STD - XI
TIME : 3.00 Hrs

MATHS

PART - I

I. Answer all the questions:

MARKS : 90
$20 \times 1=20$

1. If the function $f:[-3,3] \rightarrow S$ defined by $f(x)=x^{2}$ is onto, then S is
a) $[-9,9]$
b) R
c) $[-3,3]$
(d) $[0,9]$

The number of reflexive relations on a set containing n elements is
a) $2 \frac{n^{2}+n}{2}$
(b) $2^{n^{2}-n}$
c) $2^{n^{2}+n}$
d) $\frac{n^{2}-n}{2}$
3. The value of $\log \frac{5}{\sqrt{2}}$ is
a) 16
(b) 18
c) 9
d) 12
4. If $\frac{1-2 x}{3+2 x-x^{2}}=\frac{A}{3-x}+\frac{B}{x+1}$, then the value of $A+B$ is
(a) $\frac{-1}{2}$
b) $\frac{-2}{3}$
c) $\frac{1}{2}$
d) $\frac{2}{3}$
5. $\cos 1^{\circ}+\cos 2^{\circ}+\cos 3^{\circ}+$ \qquad $+\cos 179^{\circ}=$
a) 0
b) 1
c) -1
d) 89
6. $\sin \theta=\frac{-\sqrt{3}}{2}$, Find the principal solution
a) $\frac{\pi}{3}$
b) $\frac{\pi}{6}$
C) $\frac{\pi}{4}$
(d) $\frac{-\pi}{3}$
7. Number of sides of a polygon having 44 diagonals is
a) 4
b) $4!$
(c) 11
d) 22
8. $\ln 2 \cdot C_{3}: n C_{3}=11: 1$ then n is
7) 5
(b) 0
c) 11
d) 7
9. If a is the arimutto mech and 3 is the geometric mean of two numbers, then
a) $a \leq g$
(6) $a \geq 9$
c) $a=g$
d) $a=9$
10. The couficiont $f x^{5}$ in the series $e^{-2 x}$ is
a) $\frac{2}{3}$
b) $\frac{3}{2}$
(c) $\frac{-4}{15}$
d) $\frac{4}{15}$
11. The lmage of the point $(2,3)$ in the line $y=-x$ is
(a) $(-3,-2)$
b) $(-3,2)$
c) $(-2,-3)$
d) $(3,2)$
12. The ared of the triangle formed by the lines $x^{2}-4 y^{2}=0$ and $x=a$ is
a) $2 a^{2}$
b) $\frac{\sqrt{3}}{2} a^{2}$
(c)) $\frac{1}{2} a^{2}$
d) $\frac{2}{\sqrt{3}} a^{2}$
13. If A is a square matrix, then which of the following is not symmetric?
a) $A+A^{\top}$
b) $A A^{\top}$
c) $A^{\top} A$
(d) $A-A^{\top}$

Rajasekar.S (King of Kings Matric Hr. Sec. School) Meiyampuli, Rameswaram

14. The root of the equation $\left|\begin{array}{ccc}3-x & -6 & 3 \\ -6 & 3-x & 3 \\ 3 & 3 & -6-x\end{array}\right|=0$ is
a) 6
b) 3
(c) 0
d) -6
15. If $A B C D$ is a parallelogram, then $\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{C B}+\overrightarrow{C D}$ is equal to
a) $2(\overrightarrow{A B}+\overrightarrow{A D})$
b) $4 \overrightarrow{A C}$
C) $4 \overrightarrow{B D}$
(d) 0
16. Find $\vec{a} \cdot \vec{b}$ when $\vec{a}=2 \vec{i}+\vec{j}-\vec{k}$ and $\vec{b}=-\vec{j}-2 \vec{k}$
a) 2
b) 3
(c) 1
d) 4
17. $\operatorname{Lim}_{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}=$
a) $\log a b$
(b) $\log (a / b)$
c) $\log (b / a)$
d) a / b
18. If $y=\frac{1}{a-z}$, then $\frac{d z}{d y}$ is
(a) $(a-z)^{2}$
b) $\quad-(z-a)^{2}$
c) $(z+a)^{2}$
d) $-(z+a)^{2}$
19. $\int \frac{\sec x}{\sqrt{\cos 2 x}} d x$ is
a) $\tan ^{-1}(\sin x)+C$
b) $2 \sin ^{-1}(\tan x)+C$
c) $\tan ^{-1}(\cos x)+C$
(d) $\sin ^{-1}(\tan x)+C$
20. If two events A and B are independent such that $P(A)=0.35$ and $P(A \cup B)=0.6$, then $P(B)=$ is
(a) $\frac{5}{13}$
b) $\frac{1}{13}$
C) $\frac{4}{13}$
d) $\frac{7}{13}$

PART - II

II. Answer any seven questions. Q.No. 30 is compulsory.
21. Solve $|2 x-3|=|x-5| \mathcal{J}^{0}$
22. Find the value of $\cos \left(300^{\circ}\right)$
23. If $\mathrm{nC}_{12}=\mathrm{nC}_{9}$ find $21 \mathrm{C}_{\mathrm{n}}$ कo
24. Find the middle terms in the expansion of $(x+y)^{6} \sim^{-}$
25. Find the distance between the parallel liness. $12 x+5 y=7$ and $12 x+5 y+7=0$ 号
26. Determine the value of $x+y$ if $\left[\begin{array}{cc}2 x+y & 4 x \\ 5 x-7 & 4 x\end{array}\right]=\left[\begin{array}{cc}7 & 7 y-13 \\ y & x+6\end{array}\right] \quad \mathrm{Co}$
27. If $\frac{1}{2}, \frac{1}{\sqrt{2}}, a$, it are the direction cosines of some vector, then find $a . \frac{0}{6}$
28. $\operatorname{Lim}_{x \rightarrow 3} \frac{x^{n}-3^{n}}{x-3}=27$ find the value of n.
29. If A and B are mutually exclusive events $P(A)=\frac{3}{8}$ and $P(B)=\frac{1}{8}$ then find (i) $p(\bar{A})$ (ii) $p(\bar{A} \cap B)$
30. Evaluate $\int a^{x} e^{x} d x$

PART - III
III. Answer any seven questions. Q.No. 40 is compulsory
31. If $n(P(A))=1024, n(A \cup B)=15$ and $n(P(B))=32$ then find $n(A \cap B)$.
32. Simplify and hence find the value of $n \cdot \frac{3^{2 n} 9^{2} 3^{-n}}{3^{3 n}}=27 \Lambda$
33. Find the distinct permutations of the letters of the word MISSISSIPPI.
34. Write the first 6 terms of the sequences whose $n^{\text {th }}$ term a_{n} is $a_{n}=\left\{\begin{array}{l}n \quad \text { if } n \text { is } 1,2,3 \\ a_{n-1}+a_{n-2}+a_{n-3} \text { if } n>3\end{array}\right.$ 市
35. If $A=\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$, then compute A^{4}. क
36. Find λ, when the projection of $\vec{a}=\lambda \dot{i}+\vec{j}+4 \vec{k}$ on $\vec{b}=2 \dot{i}+6 \vec{j}+3 \vec{k}$ is 4 units. Λ -
37. Evaluate $\operatorname{Lim}_{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x} \vartheta^{n}$
38. Evaluate $\int e^{x}(\tan x+\log \sec x) d x \sim^{m}$
39. Eight coins are tossed once, find the probability of getting (i) exactly two tails, (ii) at least two tails. ${ }^{\chi}$
40. Find the derivations of $x=a(\cos t+t \sin t), y=a(\sin t-t \cos t)$

PART - IV

IV. Answer all the questions.
41. a) If $f: R \rightarrow R$ is defined by $f(x)=2 x-3$. Prove that f is a bijection and find its inverse. ?
(OR)
b) Evaluate $\operatorname{Lim}_{x \rightarrow \infty} x\left[3^{1 / x}+1-\cos \left(\frac{1}{x}\right)-e^{1 / x}\right]$
42. a) If $\frac{\log x}{y-z}=\frac{\log y}{z-x}=\frac{\log z}{x-y}$ then prove that $x y z=1 \quad$ §

> (OR)
b) Evaluate $\int \frac{3 x+5}{x^{2}+4 x+7} d x, V$
43. a) P.T. Napier's formula
b) If $y=\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$, show that $\left(1-x^{2}\right) y^{\prime \prime}-3 x y^{\prime}-y=0$
44. a) By the principle of mathematical induction prove that for all integers $n \geq 1$

$$
1^{2}+2^{2}+\ldots \ldots \ldots \ldots \ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

(OR)
b) The slope of one of the straight lines $a x^{2}+2 h x y+b y^{2}=0$ is three times the other, show that $3 b^{2}=4 a b$.
45. a) $8+88+888+$ \qquad the sum of first n terms of the series.

b) If D and E are the midpoints of the sides $A B$ and $A C$ of a triangle $A B C$, Prove that $\overrightarrow{B E}+\overrightarrow{D C}=\frac{3}{2} \overrightarrow{B C} 6^{\circ}$
46. a) Prove that $\left|\begin{array}{lll}1 & x & x \\ x & 1 & x \\ x & x & 1\end{array}\right|=\left|\begin{array}{ccc}1-2 x^{2} & -x^{2} & -x^{2} \\ -x^{2} & -1 & x^{2}-2 x \\ -x^{2} & x^{2}-2 x & -1\end{array}\right| \wp^{\ominus}$
(OR)
b) $x^{4}+y^{4}=16$ find $y^{\prime \prime}$
47. a) Show that the vectors $-\vec{i}-2 \vec{j}-6 \vec{k}, 2 i-\vec{j}+\vec{k}$ and $-i+3 \vec{j}+5 \vec{k}$ form a right angled triangle. (OR)
b) The chances of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ becoming manager of a certain company are $5: 3: 2$. The probability that the office canteen will be improved of A, B and C become managers are $0.4,0.5$ and 0.3 respectively. If the office canteen has been improved, what is the probability that B was appointed as the manager?

Rajasekar.S (King of Kings Mantric Hr. Sec. School) Meiyampuli, Rameswaram

Rajasekar. S (King of Kings Matric Hr. Sec School, Meiyampuli) HALF YEARLY EXAM - 2023

$11^{\text {th }}$ std MATHEMATICS (ANSWER KEY) - RAMANATHAPURAM DISTRICT
I. CHOOSE THE BEST ANSWER

1	d) $[0,9]$
2	b) $2^{\mathrm{n} 2-\mathrm{n}}$
3 (Qtn is Wrong)	b) 18
4	a) $-1 / 2$
5	a) 0
6	d) $-\Pi / 3$
7	c) 11
8	b) 6
9	b) $\mathrm{a} \geq \mathrm{g}$
10	c) $-4 / 15$
11	a) $(-3,2)$
12	c) $1 / 2 \mathrm{a}^{2}$
13	d) $A-A^{T}$
14	c) 0
15	d) 0
16	c) 1
17	b) $\log (\mathrm{a} / \mathrm{b})$
18	$(\mathrm{a}-\mathrm{z})^{2}$
19	d) $\operatorname{Sin}^{-1}(\tan x)+C$
20	a) $5 / 13$

II. 2 MARKS

21

$$
2 x-3=-x+5
$$

$$
x=-\mathbf{2} ; \quad 3 x=8 \Rightarrow x=\mathbf{8} / \mathbf{3}
$$

Kindly send me your answer keys to us - padasalai.net@gmail.com

22	$\cos \left(300^{\circ}\right)=\cos \left(270^{\circ}+30^{\circ}\right)=\sin 30^{\circ}=1 / 2$
23	Given $\mathbf{n C}_{12}=\mathbf{n C} 9$ We have $\mathrm{nC}_{\mathrm{x}}=\mathbf{n C} \mathrm{n}_{\mathrm{y}} \Rightarrow \mathbf{x}=\mathrm{y}$ or $\mathrm{x}+\mathrm{y}=\mathbf{n}$ $\begin{aligned} & \mathrm{nC}_{12}=n \mathrm{C}_{9} \\ & \Rightarrow 12+9=n \Rightarrow n=21 \\ & \Rightarrow 21 C_{n}=21 C_{21}=1 \end{aligned}$
24	Here $n=6$; which is even. The middle term in the expansion of $(x+y)^{6}$ is the term containing $x^{3} y^{3}$, that is the term $6 \mathrm{C} 3 x 3 y 3$ which is equal to $\mathbf{2 0} \boldsymbol{x}^{\mathbf{3}} \boldsymbol{y}^{\mathbf{3}}$.
25	The equation of the given lines are $\begin{align*} & 12 x+5 y-7=0 \tag{1}\\ & 12 x+5 y+7=0 \tag{2} \end{align*}$ \qquad The distance between the parallel lines $a x+b y+c_{1}=0$ and $a x+b y+c_{2}=0$ is The equation of any line parallel to (1) is $\mathbf{d}=\frac{\mathbf{c}_{1}-\mathbf{c}_{2}}{\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}}$ \therefore The required distance $=\frac{-7-7}{\sqrt{12^{2}+5^{2}}}$ $\begin{aligned} & =\frac{-14}{\sqrt{144+25}} \\ & =-\frac{14}{\sqrt{169}}=-\frac{14}{13} \end{aligned}$ The distance cannot be negative \therefore Required distance $=14 / 13$
26	$\begin{align*} & 2 x+y=7 \ldots \tag{1}\\ & 4 x=7 y-13 \tag{2}\\ & 5 x-7=y \ldots \tag{3} \end{align*}$

	$\begin{equation*} 4 x=x+6 \tag{4} \end{equation*}$ \qquad from (4) $4 x-x=6$ $3 x=6 \Rightarrow x=6 / 3=2$ Substituting $x=2$ in (1), we get $2(2)+y=7 \Rightarrow 4+y=7 \Rightarrow y=7-4=3$ So $x=2$ and $y=3$ $\therefore x+y=2+3=5$
27	$\begin{aligned} \left(\frac{1}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2} & +a^{2}=1 \\ \frac{1}{4}+\frac{1}{2} & +a^{2}=1 \\ \frac{1+2}{4}+a^{2} & =1 \\ a^{2} & =1-\frac{3}{4} \\ & =\frac{4-3}{4}=\frac{1}{4} \\ a & = \pm \frac{1}{2} \end{aligned}$
28	$\lim _{x \rightarrow 3} \frac{x^{n}-3^{n}}{x-3}=n .3^{n-1}=27$ That is $n .3^{n-1}=3 \times 3^{2}=3 \times 3^{3-1} \Rightarrow n=3$.
29	$\text { (i) } \begin{aligned} & \mathrm{P}(\overline{\mathrm{~A}}) \\ & \mathrm{P}(\overline{\mathrm{~A}})=1-\mathrm{P}(\mathrm{~A}) \\ & =1-3 / 8 \\ & \mathrm{P}(\overline{\mathrm{~A}})=8-3 / 8=5 / 8 \end{aligned}$ (ii) $\begin{aligned} & \mathbf{P}(\overline{\mathbf{A}} \cup \overline{\mathbf{B}}) \\ & \mathbf{P}(\overline{\mathbf{A}} \cup \overline{\mathbf{B}}) \\ & =1-\mathbf{P}(\mathbf{A} \cap \mathbf{B}) \end{aligned}$

	Since A and B are mutually exclusive we have $\mathrm{A} \cap \mathrm{B}=\Phi$
$\therefore \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0$	
$\mathrm{P}(\overline{\mathrm{A}} \cup \overline{\mathrm{B}})=1-0=1$	
30	$\int a^{x} e^{x} d x=\int(a e)^{x} d x=\frac{(a e)^{x}}{\log (a e)}+c$

III.

	$\begin{aligned} & =\frac{11!}{4!\times 4!\times 2!\times 1!} \\ & =\frac{11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4!}{4 \times 3 \times 2 \times 1 \times 4!\times 2 \times 1 \times 1} \\ & =\frac{11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 2} \\ & =\frac{11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5}{8 \times 6} \\ & =11 \times 10 \times 9 \times 7 \times 5 \\ & =34,650 \end{aligned}$
34	$\begin{aligned} & n=1, a_{n}=n, a_{1}=1 \\ & n=2, a_{n}=n, a_{2}=1 \\ & n=3, a_{n}=n, a_{3}=1 \\ & n=4, a_{n}=a_{n-1}+a_{n-2}+a_{n-3} \\ & a_{4}=3+2+1=6 \\ & n=5, a_{n}=a_{n-1}+a_{n-2}+a_{n-3} \\ & \begin{array}{ll} a_{5}=6+3+2=11 & a_{5}=a_{5-1}+a_{5-2}+a_{5-3} \\ n=6, a_{n-3}=a_{n-1}+a_{n-2}+a_{n-3} \\ a_{6}=11+6+3=20 & a_{6}=a_{6-1}+a_{6-2}+a_{6-3} \end{array} \end{aligned}$ \therefore The first six terms are $1,2,3,6,11,20$
35	$\begin{aligned} \mathbf{A} & =\left[\begin{array}{ll} 1 & \mathbf{a} \\ 0 & 1 \end{array}\right] \\ \mathbf{A}^{2} & =\mathbf{A} \cdot \mathbf{A}=\left[\begin{array}{cc} 1 & \mathbf{a} \\ 0 & 1 \end{array}\right]\left[\begin{array}{ll} 1 & \mathbf{a} \\ 0 & 1 \end{array}\right] \\ & =\left[\begin{array}{ll} 1+0 & \mathbf{a}+\mathbf{a} \\ 0+0 & 0+1 \end{array}\right] \\ \mathbf{A}^{2} & =\left[\begin{array}{ll} 1 & 2 \mathbf{a} \\ 0 & 1 \end{array}\right] \\ \mathbf{A}^{4} & =\mathbf{A}^{2} \times \mathbf{A}^{2} \\ & =\left[\begin{array}{ll} 1 & 2 \mathbf{a} \\ 0 & 1 \end{array}\right]\left[\begin{array}{cc} 1 & 2 \mathbf{a} \\ 0 & 1 \end{array}\right] \\ \mathbf{A}^{4} & =\left[\begin{array}{ll} 1 & 0 \\ 0+0 \\ 0 & 0 \\ 0 & 0 \end{array}\right] \\ \mathbf{A}^{4} & =\left[\begin{array}{ll} 1 & 4 \mathbf{a} \\ 0 & 1 \end{array}\right] \end{aligned}$

Rajasekar.S King of kings Matric Hr Sec School, Meiyampuli, Rameswaram
Kindly send me your answer keys to us - padasalai.net@gmail.com

36	$\begin{aligned} \frac{\vec{a} \cdot \overrightarrow{\mathbf{b}}}{\|\overrightarrow{\mathbf{b}}\|} & =4 \\ \frac{(\lambda \hat{\mathbf{i}}+\hat{\mathbf{j}}+4 \hat{\mathbf{k}}) \cdot(2 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})}{\mid 2 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+3 \hat{\mathbf{k} \mid}} & =4 \\ \frac{(\lambda)(2)+(1)(6)+(4)(3)}{\sqrt{2^{2}+6^{2}+3^{2}}} & =4 \\ \frac{2 \lambda+6+12}{\sqrt{4+36+9}} & =4 \\ \frac{2 \lambda+18}{\sqrt{49}} & =4 \\ 2 \lambda+18 & =4 \times 7 \\ 2 \lambda=10 \quad 2 \lambda & =18 \end{aligned}$	
37	$\begin{aligned} \lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x} & =\lim _{x \rightarrow 0} \frac{(\sqrt{1+x}-1)}{x} \times \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1} \\ & =\lim _{x \rightarrow 0}\left[\frac{(1+x)-1}{x(\sqrt{1+x}+1)}\right] \\ & =\lim _{x \rightarrow 0}\left[\frac{x}{x(\sqrt{1+x}+1)}\right] \\ & =\lim _{x \rightarrow 0}\left[\frac{1}{\sqrt{1+x}+1}\right] \\ & =\frac{1}{\sqrt{1+0}+1}=\frac{1}{1+1} \\ \lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x} & =\frac{1}{2} \end{aligned}$	
38	$\begin{aligned} & \text { Let } I=\int e^{x}(\tan x+\log \sec x) d x \\ & \text { Take } f(x)=\log \sec x \\ & f^{\prime}(x)=1 / \sec x(\sec x \tan x) \\ & f^{\prime}(x)=\tan x \\ & {\left[\int e^{x}[f(x)+f(x)] d x=e^{x} f(x)+c\right]} \\ & \therefore \\|=e^{x} \log \|\sec x\|+c \end{aligned}$	

39	$\begin{aligned} & \mathrm{n}(\mathrm{~S})=2^{8}=256 \\ & \mathrm{n}(\mathrm{~A})=8 \mathrm{C}_{2} \\ & =8 \times 7 / 2=28 \\ & \mathrm{n}(\mathrm{~B})=8 \mathrm{C}_{2}+8 \mathrm{C}_{3}+8 \mathrm{C}_{4}+8 \mathrm{C}_{5}+8 \mathrm{C}_{6}+8 \mathrm{C}_{7}+8 \mathrm{C}_{8} \\ & =\mathrm{n}(\mathrm{~S})-\left(8 \mathrm{C}_{8}+8 \mathrm{C}_{1}\right) \\ & =\mathrm{n}(\mathrm{~S})-(1+8) \quad=256-9=247 \end{aligned}$ (i) $\quad \mathrm{P}$ \{getting exactly two tails) $=$ $\begin{aligned} & P(A)=\frac{n(A)}{n(S)} \\ & P(A)=\frac{28}{256}=\frac{7}{64} \end{aligned}$ (ii) P (getting atleast two tails) = $\begin{aligned} & P(B)=\frac{n(B)}{n(S)} \\ & P(B)=\frac{247}{256} \end{aligned}$
40. Qtn is Wrong	$\begin{aligned} & x=a(\cos t+t \sin t), y=a(\sin t-t \cos t) \\ & d x / d t=a[-\sin t+t \cos t+\sin t] \\ & d x / d t=a t \cos t-(1) \\ & y=a(\sin t-t \cos t) \\ & d y / d t=a[\cos t-(t \times-\sin t+\cos t \times 1)] \\ & d y / d t=a[\cos t+t \sin t-\cos t] \\ & d y / d t=a t \sin t-(2) \end{aligned}$ From equations (1) and (2) we get

$\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$	$=\frac{\text { at } \sin t}{\text { at } \cos t}$
$\frac{d y}{d x}$	$=\tan t$

III.

41.a)	Let $y=2 x-3$. Then $x=\frac{y+3}{2}$. Let $g(y)=\frac{y+3}{2}$. Now $\begin{gathered} (g \circ f)(x)=g(f(x))=g(2 x-3)=\frac{(2 x-3)+3}{2}=x . \\ (f \circ g)(y)=f(g(y))=f\left(\frac{y+3}{2}\right)=2\left(\frac{y+3}{2}\right)-3=y . \end{gathered}$ Thus, $g \circ f=I_{X}$ and $f \circ g=I_{Y}$ This implies that f and g are bijections and inverses to each other. Hence f is a bijection and $f^{-1}(y)=\frac{y+3}{2}$. Replacing y by x we get, $f^{-1}(x)=\frac{x+3}{2}$.
b)	We know $\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-1}{x}=1, \lim _{x \rightarrow 0} \frac{\mathrm{a}^{x}-1}{x}=\log a, \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$ $\begin{aligned} \lim _{x \rightarrow \infty} x\left[\frac{1}{3^{x}}+1-\cos \left(\frac{1}{x}\right)-\mathrm{e}^{\frac{1}{x}}\right] & =\lim _{x \rightarrow \infty}\left[\frac{\frac{1}{3^{x}}+1-\cos \left(\frac{1}{x}\right)-\mathrm{e}^{\frac{1}{x}}}{\frac{1}{x}}\right] \\ & =\lim _{x \rightarrow \infty}\left[\frac{3^{\frac{1}{x}}-\mathrm{e}^{\frac{1}{x}}}{\frac{1}{x}}+\frac{1-\cos \left(\frac{1}{x}\right)}{\frac{1}{x}}\right] \end{aligned}$

Rajasekar. S (King of Kings Matric Hr. Sec School, Meiyampuli)

	$\begin{aligned} & =\lim _{x \rightarrow \infty}\left[\frac{3^{\frac{1}{x}}-1+1-\mathrm{e}^{\frac{1}{x}}}{\frac{1}{x}}+\frac{1-\cos \left(\frac{1}{x}\right)}{\frac{1}{x}}\right] \\ & =\lim _{x \rightarrow \infty}\left[\frac{\left(3^{\frac{1}{x}}-1\right)-\left(\mathrm{e}^{\frac{1}{x}}-1\right)}{\frac{1}{x}}+\frac{1-\cos \left(\frac{1}{x}\right)}{\frac{1}{x}}\right] \\ & =\lim _{x \rightarrow \infty}\left[\frac{3^{\frac{1}{x}}-1}{\frac{1}{x}}-\frac{\mathrm{e}^{\frac{1}{x}}-1}{\frac{1}{x}}+\frac{1-\cos \left(\frac{1}{x}\right)}{\frac{1}{x}}\right] \end{aligned}$ Put $y=\frac{1}{x}$, When $x=\infty \quad \Rightarrow y=\frac{1}{\infty}=0$ $\begin{aligned} \lim _{x \rightarrow \infty} x\left[3^{\frac{1}{x}}+1-\cos \left(\frac{1}{x}\right)-e^{\frac{1}{x}}\right] & =\lim _{y \rightarrow 0}\left[\frac{3^{y}-1}{y}-\frac{e^{y}-1}{y}+\frac{1-\cos y}{y}\right] \\ & =\left(\lim _{y \rightarrow 0} \frac{3^{y}-1}{y}\right)-\left(\lim _{y \rightarrow 0} \frac{e^{y}-1}{y}\right)+\left(\lim _{y \rightarrow 0} \frac{1-\cos y}{y}\right) \\ & =\log 3-1+0 \\ \lim _{x \rightarrow \infty} x\left[3^{\frac{1}{x}}+1-\cos \left(\frac{1}{x}\right)-e^{\frac{1}{x}}\right] & =(\log 3)-1 \end{aligned}$
42. a)	Let $\log x / y-z=k$ $\begin{align*} & \log x=k(y-z) \\ & \log x=k y-k z \end{align*}$ Similarly $\log y=k(z-x)=k z-k x —$ (2) $\log z=k(x-y)=k x-k y-(3)$ Adding (1), (2) and (3) $\begin{aligned} & \log x+\log y+\log z=k y-k z+k z-k x+k x-k y \\ & \log (x y z)=0 \quad x y z=e^{0} \\ & x y z=1 \end{aligned}$

b)	Let $I=\int \frac{3 x+5}{x^{2}+4 x+7} d x$ $\begin{aligned} & 3 x+5=A \frac{d}{d x}\left(x^{2}+4 x+7\right)+B \\ & 3 x+5=A(2 x+4)+B \end{aligned}$ Comparing the coefficients of like terms, we get $\begin{aligned} 2 A & =3 \Rightarrow A=\frac{3}{2} ; 4 A+B=5 \Rightarrow B=-1 \\ I & =\int \frac{\frac{3}{2}(2 x+4)-1}{x^{2}+4 x+7} d x \\ I & =\frac{3}{2} \int \frac{2 x+4}{x^{2}+4 x+7} d x-\int \frac{1}{x^{2}+4 x+7} d x \\ & =\frac{3}{2} \log \left\|x^{2}+4 x+7\right\|-\int \frac{1}{(x+2)^{2}+(\sqrt{3})^{2}} d x \\ & =\frac{3}{2} \log \left\|x^{2}+4 x+7\right\|-\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x+2}{\sqrt{3}}\right)+c \end{aligned}$
43. a)	(i) $\tan \frac{A-B}{2}=\frac{a-b}{a+b} \cot \frac{C}{2}$ (ii) $\tan \frac{B-C}{2}=\frac{b-c}{b+c} \cot \frac{A}{2}$ (iii) $\tan \frac{C-A}{2}=\frac{c-a}{c+a} \cot \frac{B}{2}$ We know the sine formula: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$ Now, $\frac{a-b}{a+b} \cot \frac{C}{2}=\frac{2 R \sin A-2 R \sin B}{2 R \sin A+2 R \sin B} \cot \frac{C}{2}$ $\begin{aligned} & =\frac{\sin A-\sin B}{\sin A+\sin B} \cot \frac{C}{2} \\ & =\frac{2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}}{2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}} \cot \frac{C}{2} \\ & =\cot \frac{A+B}{2} \tan \frac{A-B}{2} \cot \frac{C}{2} \\ & =\cot \left(90^{\circ}-\frac{C}{2}\right) \tan \frac{A-B}{2} \cot \frac{C}{2} \\ & =\tan \frac{C}{2} \tan \frac{A-B}{2} \cot \frac{C}{2}=\tan \frac{A-B}{2} \end{aligned}$

Differentiating with respect to x, we get
$-x \cdot y_{1}+y(-1)+\left(1-x^{2}\right) y_{2}+y_{1}(0-2 x)=0$

$$
-x y_{1}-y+\left(1-x^{2}\right) y_{2}-2 x y_{1}=0
$$

$$
\left(1-x^{2}\right) y_{2}-3 x y_{1}-y=0
$$

44. a)

Let,

$$
P(n):=1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

Substituting $n=1$ in the statement we get, $P(1)=\frac{1(1+1)(2(1)+1)}{6}=1$. Hence, $P(1)$ is true. Let us assume that the statement is true for $n=k$. Then

$$
P(k)=1^{2}+2^{2}+3^{2}+\cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6} .
$$

We need to show that $P(k+1)$ is true. Consider

$$
\begin{aligned}
P(k+1) & =\underbrace{1^{2}+2^{2}+3^{2}+\cdots+k^{2}}+(k+1)^{2} \\
& =P(k)+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6} \\
& =\frac{(k+1)(k(2 k+1)+6(k+1))}{6} \\
& =\frac{(k+1)\left(2 k^{2}+7 k+6\right)}{6} \\
& =\frac{(k+1)[(k+2)(2 k+3)]}{6} \\
& =\frac{(k+1)[((k+1)+1)(2(k+1)+1)]}{6} .
\end{aligned}
$$

That is,

$$
P(k+1)=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} .
$$

This implies, $P(k+1)$ is true. The validity of $P(k+1)$ follows from that of $P(k)$. Therefore by the principle of mathematical induction,

b) (Otn is wrong)	$\begin{equation*} a x^{2}+2 h x y+b y^{2}=0 \tag{1} \end{equation*}$ Given that the slopes of the lines are m and 3 m . $\begin{aligned} & \therefore m+3 m=-\frac{2 h}{b} \\ &(m)(3 m)=\frac{a}{b} \\ & 4 m=-\frac{2 h}{b} \quad \text { and } 3 m^{2}=\frac{a}{b} \\ & m=-\frac{h}{2 b} \Rightarrow 3\left(-\frac{h}{2 b}\right)^{2}=\frac{a}{b} \\ & \Rightarrow 3 \frac{h^{2}}{4 b^{2}}=\frac{a}{b} \\ & \Rightarrow \quad 3 h^{2}=4 a b \end{aligned}$
45. a)	

b) Let O be the origin. Let $\overrightarrow{\mathbf{a}}$, \vec{b}, \vec{c} be the position vectors of the points A, B and C respectively
Then $\overrightarrow{\mathrm{OA}}=\overrightarrow{\mathbf{a}}, \quad \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathbf{b}}, \quad \overrightarrow{\mathbf{O C}}=\overrightarrow{\mathbf{c}}$
Given $\quad D$ is the mid point of $A B$

$$
\begin{aligned}
& \therefore \quad \overrightarrow{\mathrm{OD}}=\frac{\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}}{2} \\
& \overrightarrow{\mathrm{OD}} \quad=\frac{\overrightarrow{\mathrm{a}}+\vec{b}}{2}
\end{aligned}
$$

Also given E is the mid point of $A C$

$$
\begin{aligned}
\therefore \quad \overrightarrow{\mathrm{OE}} & =\frac{\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OC}}}{2} \\
\overrightarrow{\mathrm{OE}} & =\frac{\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}}}{2}
\end{aligned}
$$

$$
\overrightarrow{\mathrm{BE}} \quad=\overrightarrow{\mathrm{OE}}-\overrightarrow{\mathrm{OB}}
$$

$$
=\frac{\vec{a}+\overrightarrow{\mathbf{c}}}{2}-\vec{b}
$$

$$
\overrightarrow{\mathbf{B E}} \quad=\quad \frac{\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}}-2 \overrightarrow{\mathrm{~b}}}{2}
$$

$$
\overrightarrow{\mathrm{DC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OD}}
$$

$$
=\quad \overrightarrow{\mathrm{c}}-\frac{\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}}{2}
$$

$$
\overrightarrow{\mathrm{DC}} \quad=\frac{2 \overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}}{2}
$$

$$
\overrightarrow{\mathrm{BE}}+\overrightarrow{\mathrm{DC}}=\frac{\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}}-2 \overrightarrow{\mathrm{~b}}}{2}+\frac{2 \overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}}{2}
$$

$$
=\frac{\vec{a}+\overrightarrow{\mathbf{c}}-2 \vec{b}+2 \overrightarrow{\mathbf{c}}-\vec{a}-\vec{b}}{2}
$$

$$
=\frac{3 \overrightarrow{\mathrm{c}}-3 \overrightarrow{\mathrm{~b}}}{2}
$$

$$
=\frac{3}{2}(\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{b}})
$$

$$
=\frac{3}{2}(\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OB}})
$$

$$
\overrightarrow{\mathrm{BE}}+\overrightarrow{\mathrm{DC}}=\frac{3}{2} \overrightarrow{\mathrm{BC}}
$$

46. a)

$$
\begin{aligned}
& \left|\begin{array}{|ccc}
1 & x & x \\
x & 1 & x \\
x & x & 1
\end{array}\right|^{2}=\left|\begin{array}{ccc}
1 & x & x \\
x & 1 & x \\
x & x & 1
\end{array}\right| \times\left|\begin{array}{ccc}
1 & x & x \\
x & 1 & x \\
x & x & 1
\end{array}\right| . \\
& =\left|\begin{array}{ccc}
1 & x & x \\
x & 1 & x \\
x & x & 1
\end{array}\right| \times(-1)(-1)\left|\begin{array}{ccc}
1 & x & x \\
-x & -1 & -x \\
-x & -x & -1
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & x & x \\
x & 1 & x \\
x & x & 1
\end{array}\right| \times\left|\begin{array}{ccc}
1 & x & x \\
-x & -1 & -x \\
-x & -x & -1
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1-x^{2}-x^{2} & x-x-x^{2} & x-x^{2}-x \\
x-x-x^{2} & x^{2}-1-x^{2} & x^{2}-x-x \\
x-x^{2}-x & x^{2}-x-x & x^{2}-x^{2}-1
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1-2 x^{2} & -x^{2} & -x^{2} \\
-x^{2} & -1 & x^{2}-2 x \\
-x^{2} & x^{2}-2 x & -1
\end{array}\right| . \\
& \text { We have } x^{4}+y^{4}=16 .
\end{aligned}
$$

b)

Differentiating implicitly, $\quad 4 x^{3}+4 y^{3} y^{\prime}=0$
Solving for y^{\prime} gives

$$
y^{\prime}=-\frac{x^{3}}{y^{3}}
$$

To find $y^{\prime \prime}$ we differentiate this expression for y^{\prime} using the quotient rule and remembering that y is a function of x.

$$
\begin{aligned}
y^{\prime \prime}=\frac{d}{d x}\left(\frac{-x^{3}}{y^{3}}\right) & =\frac{-\left[y^{3} \frac{d}{d x}\left(x^{3}\right)-x^{3} \frac{d}{d x}\left(y^{3}\right)\right]}{\left(y^{3}\right)^{2}} \\
& =-\frac{\left[y^{3} \cdot 3 x^{2}-x^{3}\left(3 y^{2} y^{\prime}\right)\right]}{y^{6}} \\
& =-\frac{3 x^{2} y^{3}-3 x^{3} y^{2}\left(-\frac{x^{3}}{y^{3}}\right)}{y^{6}} \\
& =-\frac{3\left(x^{2} y^{4}+x^{6}\right)}{y^{7}}=\frac{-3 x^{2}\left[x^{4}+y^{4}\right]}{y^{7}} \\
& =\frac{-3 x^{2}(16)}{y^{7}}=\frac{-48 x^{2}}{y^{7}} .
\end{aligned}
$$

47. a)	$\therefore \triangle A B C$ is a right angled triangle.
b)	$\begin{aligned} & \mathrm{P}\left(\mathrm{~A}_{2} / \mathrm{B}\right)=\frac{\mathrm{P}\left(\mathrm{~A}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{2}\right)}{\mathrm{P}\left(\mathrm{~A}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{~A}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{2}\right)+\mathrm{P}\left(\mathrm{~A}_{3}\right) \cdot \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{3}\right)} \\ & \text { Given } \begin{aligned} \mathrm{P}\left(\mathrm{~A}_{1}\right) & =\frac{5}{10}, \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{1}\right)=0.4 \\ \mathrm{P}\left(\mathrm{~A}_{2}\right) & =\frac{3}{10} \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{2}\right)=0.5 \\ \mathrm{P}\left(\mathrm{~A}_{3}\right) & =\frac{2}{10}, \quad \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{3}\right)=0.3 \\ \mathrm{P}\left(\mathrm{~A}_{2} / \mathrm{B}\right) & =\frac{\frac{3}{10} \times 0.5}{\frac{5}{10} \times 0.4+\frac{3}{10} \times 0.5+\frac{2}{10} \times 0.3} \\ & =\frac{0.15}{10} \\ \mathrm{P}\left(\mathrm{~A}_{2} / \mathrm{B}\right) & =\frac{0.0}{4.1}+\frac{0.6}{10} \end{aligned} \\ &=\frac{15}{41} \end{aligned}$

