

+1-QUESTION BANK

REVISION TEST-1

PREPARED BY: E.PALAVESAM.M.Sc.,B.Ed.,

www.Padasalai.Net

	Math			
	Ca	é	Mathematics	Time: 3.00Hrs.
SI	D: XI	•	REVISION TEST-1	Marks: 90
	heers the h		PART-A	00 - 1 - 0
. C	noose the de	est Answers		20 x 1 = 2
1.	The number of	of relations on a set co	ntaining 3 elements is	
0	(1) 9	(2) 81	(3) 512	(4) 1024
2.	If 3 is the loga	rithm of 343 , then the	e base is	
2	(1) 5	(2) /	(3) 6 70° –	(4) 9
э.	(1) 0	(2) 1	(3) -1	(4) 89
4.	The number of (1) of	if rectangles that a che	essboard has ···	
	(1)81	(2) 9	(3) 1296	(4) 6561
5.	The remainde	r when 38 ¹⁵ is divide	d by 13 is	
	(1) 12	(2) 1	(3) 11	(4) 5.
6.	$\sin 150^{\circ} = $		C	0
	(1) $\frac{1}{2}$	$(2) - \frac{1}{2}$	(3) $\sqrt{3}/{2}$	$(4) - \frac{\sqrt{3}}{2}$
7.	The area of the triangle formed by the lines $x^2 - 4y^2 = 0$ and $x = a$ is			
	(1) $2a^2$	$(2)\frac{\sqrt{3}}{2}a^2$	$(3)\frac{1}{2}a^2$	$(4)\frac{2}{\sqrt{3}}a^2$
8.	The points $(x, -2)$, $(5, 2)$, $(8, 8)$ are collinear then x is equal to			
	(1) - 3	$(2) \frac{1}{2}$	(3) 1	(4) 3
	(1) = 3	(2) /3	(3) 1	(+) 5
9.	If $ \vec{a} = 13$, $ \vec{b} = 5$ and $\vec{a} \cdot \vec{b} = 60^\circ$ then $ \vec{a} \times \vec{b} $ is			
	(1) 15	(2) 35	(3) 45	(4) 25
10	$\lim_{x\to 0} \frac{a^x - b^x}{x} =$	=		
	(1) log ab	(2) $\log\left(\frac{a}{b}\right)$	(3) $\log\left(\frac{b}{a}\right)$	$(4)\frac{a}{b}$
11	. If $y = \frac{1}{a-z}$, the	$n \frac{dz}{dy}$ is		
	(1) $(a - z)^2$	$(2) - (z - a)^2$	(3) $(z + a)^2$	$(4) - (z+a)^2$
12	. If A is a squar	e matrix and $ A = 2$, f	ind the value of $\left AA^{T}\right $	

PREPARED BY: E.PALAVESAM.M.Sc.,B.Ed.,

13. $\int e^{\sqrt{x}} dx$ is

(1)
$$2\sqrt{x}\left(1-e^{\sqrt{x}}\right)+c$$
 (2) $2\sqrt{x}\left(e^{\sqrt{x}}-1\right)+c$ (3) $2e^{\sqrt{x}}(1-\sqrt{x})+c$ (4) $2e^{\sqrt{x}}(\sqrt{x}-1)+c$

14. If two events *A* and *B* are independent such that P(A) = 0.35 and $P(A \cup B) = 0.6$, then P(B) is

 $(1)\frac{5}{13}$ $(2)\frac{1}{13}$ $(3)\frac{4}{13}$ $(4)\frac{7}{12}$ 15. |x-9| < 2 then (1) 7 < x < 11 (2) x = 11(3) 7 > x > 11(4) $x \neq 7$ 16. The x – intercept for the equation $\sqrt{3}x - y + 4 = 0$ is (1) $2/\sqrt{3}$ (2) $\sqrt{3}/4$ (3) $\frac{1}{4}$ $(4) - \frac{4}{\sqrt{3}}$ 17. The sum of the squares of the direction cosines of r is (4) none of these (1)0(2)1(3) - 118. Ten coins are tossed. The probability of getting at least 8 heads is (4) $\frac{7}{128}$ (1) $\frac{7}{64}$ (2) $\frac{7}{32}$ (3) $\frac{7}{16}$ 19. $\int \frac{\sqrt{\tan x}}{\sin 2x} dx$ is (1) $\sqrt{\tan x} + c$ (2) $2\sqrt{\tan x} + c$ (3) $\frac{1}{2}\sqrt{\tan x} + c$ (4) $\frac{1}{4}\sqrt{\tan x} + c$ 20. If pv = 81, then $\frac{dp}{dv}$ at v = 9 is (2) - 1(3)2(1)1(4) - 2

PART-B

7 x 2 =14

II. Answer any 7 questions.(Q.no.30 is compulsory)

- 21. If $f: [-2,2] \rightarrow B$ is given by $f(x) = 2x^3$, then find *B* so that *f* is onto.
- 22. Solve $\left|\frac{2}{x-4}\right| > 1, x \neq 4.$
- 23. Express sin 40° cos 30° as a sum.
- 24. If ${}^{n}C_{12} = {}^{n}C_{9}$ find ${}^{21}C_{n}$.
- 25. Write the 6 terms of the sequence whose n^{th} term a_n is given below.

$$a_n = \begin{cases} n & \text{if } n \text{ is } 1,2 \text{ or } 3\\ a_{n-1} + a_{n-2} + a_{n-3} & \text{if } n > 3 \end{cases}$$

- 26. Define Skew Symmetric matrix.
- 27. Show that $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}) = \vec{0}$.
- 28. Prove that $\lim_{x\to 0} \sin x = 0$.

PREPARED BY: E.PALAVESAM.M.Sc.,B.Ed.,

Kindly send me your answer keys to us - padasalai.net@gmail.com

30. Differentiate : $y = x \log x$ w.r.t. x

PART-C

III. Answer any 7 questions.(Q.no.40 is Compulsory)

31. Write the values of f at -3,5,2,-1,0 if

$$f(x) = \begin{cases} x^2 + x - 5 & \text{if } x \in (-\infty, 0) \\ x^2 + 3x - 2 & \text{if } x \in (3, \infty) \\ x^2 & \text{if } x \in (0, 2) \\ x^2 - 3 & \text{otherwise} \end{cases}$$

32. Simplify by rationalising the denominator. $\frac{7+\sqrt{6}}{3-\sqrt{2}}$.

33. If $\frac{6!}{n!} = 6$, then find the value of *n*.

34. Find the last two digits of the number 7^{400}

35. Show the points $(0, -\frac{3}{2})$, (1, -1), $(2, -\frac{1}{2})$ are collinear.

36. Find the value of the product; $\begin{vmatrix} \log_3 64 & \log_4 3 \\ \log_3 8 & \log_4 9 \end{vmatrix} \times \begin{vmatrix} \log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4 \end{vmatrix}$

37. Find the positive integer *n* so that $\lim_{x\to 3} \frac{x^{n}-3^{n}}{x-3} = 27$.

38. Integrate : $\frac{x\sin^{-1}x}{\sqrt{1-x^2}}$ w.r.t. x

39. Prove $\log \frac{75}{16} - 2\log \frac{5}{9} + \log \frac{32}{243} = \log 2$.

40. A die is rolled. If it shows an odd number, find the probability of getting 5.

PART-D

IV. Answer all the questions

41. a) If $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 3x - 5, prove that f is a bijection and find its inverse. **(OR)** b) Prove that $32(\sqrt{3})\sin\frac{\pi}{48}\cos\frac{\pi}{48}\cos\frac{\pi}{24}\cos\frac{\pi}{12}\cos\frac{\pi}{6} = 3$.

42. a) By the principle of mathematical induction, prove that, for all integers $n \ge 1$, $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ (OR)

b) Show that $\lim_{x\to 0^+} x\left[\left|\frac{1}{x}\right| + \left|\frac{2}{x}\right| + \dots + \left|\frac{15}{x}\right|\right] = 120.$

43. a) Prove that
$$\begin{vmatrix} 1 & x^2 & x^3 \\ 1 & y^2 & y^3 \\ 1 & z^2 & z^3 \end{vmatrix} = (x - y)(y - z)(z - x)(xy + yz + zx)$$
 (OR)

b) Evaluate :
$$\int \frac{3x+5}{x^2+4x+7} dx$$

PREPARED BY: E.PALAVESAM.M.Sc.,B.Ed.,

Kindly send me your answer keys to us - padasalai.net@gmail.com

7 x 3 =21

7 x 5 = 35

(OR)

(OR)

(OR)

44. a)Resolve into partial fractions : $\frac{x^2+x+1}{x^2-5x+6}$

b) If the equation $\lambda x^2 - 10xy + 12y^2 + 5x - 16y - 3 = 0$ represents a pair of straight lines, find

- (i) the value of λ and the separate equations of the lines
- (ii) point of intersection of the lines
- (iii) angle between the lines
- 45. a) Prove that $\sqrt[3]{x^3 + 6} \sqrt[3]{x^3 + 3}$ is approximately equal to $\frac{1}{x^2}$ when x is sufficiently large. (OR)
 - b) If $y = (\cos^{-1} x)^2$, prove that $(1 x^2)\frac{d^2y}{dx^2} x\frac{dy}{dx} 2 = 0$. Hence find y_2 when x = 0
- 46. a) Find the equation of the line through the intersection of the lines 3x + 2y + 5 = 0 and 3x 4y + 6 = 0 and the point (1,1).
 - b) The chances of *A*, *B* and *C* becoming manager of a certain company are 5: 3: 2. The probabilities that the office canteen will be improved if *A*, *B*, and *C* become managers are 0.4,0.5 and 0.3 respectively. If the office canteen has been improved, what is the probability that *B* was appointed as the manager?

- 47. a) Prove by vector method, the medians of a triangle are concurrent.
 - b) Prove that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$.

Prepared by: E.PALAVESAM.M.Sc.,B.Ed., (Contact: 9790193169)

PREPARED BY: E.PALAVESAM.M.Sc., B.Ed.,