Standard 11
 MATHEMATICS
 PART - A

Maximum Marks: 90
Time Allowed: 3.00 Hours

Choose the best answer:

1) The number of relations on a set containing 3 elements is
a) 9
b) 81
c) 512
d) 1024
2) If the function $f:[-3,3] \rightarrow S$ defined by $f(x)=x^{2}$ is onto, then S is
a) $[-9,9]$
b) R
c) $[-3,3]$
d) $[0,9]$
3) If $|x-9|<2$ then
a) $7<x<11$
b) $x=11$
c) $7>x>11$
d) $x \neq 7$
4) The number of solution of $x^{2}+|x-1|=1$ is
a) 1
b) 0
c) 2
d) 3
5) The square root of $7-4 \sqrt{3}$ is
a) $2+\sqrt{3}$
b) $3-\sqrt{2}$
c) $2-\sqrt{3}$
d) $\sqrt{3}+2$
6) The maximum value of $4 \sin ^{2} x+3 \cos ^{2} x+\sin \frac{x}{2}+\cos \frac{x}{2}$ is
a) $4+\sqrt{2}$
b) $\sqrt{3}+2$
c) 9
d) 4
7) $\cos 1^{\circ}+\cos 2^{\circ}+\cos 3^{\circ}+\ldots \ldots .+\cos 179^{\circ}=$
a) 0
b) 1
c) -1
d) 89
8) The value of $1+3+5+7+\ldots+17$ is
a) 101
b) 81
c) 71
d) 61
9) Number of sides of a polygon having 44 diagonal is
a) 4
b) 4 !
c) 11
d) 22
10) The remainder when 38^{15} is divided by 13 is
a) 12
b) 1
c) 11
d) 5
11) The coefficient of x^{5} in the series $e^{-2 x}$ is
a) $2 / 3$
b) $3 / 2$
c) $-4 / 15$
d) $4 / 15$
12) The image of the part $(2,3)$ in the line $y=-x$ is
a) $(-3,-2)$
b) $(-3,2)$
c) $(-2,-3)$
d) $(3,2)$
13) If the points $(x,-2)(5,2)(8,8)$ are collinear then the value of x is
a) -3
b) $1 / 3$
c) 1
d) 3
14) If A is a square matrix and $|A|=2$ then the value of $\left|A A^{\top}\right|$ is
a) 0
b) 1
c) 2
d) 4
15) $\vec{a}+2 \vec{b}$ and $3 \vec{a}+m \vec{b}$ are parallel then the value of m is
a) 3
b) $1 / 3$
c) 6
c) $1 / 6$
16) If $\vec{a}=\vec{i}+\vec{j}+\vec{k}, \vec{b}=2 \vec{i}+x \vec{j}+\vec{k}, \vec{c}=\vec{i}-\vec{j}+4 \vec{k}$ and $\vec{a} .(\vec{b} \times \vec{c})=70$ then the value of x is
a) 5
b) 7
c) 26
d) 10
17) The value of $x \rightarrow 0 \frac{\sin x}{\sqrt{x^{2}}}$ is
a) 1
b) -1
c) 0
d) ∞

Kindly send me your answer keys to us - padasalai.net@gmail.com
a) $1 / 2$
b) 0
c) 1
d) ∞
19) If $y=\frac{1}{a-z}$ then $\frac{d z}{d y}$ is
a) $(a-z)^{2}$
b) $-(z-a)^{2}$
C) $(z+a)^{2}$
d) $-(z+a)^{2}$
20) If $P v=81$ then the value of $\frac{d p}{d v}$ at $v=9$ is
a) 1
b) -1
c) 2
d) -2

PART - B

i) Answer any seven questions only.

ii) Answer the question number $\mathbf{3 0}$ compulsory.
21) If $A=\{1,2,3,4\}$ and $B=\{3,4,5,6\}$ find $n((A \cup B) \times(A \cap B) \times(A \Delta B))$
22) Find the general solution of $\sin \theta=-\sqrt{3} / 2$
23) If $(n+2) P_{4}=42 \times n P_{2}$ find n
24) Find $\sqrt[3]{1001}$ approximately (two decimal places)
25) Find the distance between the parallel lines $12 x+5 y=7$ and $12 x+5 y+7=0$
26) Prove that $\left|\begin{array}{ccc}\sec ^{2} \theta & \tan ^{2} \theta & 1 \\ \tan ^{2} \theta & \sec ^{2} \theta & -1 \\ 38 & 36 & 2\end{array}\right|=0$
27) Find the area of the parallelogram whose adjacent sides are $\overrightarrow{\mathbf{a}}=3 \vec{i}+\vec{j}+4 \vec{k}$ and $\overline{\mathrm{b}}=\overline{\mathrm{i}}-\overline{\mathrm{j}}+\overrightarrow{\mathrm{k}}$
28) Evaluate: $\operatorname{Lim}_{x \rightarrow \theta}(1+\sin x)^{2 \operatorname{cosec} x}$
29) Differentiate: (i) $y=\sin \left(x^{2}\right)$ (ii) $y=\sin ^{2} x$
30) Find the complete set of values of a, for which the quadratic $x^{2}-a x+a+2=0$ has equal roots.

PART - C

i) Answer any seven questions only.

ii) Answer the question number $\mathbf{4 0}$ compulsory.
31) From the curve $y=|x|$ draw
(i) $y=|x-1|+1$
(ii) $y=|x+1|-1$
(iii) $y=|x+2|-3$
32) If $\log _{2} x+\log _{4} x+\log _{16} x=7 / 2$, find the value of x.
33) Find $\sin (x-y)$ given that $\sin x=8 / 17$ with $0<x<\pi / 2$ and $\cos y=-24 / 25$ with $\pi<y<3 \pi / 2$
34) Find the rank of the word IITJEE
35) If a, b, c are in the geometric progression and if $a^{1 / x}=b^{1 / y}=c^{1 / 2}$ then prove that x, y, z are in arithmatic progression.

Kindly send me your answer keys to us - padasalai.net @ gmail.com
36) If $\cos 2 \theta=0$, determine $\left|\begin{array}{ccc}\theta & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta\end{array}\right|$
37) If D and E are the midpoints of the sides $A B$ and $A C$ of a triangle $A B C$, prove that $\overrightarrow{B E}+\overrightarrow{D C}=3 / 2 \overrightarrow{B C}$
38) Prove that $\operatorname{Lim}_{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}$
39) If $y=e^{\tan ^{-1} x}$, show that $\left(1+x^{2}\right) y^{11}+(2 x-1) y^{1}=0$
40) Rewrite $\sqrt{3} x+y+4=0$ into normal form.

PART - D

Answer all the questions.

41) If $f: R \rightarrow R$ is defined by $f(x)=3 x-5$, prove that f is bijective and find its inverse.

(OR)

If $y=\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$, show that $\left(1-x^{2}\right) y_{2}-3 x y_{1}-y=0$
42) Resolve into partial fractions: $\frac{x+12}{(x+1)^{2}(x-2)}$
(OR)
State and prove Napier's formula.
43) Find all values of x that satisfies the inquality $\frac{2 x-3}{(x-2)(x-4)}<0$
(OR)
Prove that for any natural number $n, a^{n}-b^{n}$ is divisble by $a-b$, when $a>b$.
44) Prove that points whose position vectors $2 \vec{i}+4 \vec{j}+3 \vec{k}, 4 \vec{i}+\vec{j}+9 \vec{k}$ and $10 \overrightarrow{\mathbf{i}}-\vec{j}+6 \overrightarrow{\mathbf{k}}$ form a right angled triangle.
(OR)
A 150 m long train is moving with constant velocity of $12.5 \mathrm{~m} / \mathrm{s}$. Find (i) the equation of the motion of the train (ii) time taken to cross a pole (iii) the time taken to cross the bridge of length 850 m is?
45) Show that $\left.\operatorname{Lim}_{x \rightarrow 0^{+}} x\left[\left\lfloor\frac{1}{x}\right\rfloor+\left\lfloor\frac{2}{x}\right\rfloor+\ldots . .\left\lfloor\frac{15}{x}\right\rfloor\right]\right]=120$
(OR)
Prove that $|A|=\left|\begin{array}{ccc}(q+r)^{2} & p^{2} & p^{2} \\ q^{2} & (r+p)^{2} & q^{2} \\ r^{2} & r^{2} & (p+q)^{2}\end{array}\right|=2 \operatorname{pqr}(p+q+r)^{3}$
Kindly send me your answer keys to us - padasalai.net @ gmail.com
46) 7 relatives of a man comprises 4 ladies and 3 gentlemen, his wife also has 7 relatives, 3 of them are ladies and 4 gentlemen. In how many ways can they invite a dinner party of 3 ladies and 3 gentlemen so that there are 3 of man's relative and 3 of the wife's relatives?

(OR)

Prove that $\sqrt[3]{x^{3}+6}-\sqrt[3]{x^{3}+3}$ is approximately equal to $1 / x^{2}$ when x is sufficiently large.
47) Show that the equation $9 x^{2}-24 x y+16 y^{2}-12 x+16 y-12=0$ represents a pair no parallel lines. Find the distance between them.
(OR)
Prove that the medians of a triangle are concurrent.

