www.TrbTnpsc.com

Virudhunagar District Common Half Yearly Examination - December 2023

Standard 11 **MATHEMATICS**

Time Allowed: 3.00 Hours

PART - A

 $20 \times 1 = 20$

Choose the best answer:

The number of relations on a set containing 3 elements is

b) R

- c) 512 b) 81
 - 2) If the function $f:[-3, 3] \rightarrow S$ defined by $f(x) = x^2$ is onto, then S is
- c) [-3, 3]

d) 1024

Maximum Marks: 90

- a) [-9, 9]3) If |x-9| < 2 then
 - b) x = 11a) 7 < x < 11
- c) 7 > x > 11

c) 2

- 4) The number of solution of $x^2 + |x-1| = 1$ is
 - b) 0 a) 1

5) The square root of $7-4\sqrt{3}$ is

- a) $2 + \sqrt{3}$
- b) $3 \sqrt{2}$
- 6) The maximum value of $4 \sin^2 x + 3 \cos^2 x + \sin \frac{x}{2} + \cos \frac{x}{2}$ is
- c) 9 b) $\sqrt{3} + 2$ a) $4 + \sqrt{2}$
- 7) $\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + \dots + \cos 179^{\circ} =$ b) 1
- d) 4 d) 89
- 8) The value of 1+3+5+7+....+17 is b) 81 c) 71 a) 101 9) Number of sides of a polygon having 44 diagonal is
- d) 61
- c) 11
- 10) The remainder when 3815 is divided by 13 is
 - b) 1 c) 11 a) 12
- d) 5

d) $\frac{4}{15}$

d) (3, 2)

d) 22

- 11) The coefficient of x^5 in the series e^{-2x} is
 - b) $\frac{3}{2}$
- 12) The image of the part (2, 3) in the line y = -x is
 - b) (-3, 2) c) (-2, -3)a) (-3, -2)
- 13) If the points (x, -2) (5, 2) (8, 8) are collinear then the value of x is
 - b) $\frac{1}{3}$ c) 1 a) -3
- 14) If A is a square matrix and |A| = 2 then the value of $|AA^T|$ is d) 4
- 15) $\vec{a} + 2\vec{b}$ and $3\vec{a} + m\vec{b}$ are parallel then the value of m is
 - a) 3
- b) $\frac{1}{3}$
- c) 6
- c) $\frac{1}{6}$

d) 3

- 16) If $\vec{a} = \vec{i} + \vec{j} + \vec{k}$, $\vec{b} = 2\vec{i} + x\vec{j} + \vec{k}$, $\vec{c} = \vec{i} \vec{j} + 4\vec{k}$ and $\vec{a} \cdot (\vec{b} \times \vec{c}) = 70$ then the
 - value of x is a) 5
- b) 7
- c) 26
- d) 10

- 17) The value of $\chi \to 0$ $\sqrt{\chi^2}$ is
 - b) -1a) 1
- c) 0
- d) ∞

18)
$$\lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \frac{3}{n^3} + \dots + \frac{n}{n^2} \right) =$$

a)
$$\frac{1}{2}$$

19) If
$$y = \frac{1}{a-z}$$
 then $\frac{dz}{dy}$ is

a)
$$(a-z)^2$$
 b) $-(z-a)^2$

20) If Pv = 81 then the value of
$$\frac{dp}{dv}$$
 at v = 9 is
a) 1 b) -1 c) 2

7×3=21

d) - 2

d) $-(z+a)^2$

i) Answer any seven questions only.

ii) Answer the question number 30 compulsory.
21) If
$$A = \{1, 2, 3, 4\}$$
 and $B = \{3, 4, 5, 6\}$ find $n((A \cup B) \times (A \cap B) \times (A \cap B))$

22) Find the general solution of
$$\sin \theta = -\frac{\sqrt{3}}{2}$$

23) If
$$(n+2)P_4 = 42 \times nP_2$$
 find n

24) Find
$$\sqrt[3]{1001}$$
 approximately (two decimal places)

25) Find the distance between the parallel lines
$$12x+5y = 7$$
 and $12x+5y+7 = 0$

26) Prove that
$$\begin{vmatrix} \sec^{2} \theta & \tan^{2} \theta & 1 \\ \tan^{2} \theta & \sec^{2} \theta & -1 \\ 38 & 36 & 2 \end{vmatrix} = 0$$

and
$$\vec{b} = \vec{i} - \vec{j} + \vec{k}$$

28) Evaluate:
$$\lim_{x \to \theta} (1 + \sin x)^{2 \cos ec x}$$

29) Differentiate: (i)
$$y = \sin(x^2)$$
 (ii) $y = \sin^2 x$

30) Find the complete set of values of a, for which the quadratic
$$x^2-ax+a+2=0$$
 has equal roots.

27) Find the area of the parallelogram whose adjacent sides are $\vec{a}=3\vec{i}+\vec{j}+4\vec{k}$

PART - C

i) Answer any seven questions only.

31) From the curve
$$y = |x| draw$$

(i) $y = |x-1|+1$ (ii) $y = |x+1|-1$ (iii) $y = |x+2|-3$

32) If
$$\log_2 x + \log_4 x + \log_{16} x = \frac{7}{2}$$
, find the value of x.

33) Find sin (x-y) given that sin x =
$$\frac{8}{17}$$
 with 0 < x < $\frac{\pi}{2}$ and cos y = $\frac{-24}{25}$ with π < y < $\frac{3\pi}{2}$

35) If a, b, c are in the geometric progression and if
$$a^{1/x} = b^{1/y} = c^{1/z}$$
 then prove that x, y, z are in arithmetic progression.

Kindly send me your answer keys to us - padasalai.net@gmail.com

36) If
$$\cos 2\theta = 0$$
, determine
$$\begin{vmatrix} \theta & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{vmatrix}$$

- 37) If D and E are the midpoints of the sides AB and AC of a triangle ABC, prove that $\overrightarrow{BE} + \overrightarrow{DC} = \frac{3}{2}\overrightarrow{BC}$
- 38) Prove that $\frac{\text{Lim}}{x \to a} \frac{x^n a^n}{x a} = na^{n-1}$
- 39) If $y = e^{\tan^{-1} x}$, show that $(1+x^2)y^{11}+(2x-1)y^1 = 0$
- 40) Rewrite $\sqrt{3}x + y + 4 = 0$ into normal form.

PART - D

Answer all the questions.

W18-361

41) If $f:R\rightarrow R$ is defined by f(x)=3x-5, prove that f is bijective and find its inverse.

(OR)
If
$$y = \frac{\sin^{-1} x}{\sqrt{1 - x^2}}$$
, show that $(1 - x^2)y_2 - 3xy_1 - y = 0$

42) Resolve into partial fractions: $\frac{x+12}{(x+1)^2(x-2)}$

State and prove Napier's formula.

43) Find all values of x that satisfies the inequality $\frac{2x-3}{(x-2)(x-4)} < 0$

Prove that for any natural number n, a^n-b^n is divisble by a-b, when a>b.

44) Prove that points whose position vectors $2\vec{i} + 4\vec{j} + 3\vec{k}$, $4\vec{i} + \vec{j} + 9\vec{k}$ and 10i - j + 6k form a right angled triangle.

(OR)

A 150 m long train is moving with constant velocity of 12.5 m/s. Find (i) the equation of the motion of the train (ii) time taken to cross a pole (iii) the time taken to cross the bridge of length 850 m is?

45) Show that $\lim_{X \to 0^+} X \left| \left[\frac{1}{x} \right] + \left[\frac{2}{x} \right] + \dots + \left[\frac{15}{x} \right] \right| = 120$

Prove that
$$|A| = \begin{vmatrix} (q+r)^2 & p^2 & p^2 \\ q^2 & (r+p)^2 & q^2 \\ r^2 & r^2 & (p+q)^2 \end{vmatrix} = 2pqr(p+q+r)^3$$

Kindly send me your answer keys to us - padasalai.net@gmail.com

4

46) 7 relatives of a man comprises 4 ladies and 3 gentlemen, his wife also has 7 relatives, 3 of them are ladies and 4 gentlemen. In how many ways can they invite a dinner party of 3 ladies and 3 gentlemen so that there are 3 of man's relative and 3 of the wife's relatives?

(OR)

Prove that $\sqrt[3]{x^3+6}-\sqrt[3]{x^3+3}$ is approximately equal to $\sqrt[1]{x^2}$ when x is sufficiently large.

47) Show that the equation $9x^2-24xy+16y^2-12x+16y-12=0$ represents a pair no parallel lines. Find the distance between them.

(OR)

Prove that the medians of a triangle are concurrent.