi$ cu.cm, then its radius is
	(a) $\frac{4}{3}$ cm (b) $\frac{3}{4}$ cm (c) $\frac{3}{2}$ cm (d) $\frac{2}{3}$ cm
- 1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
68	
00	(a) 01.020
69	(a) 2π of equipite (b) 3π a ² squality (c) 3π a squality (d) 3 a ⁴ squality
70	(a) 2 it a squittes (b) 3 it a squitte (c) 3 it a squitte (c) 3 it a squitte (c) 4 it a squitte (c) 5 it a s
	(a) 1 · 8 (b) 2 · 1 (c) 1 · 2 (d) 8 · 1

71.	Which of the following is not a measure of dispersion?
72.	(a) Standard dougotion (a) Arithmetic and (d) Venture
73.	The range of the data 8,8,8,8,8
	(d) non-zero integer
74.	The mean of 100 observations is 40 and their standard deviation is 3. The sum of squares of all deviations is
75	(a) 40000 (b) 160900 (c) 160000 (d) 30000
75 <u>.</u> 76.	valiance of first 20 natural numbers is
	The standard deviation of a data is 3. If each value is multiplied by 5 than the new voirance is
77.	(a) 3 (b) 15 (c) 5 (d) 225 If the standard deviation of x, y, z is p then the standard deviation of 3x + 5, 3y + 5, 3z + 5 is (a) 3 p + 5 (b) 3 p (b) 3 p
70	(a) 3 p + 5 (b) 3 p (c) p + 5 (d) 9 p + 15
78.	If the mean and coefficient of variation of a data are 4 and 87.5% then the standard deviation is
79.	
13.	The probability a red marble selected at random from a jar containing p red, g blue and r green marbles is
	(a) $\overline{P+q+r}$ (b) $\overline{p+q+r}$ (c) $\overline{p+q}$ (d) $\overline{p+r}$
80.	Which of the following is incorrect? (a) $P(A) > 1$ (b) $0 < P(A) < 1$ (c) $P(A) = 0$ (d) $p(A) + P(\overline{A}) = 1$
81.	Which of the following is incorrect? (a) $P(A) > 1$ (b) $0 \le P(A) \le 1$ (c) $P(\phi) = 0$ (d) $P(A) + P(A) = 1$ A page is selected at random from a book. The Probability that the digit at units place of the page number
•	chosen is less than 7 is (a) $\frac{3}{10}$ (b) $\frac{7}{10}$ (c) $\frac{3}{9}$ (d) $\frac{7}{9}$
00	10
82.	The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value
-00	of x is (a) 2 (b) 4 (c) 2
· 83.	realitable went to play a lucky draw contest. 135 ticets of the lucky draw were sold. If the probability of
*	Kamalam winning is $\frac{1}{9}$, then the number of tickets bought by Kamalam is
	(a) 5 (b) 10 (c) 45
84.	If a letter is chosen at random from the English alphabets {a,b,z} then the probability that the letter chosen
	precedes x (a) $\frac{12}{13}$ (b) $\frac{1}{13}$ (c) $\frac{23}{26}$ (d) $\frac{3}{26}$
85.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	A purse contains 10 notes of ₹.2000,15 notes of ₹.500, and 25 notes of ₹.200. One note is drawn at random. What is the probability that the note is either a ₹.500 note or ₹.200 note?
96	(a) $\frac{1}{5}$ (b) $\frac{3}{10}$ (c) $\frac{2}{3}$ (d) $\frac{4}{5}$
86. 87.	The range of the first 10 Prime number 2 3 5 7 11 13 17 19 23 20 io (a) 29 (b) 20 (c) 20 (d) 27
88.	
89.	For any collection of n items $(\Sigma x) - \overline{x} = (a) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D$
90.	If t is the standard deviation of x,y,z then the standard deviation x+5, y+5,z+5 is
91	
92.	Variance of the first 11 natural numbers is (a) $\sqrt{5}$ (b) $\sqrt{10}$ (c) $5\sqrt{2}$ (d) 10 Standard deviation of a collection of data is $2\sqrt{2}$. If each value of multiplied by 3, then the standard deviation of the new data is
	new data is (a) $\sqrt{12}$ (b) $4\sqrt{2}$ (c) $6\sqrt{2}$ (d) $9\sqrt{2}$
93.	
54 .	If p is the probability of an event A, then p satisfies (a) $0 (b) 0 (c) 0 (d) 0$
95.	(a) $0 (b) 0 \le p \le 1 (c) 0 \le p < 1 (d) 0There are 6 defective items in a sample of 20 items. One item is drawn at random. The probability that it is a$
00	non - defective item is (a) $\frac{7}{10}$ (b) 0 (c) $\frac{3}{10}$ (d) $\frac{2}{3}$
96.	Two dice are thrown simultaneously, the probability of getting a doublet is
	(a) $\frac{1}{36}$ (b) $\frac{1}{3}$ (c) $\frac{1}{6}$ (d) $\frac{2}{3}$
97.	Probability of getting 3 heads or tails in tossing a coin 3 times is
• • •	
	(a) $\frac{1}{8}$ (b) $\frac{1}{4}$ (c) $\frac{3}{8}$ (d) $\frac{1}{2}$
98.	The probability that a leap year will have 53 Fridays or 53 Saturday is
	(a) $\frac{2}{7}$ (b) $\frac{1}{7}$ (c) $\frac{4}{7}$ (d) $\frac{3}{7}$
99.	
55.	The probability of selecting a queen of hearts when a card is drawn from a pack of 52 playing card is
	(a) $\frac{1}{52}$ (b) $\frac{16}{52}$ (c) $\frac{1}{13}$ (d) $\frac{1}{26}$
100.	Probability of sure event is
	(a) 1 (b) 0 (c) 100 (d) 0.1
	X-MATHS-PAGE 4
	TAGE 4