

REVISION TEST-1

PREPARED BY: E.PALAVESAM.M.Sc.,B.Ed.,

Kindly send me your answer keys to us - padasalai.net@gmail.com

REVISION TEST- 1

PART-A

I. Choose the best Answers

1. The number of relations on a set containing 3 elements is
(1) 9
(2) 81
(3) 512
(4) 1024
2. If 3 is the logarithm of 343 , then the base is
(1) 5
(2) 7
(3) 6
(4) 9
3. $\cos 1^{\circ}+\cos 2^{\circ}+\cos 3^{\circ}+\cdots+\cos 179^{\circ}=$
(1) 0
(2) 1
(3) -1
(4) 89
4. The number of rectangles that a chessboard has ...
(1) 81
(2) 9^{9}
(3) 1296
(4) 6561
5. The remainder when 38^{15} is divided by 13 is
(1) 12
(2) 1
(3) 11
(4) 5 .
6. $\sin 150^{\circ}=$ \qquad
(1) $1 / 2$
(2) $-1 / 2$
(3) $\sqrt{3} / 2$
$(4)-\sqrt{3} / 2$
7. The area of the triangle formed by the lines $x^{2}-4 y^{2}=0$ and $x=a$ is
(1) $2 a^{2}$
(2) $\frac{\sqrt{3}}{2} a^{2}$
(3) $\frac{1}{2} a^{2}$
(4) $\frac{2}{\sqrt{3}} a^{2}$
8. The points $(x,-2),(5,2),(8,8)$ are collinear then x is equal to
(1) -3
(2) $1 / 3$
(3) 1
(4) 3
9. If $|\vec{a}|=13,|\vec{b}|=5$ and $\vec{a} \cdot \vec{b}=60^{\circ}$ then $|\vec{a} \times \vec{b}|$ is
(1) 15
(2) 35
(3) 45
(4) 25
10. $\lim _{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}=$
(1) $\log a b$
(2) $\log \left(\frac{a}{b}\right)$
(3) $\log \left(\frac{b}{a}\right)$
(4) $\frac{a}{b}$
11. If $y=\frac{1}{a-z}$, then $\frac{d z}{d y}$ is
(1) $(a-z)^{2}$
(2) $-(z-a)^{2}$
(3) $(z+a)^{2}$
(4) $-(z+a)^{2}$
12. If A is a square matrix and $|A|=2$, find the value of $\left|A A^{T}\right|$
(1) 0
(2) 1
(3) 2
(4) 4

Prepared By: E.PALAVESAM.M.Sc.,B.Ed.,

13. $\int e^{\sqrt{x}} d x$ is
(1) $2 \sqrt{x}\left(1-e^{\sqrt{x}}\right)+c$
(2) $2 \sqrt{x}\left(e^{\sqrt{x}}-1\right)+c$
(3) $2 e^{\sqrt{x}}(1-\sqrt{x})+c$
(4) $2 e^{\sqrt{x}}(\sqrt{x}-1)+c$
14. If two events A and B are independent such that $P(A)=0.35$ and $P(A \cup B)=0.6$, then $P(B)$ is
(1) $\frac{5}{13}$
(2) $\frac{1}{13}$
(3) $\frac{4}{13}$
(4) $\frac{7}{13}$
15. $|x-9|<2$ then
(1) $7<x<11$
(2) $x=11$
(3) $7>x>11$
(4) $x \neq 7$
16. The x - intercept for the equation $\sqrt{3} x-y+4=0$ is
(1) $2 / \sqrt{3}$
(2) $\sqrt{3} / 4$
(3) $1 / 4$
(4) $-4 / \sqrt{3}$
17. The sum of the squares of the direction cosines of \bar{r} is
(1) 0
(2) 1
(3) -1
(4) none of these
18. Ten coins are tossed. The probability of getting at least 8 heads is
(1) $7 / 64$
(2) $7 / 32$
(3) $7 / 16$
(4) $7 / 128$
19. $\int \frac{\sqrt{\tan x}}{\sin 2 x} d x$ is
(1) $\sqrt{\tan x}+c$
(2) $2 \sqrt{\tan x}+c$
(3) $\frac{1}{2} \sqrt{\tan x}+c$
(4) $\frac{1}{4} \sqrt{\tan x}+c$
20. If $p v=81$, then $\frac{d p}{d v}$ at $v=9$ is
(1) 1
(2) -1
(3) 2
(4) -2

PART-B

II. Answer any 7 questions.(Q.no. 30 is compulsory)

21. If $f:[-2,2] \rightarrow B$ is given by $f(x)=2 x^{3}$, then find B so that f is onto.
22. Solve $\left|\frac{2}{x-4}\right|>1, x \neq 4$.
23. Express $\sin 40^{\circ} \cos 30^{\circ}$ as a sum.
24. If ${ }^{n} C_{12}={ }^{n} C_{9}$ find ${ }^{21} C_{n}$.
25. Write the 6 terms of the sequence whose $n^{\text {th }}$ term a_{n} is given below.
$a_{n}= \begin{cases}n & \text { if } n \text { is } 1,2 \text { or } 3 \\ a_{n-1}+a_{n-2}+a_{n-3} & \text { if } n>3\end{cases}$
26. Define Skew - Symmetric matrix.
27. Show that $\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=\overrightarrow{0}$.
28. Prove that $\lim _{x \rightarrow 0} \sin x=0$.

Prepared By: E.PALAVESAM.M.Sc.,B.Ed.,

29. Integrate $e^{8-7 x}$ w.r.t.x
30. Differentiate : $y=x \log x$ w.r.t. x

PART-C

III. Answer any 7 questions.(Q.no. 40 is Compulsory)
31. Write the values of f at $-3,5,2,-1,0$ if
$f(x)= \begin{cases}x^{2}+x-5 & \text { if } x \in(-\infty, 0) \\ x^{2}+3 x-2 & \text { if } x \in(3, \infty) \\ x^{2} & \text { if } x \in(0,2) \\ x^{2}-3 & \text { otherwise }\end{cases}$
32. Simplify by rationalising the denominator. $\frac{7+\sqrt{6}}{3-\sqrt{2}}$.
33. If $\frac{6!}{n!}=6$, then find the value of n.
34. Find the last two digits of the number 7^{400}
35. Show the points $(0,-3 / 2),(1,-1),(2,-1 / 2)$ are collinear.
36. Find the value of the product; $\left|\begin{array}{cc}\log _{3} 64 & \log _{4} 3 \\ \log _{3} 8 & \log _{4} 9\end{array}\right| \times\left|\begin{array}{ll}\log _{2} 3 & \log _{8} 3 \\ \log _{3} 4 & \log _{3} 4\end{array}\right|$
37. Find the positive integer n so that $\lim _{x \rightarrow 3} \frac{x^{n}-3^{n}}{x-3}=27$.
38. Integrate $: \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}$ w.r.t. x
39. Prove $\log \frac{75}{16}-2 \log \frac{5}{9}+\log \frac{32}{243}=\log 2$.
40. A die is rolled. If it shows an odd number, find the probability of getting 5 .

PART-D

IV. Answer all the questions

$7 \times 5=35$
41. a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=3 x-5$, prove that f is a bijection and find its inverse.
b) Prove that $32(\sqrt{3}) \sin \frac{\pi}{48} \cos \frac{\pi}{48} \cos \frac{\pi}{24} \cos \frac{\pi}{12} \cos \frac{\pi}{6}=3$.
42. a) By the principle of mathematical induction, prove that, for all integers $n \geq 1$,

$$
\begin{equation*}
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{OR}
\end{equation*}
$$

b) Show that $\lim _{x \rightarrow 0^{+}}\left[\left\lfloor\frac{1}{x}\right\rfloor+\left\lfloor\frac{2}{x}\right\rfloor+\cdots+\left\lfloor\frac{15}{x}\right\rfloor\right]=120$.
43. a) Prove that $\left|\begin{array}{lll}1 & x^{2} & x^{3} \\ 1 & y^{2} & y^{3} \\ 1 & z^{2} & z^{3}\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)$
b) Evaluate: $\int \frac{3 x+5}{x^{2}+4 x+7} d x$
44. a)Resolve into partial fractions : $\frac{x^{2}+x+1}{x^{2}-5 x+6}$
b) If the equation $\lambda x^{2}-10 x y+12 y^{2}+5 x-16 y-3=0$ represents a pair of straight lines, find
(i) the value of λ and the separate equations of the lines
(ii) point of intersection of the lines
(iii) angle between the lines
45. a) Prove that $\sqrt[3]{x^{3}+6}-\sqrt[3]{x^{3}+3}$ is approximately equal to $\frac{1}{x^{2}}$ when x is sufficiently large.
b) If $y=\left(\cos ^{-1} x\right)^{2}$, prove that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-2=0$. Hence find y_{2} when $x=0$
46. a) Find the equation of the line through the intersection of the lines $3 x+2 y+5=0$ and $3 x-4 y+6=0$ and the point $(1,1)$.
b) The chances of A, B and C becoming manager of a certain company are $5: 3: 2$. The probabilities that the office canteen will be improved if A, B, and C become managers are $0.4,0.5$ and 0.3 respectively. If the office canteen has been improved, what is the probability that B was appointed as the manager?
47. a) Prove by vector method, the medians of a triangle are concurrent.
b) Prove that $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$.

