			- - 			
FIRST RE	VISION TEST - 2024	Exam N	o.			
Time : 3-00 Hours	X - MATH			Ma	irks:	100
	PART -	I	. ,			
1. If $g = \{(1,1), (2, 1)\}$ and β are	If the questions. 2) Choose (3), (3, 5), (4, 7)} is a function (given by g(x)=	αx+β t	hen the	value	es of o
2. The range of the 1) {2, 3, 5, 7}	2) $(2, -1)$ e relation $R = \{(x, x^2) \mid x \text{ is a pri} \}$ 2) $\{2, 3, 5, 7, 11\}$ 3) $\{4, 9, 1\}$	ime number les 25, 49, 121}	s than 4) {1	13} is		
 The remainder v 1) 1 	vhen 7x13x19x23x29x31 is divid 2) -1	dend by 6 is _ 3) 0	•	4)		
 If A=2⁶⁵ and B= B is 2⁶⁴ more 	$2^{64}+2^{63}+2^{62}+\dots+2^{0}$ which of	the following	is true?	51 ⁽¹⁾		
3) B is larger tha	an A by 1	2) A and B a 4) A is large	r than (
1) 3	CF of x^2 –2x–24 and x^2 –kx–6 the 2) 5	3) 6	k is	4)	8	
1) 1	al elements in any unit matrix a 2) 0	3) –1		4)	2	
No tangent can l	be drawn from of the ci 2) Exterior 3) A point of	ircle	Δ noin			metre
B. $(1 + \tan \theta + \sec \theta)$	(θ) (1 + cot θ – cosec θ) is eq	qual to	A L		-1	<i>#</i> • •
4cm. If its heigh	2) 1 ider, the sum of the external an it is 20cm, the volume of the m	aterial in it is		n and th	ne wid	
 5600πcm³ The height and respectively. Height and respectively. Height and h₂:h₁=1:2 then h₂:h₂:h₃=1:2 then h₃ 	radius of the cone of which the ight of the frustum is h_2 units ar	frustum is a pa	irt are l	4) n ₁ units r base i	and r	դ units
1) 1:3	2) 1:2	3) 2:1		4)	3:1	
 Always positi The probability a 	leviations of the data from its move 2) Always negative a red marble selected at randon	3) Zero	4) I ntaining	Non-zer p red,	o inte q blu	ger e and
r green marbles q		<u>p+q</u>	192 440		ı+q	r
1) $\overline{p+q+r}$	2) p p+q+r	3) p+q+r		. 4)	p+q-	+r
1) The slop is 0. 3) The slop is 0. 14 A man walks ne	as equation 8y=4x+21. Which of 5 and the y intercept is 2.6 2.5 and the y intercept is 1.6 4 ar a wall, such that the distance of the year a wall to be the Y axis. The path tra	2) The slop is 5 4) The slop is 5 ce between hir	and the and th	e y inte	ercept	is 2.6
1) x=10	2) y=10 PART -	3) x=0		4)	y=0	
Note: Answer any	10 questions. Question No.2		ory.	(1	0x2=	=20)
	=5 where $f(k)=2k-1$.		8 4/1			
16. A man has 532 f	flower pots, He wants to arrange Find the number of completed ro	ws and how ma	such tha my flow	er pots	row co are le	ontains ft over
18. Find the LCM of (i) a ² -	or of terms in the A.P. 3, 6, 9, 12 each pair of the following polys $+ 4a - 12$, $a^2 - 5a + 6$ whose GCl	nomials D is a -2.	ar we still the	200	V _{II}	В
19. Find two consec	cutive odd positive integers, sun	n or whose squ	ares is	290. I find k	- /	15
21. An artist has cream and has one Street the window. She	e between the roots of the equal eated a triangular stained glass rip of small length left before co e needs to figure out the length ed on the lengths of the	mpleting		\$/	<u>/</u>	To mo
other sides as s	shown in the figure. nts $(3, -1)$, $(a, 3)$ and $(1, -3)$ are	re collinear find	the va		m E 40	ciu C
Find the equation	on of a line which passes throug ude but opposite in sign.	h (5, 7) and ma	akes int	ercepis	on th	e axes

www.Padasalai.Net

www.TrbTnpsc.com

P4. If
$$A = \begin{pmatrix} \sin^2 \theta & 1 \\ \cos^2 \theta & 0 \end{pmatrix} B = \begin{pmatrix} \cos^2 \theta & 0 \\ -\cos \cos^2 \theta & 1 \end{pmatrix} C = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$
 find A+B+C

Find the angle of elevation of the top of a tower from a point on the ground, weich is 30m THE eway from the foot of a tower of height 10-/3 m.

A Sphere, a Cylinder and a Cone are of the same height which is equal to its radius, where as cone and cylinder are of same height. Find the ratio of their curved surface areas.

Find the range and coefficient of range of the following data 27 m 63, 89, 98, 125, 79, 108, 117, 68

Determine whether the graph given below PB. represent functions. Give reasons for your answers concerning each graph.

PART - III

Note: Answer any 10 questions. Question No.42 is compulsory.

Let $A=\{x\in N\mid 1< x<4\}$, $B=\{x\in W\mid 0\leq x<2\}$ and $C=\{x\in N\mid x<3\}$ then verify that $A \times (B \cup C) = (A \times B) \cup (A \times C).$

A function f:[-5,9] → R is defined as follows: 30

$$f(x) = \begin{cases} 6x+1 & ; -5 \le x < 2 \\ 5x^2 - 1 & ; 2 \le x < 6 \\ 3x - 4 & ; 6 \le x \le 9 \end{cases}$$
(i) $f(7) - f(1)$ (ii) $2f(4) + f(8) \gg$ (iii) $\frac{2f(-2) - f(6)}{f(4) + f(-2)}$

- A contract on construction job specifies a penalty for delay of completion beyond a certain date as follows: Rs. 200 for the first day, Rs. 250 for the second day, Rs. 300 for the third day, etc., the penalty for each succeeding day being Rs. 50 more than for the preceding day. How much money the contractor has to pay as penalty, if he has delayed the work by 30 days?
- Find the sum of 152+162+172+.....+282 32.
- Vani, her father and her grand father have an average age of 53. One-half of her grand 33 father's age plus one-third of her father's age plus one fourth of Vani's age is 65. Four years ago if Vani's grandfather was four times as old as Vani then how old are they all now?

34. Let
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 0 \\ 1 & 5 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$ show that (i) $A(BC) = (AB)C$.

- State and prove Thales theorem. 35.
- Two trains leave a railway station at the same time. The first train travels due west and the 36. second train due north. The first train travels at a speed of 20km/hr and the second train travels at 30km/hr. After 2 hours, what is the distance between them?
- 37.
- Let A(3, -4), B(9, -4), C(5, -7) and D(7, -7). Show that ABCD is a trapezium. Find the equation of the perpendicular bisector of the line joining the points A(-4, 2) 38. and B(6, -4).
- A pole 5m high is fixed on the top of a tower. The angle of elevation of the top of the pole 39. observed from a point 'A' on the ground is 60° and the angle of depression to the point 'A' from the top of the tower is 45°. Find the height of the tower. ($\sqrt{3} = 1.732$)
- Seenu's house has an overhead tank in the shape of a cylinder. This is filled by pumping 40. water from a sump (underground tank) which is in the shape of a cuboid. The sump has dimensions 2mx1.5mx1m. The overhead tank has its radius of 60cm and height 105cm. Find the volume of the water left in the sump after the overhead tank has been completely filled water from the sump which has been full, initially.
- If $9x^4+12x^3+28x^2+ax+b$ is a perfect square, find the values of a and b. 42
- A box contains 90 discs which are numbered from 1 to 90. If disc is drawn random from 42 the box find the probability then it bears a two digit number or a number divisible by S.

PART - IV

(2x8=16)Answer all the questions.

- a) Construct a triangle similar to a given triangle ABC with its sides equal to of the corresponding sides of the triangle ABC (scale factor 6/5 > 1). (OR)
 - b) Draw a triangle ABC of base BC=8cm, ∠A=60° and the bisector of ∠A meets 8C at D such that BD=6cm.
- a) The following table shows the data about the number of pige and the time taken to fill 26.25 No. of pipes (x) the same tank. Time taken (in min) (y)

Draw the graph for the above data and hence

- (i) Find the time taken to fill the tank when five pipes are used
- (ii) Find the number of pipes when the time is 9 minutes b) Draw the graph of $y=x^2-5x-6$ and hence solve $x^2-5x-14=0$.

(OR) 10-Maths-2