Dedication! Determination!! Distinction!!!

ACTC

ADVANCED CHEMISTRY TUITION CENTRE, NAGERCOIL, 9940847892.
41/1-PWD ROAD, CHITHAMBARA NAGER JN, CHETTIKULAM DVD BUS STOP, KK DIST 629002

+2 CHEMISTRY 40 DAYS PLAN & 27 days QUESTION PAPER PUBLIC EXAM 2024

AIM: CENTUM MARKS

2023-24 XII ART (ANNUAL REVISION TEST Time table)

DON'T STRESS! DO YOUR BEST!! FORGET THE REST!!!

Share, subscribe, comment, Like @ our

you tube channel:

ACTC Educare

ART	DATE	DAY	LESSON	QUESTION	MARKS	MARK	SIGN
				MARK			
1		ANI	NUAL PUBLIC	REVISION EXA	M-2024		
1	K 7		1	FULL	50		
2			2	FULL	50		
3			3	FULL	50		
4			4	FULL	50		
5			5	FULL	50		

ACT	C CHEMIS	TRY TUITION	CENTRE, 41	/1-PWD ROAD,	NAGERCOIL 9940847892
6			IOC	MODEL	70
7			6	FULL	50
8.			7	FULL	50
9.			8	FULL	50
10.			9	FULL	50
11	11-01-24	THURSDAY	10	FULL	50
12	13-01-24	SATURDAY	6,7,8,9	PROBLEM	50
13	16-01-24	TUESDAY	6-10	PHYSICAL MODEL	50
14	18-01-24	THURSDAY	11	FULL	50
15	20-01-24	SATURDAY	12	FULL	50
16	21-01-24	SUNDAY	13	FULL	50
17	23-01-24	TUESDAY	14	FULL	50
18	25-01-24	THURSDAY	15	FULL	50
19	26-01-24	FRIDAY	OC	11-15 MODEL	70
20	27-01-24	SATURDAY	11, 12, 13	NAME REACTION	100
21	30-01-24	TUESDAY	IOC 1-5	One mark add	50
22	01-02-24	THURSDAY	PC 6-10	ONE MARK ADD	50
23	03-02-24	SATURDAY	IOC	2 MARK	70
24	04-02-24	SUNDAY	1 -15	Difference	50
25	06-02-24	TUESDAY	1-15	Uses	50
26	08-02-24	THURSDAY	ORGANIC	problem	50
27	10-02-24	SATURDAY	FULL PORTION	MODEL EXAM 3 HOURS	110
28	13-02-24	TUESDAY	FULL PORTION	MODEL EXAM	110
				3 HOURS	

ACT	C CHEMIS	TRY TUITION	CENTRE, 41	/1-PWD ROAD,	NAGERC	OIL 99408	47892
29	15-02-24	THURSDAY	FULL PORTION	MODEL EXAM	110		
				2 1/2HOURS			
30	17-02-24	SATURDAY	FULL PORTION	MODEL EXAM	110		
				2 1/2HOURS			0
31	18-02-24	SUNDAY	FULL PORTION	MODEL EXAM	110		
32	19-02-24	MONDAY	FULL PORTION	MODEL EXAM	70	XV	
			TORTION	2 HOURS			
33	20-02-24	TUESDAY	FULL PORTION	MODEL EXAM	70		
				2 HOURS	8		
34	21-02-24	WEDNESDAY	FULL PORTION	MODEL EXAM	70		
			C	2 HOURS			
35	22-02-24	THURSDAY	FULL PORTION	MODEL EXAM	70		
			500	2 HOURS			
36	23-02-24	FRIDAY	FULL PORTION	MODEL EXAM	70		
			9.	2 HOURS			
37	24-02-24	SATURDAY	FULL PORTION	MODEL EXAM	70		
				2 HOURS			
38	25-02-24	SUNDAY	FULL PORTION	MODEL EXAM	70		
				2 HOURS			
39	05-03-24	TUESDAY	6-8	REVISION EX	50		
40	06-03-24	WEDNESDAY	1-5	MODEL	70		
41	07-03-24	THURSDAY	6-10	MODEL	70		

ACT	ACTC CHEMISTRY TUITION CENTRE, 41/1-PWD ROAD, NAGERCOIL 9940847892							
42	42 08-03-24 FRIDAY 11-15 MODEL 70							
43	09-03-24	SATURDAY	MODEL	MODEL	110			

"NO PAIN, NO GAIN".

Never Dreamed about success, Worked for it.

WISH U ALL THE BEST ACTC

"May God's guidance be with you during the Exam and may you be able to answer each question correctly. My prayers and Blessings are with you".- ACTC EMS

Share, subscribe, comment, Like @ our

you tube channel

ACTC Educare Daily exam question paper 2024 Download pdf @ ACTC Educare YouTube channel Description Thank you

www.TrbTnpsc.com

ACTC CHEMISTRY TUITION CENTRE, 41/1-PWD ROAD, NAGERCOIL 9940847892

DAY 1 ART 1 UNIT 1 METALLURGY MARKS: 50

Answer the following

10x2=20

- 1. Write the ores of copper.
- 2. What are all the steps involving in metallurgical process?
- 3. Write note on gravity separation.
- 4. What is Acid leaching?
- 5. What is Ammonia leaching.
- 6. How will you manage sulphur dioxide produced during roasting process?
- 7. Give one example for (i) Acidic flux (ii) Basic flux (8)
- 8. How Cr₂O₃ is reduced to Cr by Al powder? (10)
- 9. Explain Auto reduction. (10)
- 10. Write note on Liquation. (15)
- **11.**Explain Mond process.
- 12. Explain Van-Arkel method. (17)

Answer the following

5x3=15

- 13. Explain how gold ore is leached by cyanide process. (4)
- 14. Explain magnetic separation. (6)
- 15. Explain (i) Roasting (6) (ii) Calcination (7)
- 16. Explain extraction of copper from copper pyrites.(8)
- 17. Extraction of Aluminium-Hall -Herold process. (14)
- 18. Explain the principle of electrolytic refining with an example.
- 19. Application of Al.

Answer the following

3x5=15

- 20. Define, observation of Ellingham diagram. (13)
- 21. Application & Limitations of Ellingham diagram. (13)
- 22. Explain froth floatation. (6)
- 23. Explain zone refining process.(16)

ALL THE BEST SCORE CENTUM MARKS

Share, subscribe, comment, Like @ our You Tube channel:

ACTC Educare

DAY 2 ART 2 UNIT 2 p-block elements-I MARKS: 50

ANSWER THE FOLLOWING

15x2=30

- 1. Write note on metallic nature of p-block elements. (28)
- 2. What are the anomalous properties of the first elements of the p-block elements. (29)
- 3. There is only a marginal difference in decrease in ionization enthalpy from Aluminium to Thallium Explain why?
- 4. What is inert pair effect. (30)
- 5. A hydride of 2nd period alkali metal (A) on reaction with compound of Boron (B) in the presence of ether to give a reducing agent (C). Identify A, B and C.
- 6. Uses of Boron. (22)
- 7. Preparation of Borax. (33)
- 8. How will you identify borate radical? Write the reactions involved.(35)
- 9. How will you convert Boric acid to boron nitride? (35)
- 10. What are the Uses of Boric acid. (35)
- 11. How will you prepare borazine? (37)
- 12. Write note on McAfee process (39)
- 13. Mention the uses of Aluminium chloride 39
- 14. What is catenation? Write the conditions for catenation property. (41)
- 15. Write note on fullerenes. (42)
- 16. Write note on Fischer Tropsch synthesis.
- 17. Write note on structure & uses of CO & CO₂
- 18. How does SiCl₄ react with alcohol & NH₃?
- 19. Write note on Inosilicates. (49)
- 20.Explain Zeolites. (50)

Answer the following

4x5 = 20

- 21. What are allotropes of carbon, difference between graphite & diamond. (41)
- 22. Explain structure and uses of diborane (37)
- 23. How to prepare potash alum, burnt alum & uses. (40)
- 24. Explain the preparation and uses of silicone. (47 & 48)
- 25. Explain types of silicates. (48)

ALL THE BEST SCORE CENTUM

DAY 3 ART 3 UNIT p-block elements-II MARKS: 50

Answer the following questions briefly:

20x2=40

- 1. Write note on Haber's process (58)
- 2. Write note on structure of ammonia. (60)
- 3. Write note on Ostwald process (59)
- 4. How does nitric acid act as nitrating agent?62
- 5. Draw the structure of N_2O , NO_2 . (65)
- 6. Preparation of phosphine. (68)
- 7. What is Holmes signal and uses? (70)
- 8. Preparation of ozone. (74)
- 9. Uses of oxygen (75)
- 10. What are the allotropes of sulphur (77)
- 11. Give a reason to support that sulphuric acid is a dehydrating agent?(78)
- 12. H₂SO₄ is a dibasic acid. why? (78)
- 13. How is sulphate radical detected? (80)
- 14. Write note on Deacon process (83)
- 15. Draw the structure of Ozone, $SO_2(81)$
- 16. How is bleaching powder prepared?(85)
- 17. How is aqua regia obtained and uses of aqua regia? (86)
- 18. HF is not stored in glass bottles. Why? (88)
- 19. Mention the uses of Helium (93)
- 20. Mention the uses of Xenon & Radon (94)

Answer the following questions in detail:

2x5=10

- 21. Define, properties & structure of interhalogen compounds? (89)
- 22. Explain manufacture of sulphuric acid by contact process. (77)

ALL THE BEST SCORE CENTUM MARKS

Share, subscribe, comment, Like @ our You Tube channel:

ACTC Educare

DAY 4 ART 4 UNIT 4 Transition and Inner Transition elements MARKS: 50

Answer the following 20x2=40

- 1. How many series are in d-block elements? What are they?
- 2. Why there is a slight variation in the atomic radii from Cr to Cu?
- 3. Applying Aufbau principle, write down the electronic configuration of Cr³⁺ and Cu.
- 4. What are the metallic behavior of d-block elements.
- 5. Transition metals show high melting points. Why?
- 6. d-block elements have variable oxidation state. Why?
- 7. Write a note about oxidation state of 3d series.
- 8. Mn²⁺ is more stable than Mn⁴⁺. Why?
- 9. Define Standard electrode potential.
- 10. Write note on diamagnetic. Give example.
- 11. Write note on paramagnetic. Give example.
- 12. Calculate the magnetic moment of Ti³⁺& V⁴⁺.
- 13. Most of the transition metals act as catalyst. Justify this statement.
- 14. What is Zeigler Natta catalyst? In which reaction it is used? Give equation.
- 15. Hume Rothery rule.
- 16. d-block elements readily form complexes. Give reason.
- 17. d-block elements formation of interstitial compounds.
- 18. What is the property of interstitial compounds?
- 19. Chromyl chloride test
- 20. Uses of potassium permanganate.
- 21. Position of lanthanoids in the periodic table.
- 22. Why Gd³⁺, Lu³⁺ colourless why?
- 23.Oxidation state of actinoids.

Detail 4x5=20

- 24. Explain about the causes, consequence of lanthanoid contraction.
- 25. Differences between lanthanoids and actinoids.
- 26. Preparation of potassium dichromate from chromite ore.
- 27. Preparation of potassium permanganate from pyrolusite.

ALL THE BEST SCORE CENTUM MARKS

DAY 5 ART 5 UNIT 5 Coordination chemistry MARKS: 60

Answer the following questions

15x2=30

- 1. Difference between double salt and coordination compounds.(131)
- 2. Define central metal ion, ligand (133)
- 3. Write the IUPAC ligand name for the following: $a)C_2O_4^{2-}$ b) H_2O
- 4. Define coordination number.(134)
- 5. Write the following for the complex [Ag(NH₃)₂]⁺. a)Ligand b) Central metal ion c) IUPAC Name
- 6. Explain Geometrical isomers (cis, trans isomer)(144,145)
- 7. Why tetrahedral complexes do not exhibit geometrical isomerism?(BB) (143)
- 8. Define mer, fac isomer. (145)
- 9. Explain optical isomerism of coordination compounds with an example. (146)
- 10. Write note on spectrochemical series (156)
- 11. Calculate the CFSE value of $[Fe(H_2O)_6]^{3+}$ in high spin and low spin complexes. (157)
- 12. Calculate the CFSE value of $[Fe(CN)_6]^{3-}$ in high spin and low spin complexes. (158)
- $13.[Sc(H_2O)_6]^{3+}$ is colourless Explain.
- 14. How is metal carbonyls classified based on the number of metal atom? (161)
- 15. How is metal carbonyls classified based on the structure? (161, 162)
- 16. How can the stability of coordination complexes be interpreted? (163)
- 17. Define Labile, inert complexes. (163)

Answer the following questions

6x5=30

- 18.Explain Werner theory & limitation.(132)
- 19. Explain structural isomer. (coordination, Linkage, ionization, solvate isomers) (142)
- 20. Explain Valence Bond theory (VB Theory) & limitations. 149 & 152)
- 21. Apply VB theory in $[Ni(CN)_4]^{2-}$, $[Co(F)_6]^{3-}$ (149-151)
- 22.Explain crystal field theory. In an Octahedral crystal field, draw the figure to show splitting of d orbitals (153, 154)
- 23. Explain the importance and application of coordination compounds (166)

ALL THE BEST SCORE CENTUM MARKS

DAY 6 ART 6 INORGANIC MODEL UNIT 1-5 MARKS: 70

INORGANIC MODEL EXAM-2024

Answer the following

15x2=30

- 1. How is bleaching powder prepared?
- 2. Classify the following elements into d-block and f-block elements: i) Tungsten ii) Ruthenium iii) promethium iv) Einsteinium
- 3. Write any two conditions for catenation.
- 4. Write the molecular formula and draw the structure of sulphurous acid and Marshall's acid.
- 5. Write the IUPAC name of the following: a) $[Ag(NH_3)_2]^+$ b) $[Co(NH_3)_5Cl]^{2-1}$
- 6. Explain the following terms with suitable example. A) gangue b)slag
- 7. Give the uses of helium.
- 8. What are Interstitial compounds?
- 9. What are the factors responsible for the anomalous behavior of first element of the p-block?
- 10. Which metal in the 3d series exhibits +1 oxidation state most frequently and why?
- 11. What are the differences between minerals an ores?
- 12. What is catenation? And properties.
- 13. What is the role of limestone in the extraction of iron from of oxide Fe₂O₃?
- 14. Which types of ores can be concentrated by froth floatation method? Give two examples.
- 15. How is potash alum prepared?
- 16. What is inert pair effect?
- 17. Chromyl chloride test.

Answer the following

5x3=15

- 18. There is only a marginal difference in decrease in ionization enthalpy from Aluminium to Thallium Explain why?
- Calculate the magnetic moment and magnetic property of $[CoF_6]^{3-}$.
- 20. Write the balanced equation for the overall reaction of chlorine with cold NaOH and hot NaOH.
- 21. Give the difference between double salts and co-ordination compounds.
- 22. What type of hybridisation is found in the following? (a) BrF (b) BrF₅(c) BrF₃
- 23. Explain Deacon's process for manufacture of chlorine.
- 24. Preparation of potassium dichromate.

Answer the following

5x5=25

- 25. Explain Zone Refining.
- 26. What is Lanthanide or Lanthanoid contraction? Explain its consequences.
- 27. Explain the types of silicones and USES.
- 28. Explain Electrolytic refining & Mond process.
- 29. Explain the Graphite and Diamond.

ACTC CHEMISTRY TUITION CENTRE, 41/1-PWD ROAD, NAGERCOIL 9940847892 30. Explain Werner theory.

HAPPY NEW YEAR -2024 ALL THE BEST SCORE CENTUM MARKS

DAY 7 ART 7 UNIT 6 SOLID STATE MARKS: 50

Answer the following

15x2=30

- 1. Write General characteristics of solids. (177)
- 2. Define Isotropy and anisotropy. (178)
- 3. What are covalent solids? (179)
- 4. What are Metallic solids? (180)
- 5. What is meant by term "Coordination Number"? What is the Coordination Number of atoms in a bcc structure? (180)
- 6. Explain briefly seven types of unit cell. (181)
- 7. Define the terms crystal lattice and unit cell. (180)
- 8. Write note on SC. (183)
- 9. Write note on BCC. (183)
- 10. Sketch Face Centered cubic unit cell(FCC) and Calculate the number of atoms present in it. (184)
- 11. What is Bragg's equation? (184)
- 12. How will you calculate the packing efficiency for simple cubic?(187
- 13. If the radius of the compound is between 0.155 0.225, find out the co-ordination number an structure of the compound. (192)
- **14.** If the no. of close packed sphere is 6, calculate the number of Octahedral voids and Tetrahedral voids generated.
- 15. Write note on Impurity defect. (195)
- 16. What is piezoelectricity? (195)

Answer the following in detail

4x5=20

- 17. Difference between crystalline solids and Amorphous solids.(178)
- 18. Explain Schottky defect & Frenkel defect. (Stoichiometric defects) (193)
- 19. Explain Metal excess defect, metal deficiency defect. (Non-Stoichiometric defects) (194)
- 20. Calculate the percentage efficiency of packing in face centered cubic system (192)

21. Explain ionic solids. (Introduction, NaCl diagram, Characteristics) (179)

ALL THE BEST SCORE CENTUM MARKS

DAY 8 ART 8 UNIT 7 CHEMICAL KINETICS MARKS: 50

ANSWER THE FOLLOWING

10x3=30

- 1. Define average rate and instantaneous rate. (BB)207
- 2. Give the difference between rate of a reaction and rate constant.(209)
- 3. Give the differences between order and molecularity of a reaction. (210)
- 4. Explain the rate determining step with an example. (210)
- 5. Explain pseudo first order reaction with an example. (214)
- **6.** Define half-life period of reaction. Show that for a first order reaction half life period is independent of initial concentration. (215)
- 7. Calculate the half period for a zero order reaction.(215)
- 8. Write Arrhenius equation and explains the terms involved. (220)
- 9. Explain the effect of catalyst on reaction rate with an example. (222)
- 10.Powdered CaCO₃ reacts much faster with dilute HCl than with the same mass of CaCO₃ as marble. Give reason.

ANSWER THE FOLLOWING

4x5=20

- 11. What are the factors affecting the reaction rate? (222)
- 12. Derive integrated rate law for a first order reaction $A \rightarrow \text{product}$. & describe the graphical representation of first order reaction, example. (212)
- 13. Derive integrated rate law for a zero order reaction A→product & Example (214)
- 14. Explain about collision theory (217, 218)
- 15. Derive Arrhenius equation to calculate activation energy from the rate constant k_1 and k_2 at temperature T_1 and T_2 respectively. (220,221)

MARKS: 50

ACTC CHEMISTRY TUITION CENTRE, 41/1-PWD ROAD, NAGERCOIL 9940847892 ALL THE BEST SCORE CENTUM MARKS

DAY 9 ART 9 UNIT 8 IONIC EQUILIBRIUM

Answer the following questions 15x2=30

- 1. What are the limitations of Arrhenius concepts? (3)
- 2. Classify acid or base using Arrhenius concept. HNO₃, CH₃COOH, Ba(OH)₂, H₃PO₄(3)
- 3. Define Lowery Bronsted concept of acids and bases (3)
- 4. Write a balanced equation for the dissociation of the following in water and identify the conjugate acid –base pairs.i) NH₄⁺ii) H₂SO₄
- 5. Difference Lewis acids and bases? (5)
- 6. Identify the Lewis acid and Lewis base in the following reactions. (5) i) CaO +CO₂ \rightarrow CaCO₃
- 7. ii) CH_3 -O- CH_3 + $AlCl_3 \rightarrow (CH_3)_2O \rightarrow AlCl_3$
- 8. How will you measure the strength of an acid? (6)
- 9. Define ionic product of water. Give its value at room temperature (7)
- 10. Derive the relationship between PH and POH (9)
- 11. Define pH (9)
- 12. Define common Ion effect with an example (15)
- 13. What are buffer solutions? Mention its types (16)
- 14. Define Buffer capacity and buffer index. (18)
- 15. Define solubility product (25)
- 16. Give a condition for a compound to be precipitated (25)
- 17. How will you calculate solubility product from molar solubility? (26)
- 18. Write the expression for the solubility product of Ca₃(PO₄)₂, BaSO₄. (26)

Answer the following in detail 4x5=20

- 19. Derive expression for hydrolysis constant and pH of salt of weak acid and strong base. (21)
- **20.** State Oswald's dilution law. Derive an expression Ostwald's dilution law. (12)
- 21. Derive Henderson-Hasselbalch equation (Derive Henderson equation) (18)
- 22. Derive expression for hydrolysis constant and pH of salt of strong acid and weak base. (22)
- 23. Explain buffer action. (16)

ALL THE BEST SCORE CENTUM MARKS

Share, subscribe, comment, Like @ our

you tube channel:

ACTC Educare

DAY 10 ART 10 UNIT 9 ELECTROCHEMISTRY MARKS: 50

ANSWER THE FOLLOWING

10X3=30

- 1. Define molar conductivity, Equivalent conductance. (37)
- 2. What are the factors affecting electrolytic conductance. (37)
- 3. Write Debye Huckel and Onsager equation for a uni-univalent electrolyte. (41)
- 4. Explain Electrolytic cell and electrolysis. (53)
- 5. State Faraday's law of electrolysis First law, Second law. (54)
- 6. Write note on Leclanche cell. (56)
- 7. Write note on Mercury button cell. (57)
- 8. Write note on secondary batteries. (58)
- 9. Write note on fuel cell. (59)
- 10. Explain electrochemical mechanism of corrosion (60)
- 11. What are electrochemical series? How is it useful to predict corrosion? (62)
- 12. How are metals protected from corrosion by cathodic protection method? (61)

ANSWER THE FOLLOWING IN DETAIL

4X5=20

- 13. Explain variation of molar conductivity with concentration. (39)
- 14. State Kohlrausch's law and applications. (41)
- 15. Describe the construction of Daniel cell and write its cell reaction. (45)
- 16. Write note on standard hydrogen electrode (SHE). (48)
- 17. Derive Nernst equation. (51)

ALL THE BEST SCORE CENTUM MARKS

DAY 11 ART 11 UNIT 10 SURFACE CHEMISTRY

ANSWER THE FOLLOWING

15x3=45

MARKS: 50

- 1. Explain Factors affecting adsorption. (72)
- 2. Explain Freundlich adsorption isotherm and limitations. (73)
- 3. Define homogenous catalysis, heterogeneous catalysis & example (77)
- 4. What are the characteristics of catalysis? (78)
- 5. Define promoters, catalytic poison with suitable example (79)
- 6. Explain Zeolite catalysis.(84)
- 7. What is Nano Catalysis? Give example.(86)
- 8. Define lyophilic colloids, lyophobic colloids & example (87)
- 9. Explain the classification of colloids based on the physical state.(87)
- 10. Write note on preparation of Colloids- electro dispersion.(89)
- 11. Define Brownian movement, Tyndal effect.(94)
- 12. Write note on Helmholtz double layer.(94)
- 13. Explain Electrophoresis. (94)
- 14. Define Gold number. (96), What is inversion of phase? Give an example. (98)
- 15. Explain intermediate compound formation theory & limitations.(80)
- 16. Explain adsorption theory of catalysis. (81)

Answer the following

4x5=20

- 17. Distinction between chemical and physical adsorption. (71)
- 18. Explain applications of adsorption. (75)
- 19. Define, Mechanism, characteristics of Enzyme Catalysis. (83)
- 20. Explain condensation methods of preparation of colloids. (Chemical method)
- 21. Explain various application of colloids (98)

ALL THE BEST SCORE CENTUM MARKS

DAY 12 ART 12 PHYSICAL CHEMISTRY PROBLEM MARKS: 50

- 1. Barium has a body centered cubic unit cell with a length of 508pm along an edge. What is the density of barium in g cm⁻³? (185)
- 2. An element has a face centered cubic unit cell with a length of 352.4 pm along an edge. The density of the element is 8.9 gcm⁻³. How many atoms are present in 100 g of an element. (186)
- 3. A face centred cubic solid of an element (atomic mass 60 gmol⁻¹) has a cube edge of 4A°. Calculate its density. (186)
- 4. Atoms X and Y form BCC crystalline structure. Atom X is present at the corners of the cube and Y is at the centre of the cube. What is the formula of the compound? (BB)
- 5. An atom crystallizes in FCC crystal lattice and has a density of 10gcm⁻³ with unit cell edge length of 100pm. Calculate the number of atoms present in 1g of crystal. (BBQ₂₁201)
- 6. Aluminium crystallizes in a cubic close packed structure. Is metallic radius is 125 pm. Calculate the edge length of unit cell. BB
- 7. Sodium metal crystallizes in BCC structure with the edge length of the unit cell 4.3×10^{-8} cm. Calculate the radius of sodium atom.
- 8. An element has BCC structure with a cell edge of 288 pm, the density of the element is 7.2 g cm⁻³. How many atoms are present in 208 gram of the element?
- 9. If NaCl is dopped with 10⁻² mol percentage of strancium chloride, what's the concentration of cation vacancy?
- 10. KF crystallizes fcc structure like sodium chloride. Calculate the distance between K⁺ and F⁻ in KF (density of KF is 2.48gcm⁻³)
- 11. The rate of the reaction $x + 2y \rightarrow$ product is 4×10^{-3} mol L⁻¹s⁻¹, if [x] = [y] = 0.2M and rate constant at 400k is 2×10^{-2} s⁻¹, what is the overall order of the reaction?(211)
- 12. The rate constant for a first order reaction is 1.54x 10⁻³ s⁻¹. Calculate its half life time.(BB 231)
- 13. The rate of formation of dimer in a second order reaction is 7.5×10^{-3} mol L⁻¹s⁻¹ at 0.05 mol L⁻¹ monomer concentration. Calculate the rate constant. (BB)
- 14. Zero order reaction is 20 percentage complete in 20 minutes. Calculate the rate constant in what time will the reaction be 80 percentage complete? (BB)
- 15. A first order reaction is 40% complete in 50 minutes. Calculate the value of the rate constant. In what time will the reaction be 80% complete? (BBQ $_{30}$ 231)
- 16. Calculate the concentration of OH⁻ in a fruit juice which contains 2 x 10⁻³M, H₃O⁺ ion. Identify the nature of the solution.(8)
- 17. Calculate the pH of 0.001M HCl.(11)
- 18. Calculate the pH of 10^{-7} M HCl.(11)
- 19. A solution of 0.10M of a weak electrolyte is found to be dissociated to the extent of 1.20% at 25°C. Find the dissociation constant of the acid.(14)
- 20. Calculate the pH of 0.1M CH₃COOHsolution. Dissociation constant of acetic acid is 1.8×10^{-5} . (15)
- 21. Find the pH of a buffer solution containing 0.20 mole per litre sodium acetate and 0.18 mole per litre acetic acid. Ka for acetic acid 1.8 x 10⁻⁵. (19)
- 22. What is the pH of an aqueous solution obtained by mixing 6 gram of acetic acid and 8.2 gram of sodium acetate and making the volume equal to 500ml. (given: Ka for acetic acid is 1.8x10⁻⁵) (20)
- 23. Calculate i) the hydrolysis constant ii) degree of hydrolysis and iii) the pH of 0.1M CH₃COONa solution (pKa for CH₃COOH is 4.74) (20)

- 24. The K_a value of HCN is 10⁻⁹. What is the pH of 0.4M HCN solution? (31)
- 25. A conductivity cell has platinum electrodes separated by a distance 1.5cm and the cross sectional area of each electrode is 4.5 sq cm. using this cell, the resistance of 0.5N electrolytic solution was measured as 15Ω . Find the specific conductance of the solution. (36)
- 26. A solution of silver nitrate is electrolyzed for 30 minutes with a current of 2 amperes. Calculate the mass of silver deposited at the cathode.(55) **ALL THE BEST SCORE CENTUM MARKS**

DAY 13 ART 13 PHYSICAL CHEMISTRY MODEL MARKS: 75

Answer the following questions 5x5=25

- 1. Calculate the percentage efficiency of packing in body centred cubic crystal.
- 2. Derive Integrated rate law for a first order reaction and example for first order reaction.
- 3. Derive Henderson-Hasselbalch equation
- 4. Derive an expression for Ostwald's dilution law
- 5. Give the differences between physical adsorption and chemical adsorption.

Answer the following questions 10x2=20

- 6. What are the general characteristics of solids?
- 7. Write note on types of unit cell.
- 8. What is Arrhenius equation? Expand the terms
- 9. Explain common Ion effect with an example
- 10. What is inversion of phase? Give an ex.
- 11. Write the expression for the solubility product of Ca₃(PO₄)_{2.} BaSO₄.
- 12. What is buffer index?
- 13. State Faraday's Laws of electrolysis
- 14. State Kohlraush's law.
- 15. Define promoters and example.

Answer the following questions 10x3=30

- 16. How will you calculate the packing efficiency for simple cubic?
- 17. Differentiate crystalline solids and amorphous solids.
- 18. What are the differences between rate and rate constant of a reaction?
- 19. What are the differences between order and molecularity?
- 20. Explain the buffer action of a solution
- 21. Calculate the pH of 0.04 M HNO₃ solution
- 22. Derive an expression for Nernst equation
- 23. Write short note on metal excess and metal deficiency defect with an example
- 24. Explain intermediate compound theory of homogeneous catalysis.

25. Write note on electrophoresis.

ALL THE BEST SCORE CENTUM MARKS

DAY 14 ART 14 UNIT 11 HYDROXY COMPOUNDS AND ALCOHOL

MARKS: 50

Answer the following

25x2=50

- 1. How does ethene react with alkaline KMnO₄? (110)
- 2. How does methanol react with thionyl chloride? (114)
- 3. Explain the dehydration of tertiary alcohol by E1 mechanism (115)
- 4. Explain Saytzeff's rule (116)
- 5. Swern oxidation (117)
- 6. How does 1°, 2°, 3° alcohol react with Cu at 573 K? (118)
- 7. How is oxirane prepared by ethane 1,2 diol? (119)
- 8. How will you prepare 1,4 dioxane? (120)
- 9. How is nitroglycerine prepared? (121)
- 10. How will you prepare acrolein? (121)
- 11. Mention the uses of glycol (122)
- 12. Note on Dow's process (126)
- 13. How will you prepare phenol from benzene? (126)
- 14. Note on Schotten-Baumann reaction (127)
- 15. Note on Willamson ether synthesis (127)
- 16. How does phenol react with acidified K₂Cr₂O₇? (128)
- 17. How will you prepare cyclohexanol from phenol? (128)
- 18. How will you prepare picric acid? (129)
- 19. How will you prepare 2,4,6 tribromo phenol? (130)
- 20. Riemer Tiemann reaction (130)
- 21. Phthalein reaction (131)
- 22. Coupling reaction (131)
- 23. Test to differentiate alcohol and phenol (131)
- 24. How does ether react with HI? Explain with mechanism (137)

- 25. What is autooxidation? (137)
- 26. Friedel craft's reaction (138)

ALL THE BEST SCORE CENTUM MARKS

DAY 15 ART 15 UNIT 12 CARBONYL COMPOUNDS AND CARBOXYLIC ACID **MARKS: 60**

ANSWER THE FOLLOWING

 $20 \times 2 = 40$

- 1. Rosenmund reduction (151) Name the catalyst used in Rosenmund reduction and state its importance.(151)
- 2. How is the following conversion affected? Hex-4-enitrile \rightarrow hex-4-enal (151)
- 3. Stephen's reaction (151)
- 4. Etard reaction (151)
- 5. Gattermann Koch reaction (151)
- 6. How are the following conversions affected? (153) (Y) Benzaldehyde → hydrobenzamide (159) (X) Benzene \rightarrow acetophenone
- 7. How will you prepare aldimine? (158)
- 8. What is Urotropine? How it is prepared? and uses (158)
- 9. Popoff's rule (159)
- 10. Clemmensen reduction (160), Wolf kishner reduction (161)
- 11. Haloform reaction (161)
- 12. Crossed aldol condensation (162)
- 13. Claisen Schmidt condensation (163)
- 14. Crossed cannizaro reaction (164)
- 15. Perkin's reaction (165)
- 16.Knoevenagal reaction (165)
- 17. Note on Schiff's base (165)
- 18. Explain Benedict's solution test. (167)
- 19. What is Formalin? What is its use? (167)
- 20.HVZ reaction (176)
- 21.uses of formic acid(188)
- 22. Test for carboxylic acid (177)

22. Test for carboxylic acid (177)
23. Complete the reaction.

(x)
$$CH_3 - CH = C - CH_3 \xrightarrow{(i)O_3 /(ii) Zn/H2O}$$
 ? (149) (y) $CH_3COCH_3 \xrightarrow{Mg-Hg/H2O}$? (161)

 CH_3

Answer the following

4x5=20

24. Explain Aldol condensation with mechanism (161)

- 25. Explain Cannizaro reaction with mechanism (163)
- 26. How will you convert benzaldehyde into the following compounds? (165)
 - (i) Benzoin (ii) Cinnamic acid (iii) Malachite green
- 27. What happens when ethanoic acid reacts with ethanol in the presence of con H₂SO₄. Give its complete mechanism. (173)

28. Formic acid reduces Tollen's reagent whereas acetic acid does not reduce. Explain. (177)

ALL THE BEST SCORE CENTUM MARKS

DAY 16 ART 16 UNIT 13 ORGANIC NITROGEN COMPOUNDS MARKS: 50

Answer the following

20x2=40

- inswer the following
- 1. Explain Isomerism of nitro compound?(199)
- 2. Acidic nature of nitro alkanes.(200)
- 3. How will you prepare oil of mirbane? (201)
- 4. Ethyl nitrite to ethanol.(202)
 - 5. How is Chloropicrin prepared (203)
- 6. Hofmann's bromide reaction (209)
- 7. Gabriel phthalimide synthesis (209)
- 8. Hoffmann's ammonolysis (209)
- 9. Sabatier Mailhe method (210)
- 10. Schotten Baumann reaction (214)
- 11.Diazotisation (215)
- 12.Libermann's nitroso test. (215)
- 13. Carbylamine reaction (216)
- 14. Mustard oil reaction (216)
- 15. Hofmann-Mustard oil reaction. (216) (How will you prepare phenyl mustard oil?)
- 16. How does aniline react with Br₂/H₂O (Bromination of aniline)? (217)
- 17. Why aniline does not undergo Fridel Crafts reaction. (218)
- 18.Identify A and B. (208)

$$A \xrightarrow{Na(Hg)/C_2H_5OH} CH_3 - CH_2 - NH_2$$

$$4[H]$$

$$B \xrightarrow{Na(Hg)/C_2H_5OH} CH_3 - NH - CH_3$$

$$4[H]$$

19. Identify A and B. (208)

$$CH_3Br \xrightarrow{NaN3} A \xrightarrow{LiAlH4} B + N_2$$

20. From the following reaction, identify A, B and C. (203)

$$\begin{array}{ccc} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

21. Identify A to C in the following sequence? (BBQ $_{5i}$ 233)

$$C_6H_5NO_2 \xrightarrow{Fe/HCl} A \xrightarrow{HNO3/273k} B \xrightarrow{H2O} C$$

ACTC CHEMISTRY TUITION CENTRE, 41/1-PWD ROAD, NAGERCOIL 9940847892 Answer the following 2x5=10

- 22. How will you distinguish between primary secondary and tertiary aliphatic amines?
- 23. Name the reducing agent used in the reduction of nitrobenzene to the following compounds.

 (203) (A) Aniline (B) Phenyl hydroxylamine (C) Nitrosobenzene

ALL THE BEST SCORE CENTUM MARKS

DAY 17 ART 17 UNIT 14 BIOMOLECULES MARKS: 50

Answer the following

10x3=30

- 1. Explain Hormones (266).
- 2. Classification of protein. (253)
- 3. Explain structure of protein. (254)
- 4. Explain composition and structure of nucleic acids. (260)
- 5. Explain the structure of Fructose. (245)
- 6. Explain the structure of lactose (247)
- 7. Explain the structure of maltose (248)
- 8. Write the biological importance of proteins. (256)
- 9. Write the biological importance of lipids. (256)
- 10. Explain types of RNA molecules (264)
- 11. Give any four differences between DNA and RNA. (264)

Answer the following

10x2=20

- 12. Write note on DNA finger printing. (265)
- 13. Define anomer. Give example. (243)
- 14. Define mutarotation. (244)
- 15. What are epimers? Give an example. (244)
- 16. What happens when fructose is partially reduced with sodium amalgam and water? (245)
- 17. What is glycosidic linkage? (247)
- 18. Mention the importance of Carbohydrates (250)
- 19. Define isoelectric point (252)
- 20. What is Called Zwitter ion? Give Zwitter ion structure of alanine. (252)
- 21. Write a short note on peptide bond. (252)
- 22. Write a note on denaturation of proteins. (256)
- 23. How are vitamins classified based on their solubility. (258)

24. Name the vitamins whose deficiency causes. (a) Rickets (b) Scurvy c) pellagra d) Beriberi (259)

ALL THE BEST SCORE IN CENTUM

DAY 18 ART 18 UNIT 15 CHEMISTRY IN EVERYDAY LIFE MARKS: 50 Answer the following 25x2=50

- 1. Define medicine, chemotherapy.
- 2. What are i) antagonists ii) agonists.
- 3. What are antihistamines? Give example and mention its use.
- 4. What are antimicrobials? Give example and mention its use.
- 5. What are artificial sweetening agents? Give example.
- 6. What are antibiotics?
- 7. What are food preservatives? (283)
- 8. How is terylene prepared? (289)
- 9. Write a note on vulcanization rubber (292)
- 10. What are tranquilizers? (277)
- 11. Note on Analgesics (278)
- 12. Anesthetics (279)
- 13. Antacids (279)
- 14. Antioxidants (283)
- 15. Antiseptic (282)
- 16. What is TFM? (284)
- 17. How will you prepare Teflon? (288)
- 18. How will you prepare nylon 6, nylon 6,6? (289)
- 19. Mention the preparation of Bakelite (290)
- 20. How does Melamine undergo condensation polymerization? (291)
- 21. Mention the preparation of Neoprene (292)
- 22. How will you prepare Buna –N. & uses (292)
- 23. How will you prepare Buna –S. & uses
- 24. What is LDPE? Give its preparation and uses.

MARKS: 70

ACTC CHEMISTRY TUITION CENTRE, 41/1-PWD ROAD, NAGERCOIL 9940847892

25. How do antiseptics differ from disinfectants? (282)

26. Define food additives. (282) State any three advantages of food additives. (283)

ALL THE BEST SCORE CENTUM

DAY 19 ART 19

ORGANIC MODEL 11-15

Answer the following questions 4x5=20

- 1. Explain saytzeff rule with example.116
- 2. Difference between 1° , 2° , 3° amine.
- 3. Explain structure of glucose. 240
- 4. Victor meyer test.111

Answer the following questions 10x2=20

- 5. Preparation Dacron & uses 289
- 6. Biological importance of lipids 258
- 7. Peptide bond? & example 252
- 8. Epimers and epimerization & ex244
- 9. Levine and hauser acetylation 225
- 10. Hafmann-Mustard oil reaction 216
- 11.Gabriel phthalimide synthesis 209
- 12. Test for carboxylic acid. 177
- 13. Write note on glacial acetic acid 172
- 14.Popoff rule & example 159

Answer the following questions 10x3=30

- 15. Preparation Nylon 6,6 and Nylon 6& uses 289
- 16. Write on anaesthetics. 279
- 17. Hormone classification & example 267
- 18. Difference between RNA and DNA 264
- 19.1°, 2°, 3° amine react with HNO₂ 215
- 20. Reducing property of formic acid. 177
- 21. Mechanism of esterification. 173
- 22. Mechanism of aldol. 162

- 23. Mechanism of cannizaro reaction. 164
- 24. Uses of formaldehyde, benzaldehyde. 167

ALL THE BEST SCORE CENTUM

DAY 20 ART 20 NAME REACTION	ORGANIC NAME REACTION 50x2=100 MARKS: 100
1. Markonikoff's rule. (108)	25.Claisen-schmidt (163)
2. Saponification(110)	26.Cannizaro reaction(164)
3. Saytzeff's rule.(116)	27.Crossed cannizaro (164)
4. Swern oxidation.(117)	28.Benzoin condensation 164)
5. Dows process(127)	29.Penkins reaction(165)
6. Schotten- baumann(128)	30.Knoevenagal reaction165)
7. Williamson ether (128)	31.Malachite green dye(165)
8. Kolbe's schmit (131)	32.Esterification (173)
9. Riemer tiemann (131)	33.Kolbs electrolytic(175)
10.Phthalein reaction(132)	34.decaroxylation(175)
11.Coupling reaction(132)	35.(HVZ) hell –Volhard Zelinsky 176
12.Friedel craft's reacti(139)	36.Trans esterification(185)
13.Rosenmund reductio(151)	37.Claisen condensation(186)
14.Stephen's reaction(151)	38.Hoffmanns degradation(188)
15.Etard Recation -151	39.Nef Carbonyl Synthes203.
16.Gattermann-koch (152)	40.Gabriel phthalimide (209)
17. Friedel crafts acylation (152)	41.Hoffmanns ammonolysis(209)
18.Urotropine(158)	42.Sabatier – Mailhe m(210)
19.Popoff's rule (159)	43.Schotten –baumann reaction(214,215)
20.Clemmensen (160)	44. Carbylamine reactio(216)
21.Wolfkishner (161)	45.Mustard oil reaction(216)
22.Haloform Reaction -161	46.Gattermann reaction(220)
23.Aldol condensation(162)	47.sandmeyer reaction(220)
24.Crossed aldol (163)	48.Baltz – schiemann (221)
E MUTUUCAMY MC. MC.	MEJ MELL MA MA MA MA PLIO- BMIT

ACTC CHEMISTRY TU 49.Gomberg reaction(221)			D ROAD, NAG Libermanns nitr		17892
50.Levine and hauser acet	ylation(225)				
		ALL TH	E BEST		
DAY 21 ART 21 1. Bauxite has the compo		INORGANIC	ONE MARK	MARK	S: 50
a) Al ₂ O ₃ b) Al ₂	$_{2}O_{3}$. $nH_{2}O$	c) $Fe_2O_3.H_2O$	d)No	ne of these)
2. Roasting of sulphide or	re gives the ga	as (A).(A) is a	colourless gas.	Aqueous solution	of (A) is
acidic. The gas (A) is					
a)CO ₂	b)SO ₃	$c)SO_2$	4 6	$d)H_2S$	
3. The metal oxide which	cannot be rec	duced to metal	by carbon is		
a) PbO b) Al ₂ O ₃	c) ZnO	d) FeO			
4. Which of the metal is e	extracted by H	Iall-Heroult pro	ocess?		
a) Al	b) Ni	c) Cu d)	Zn		
5. Electrochemical proces	ss is used to ex	xtract			
a) Iron b) Lea	ad o	c) Sodium	d) silver		
6. Flux is a substance whi	ich is used to	convert			
a) Mineral into silicate	b) Infu	sible impuritie	s to soluble imp	urities	
c) Soluble impurities to	infusible im	purities	d) All of the	ese	
7. Which one of the follow	wing ores is b	est concentrate	ed by froth – floa	atation method?	
a) Magnetite b) Her	natite	c) Galena	d) Cassiterit	te	
8. Zinc is obtained from 2	ZnO by				
a) Carbon reduction	b) Reduction	using silver	c) Electroch	nemical process	d)
Acid leaching					
9. Which of the following	g is used for co	oncentrating or	re in metallurgy?	?	
a) Leaching	b) Roasting	c) Froth	floatation	d) Both (a) and ((c)
10. The incorrect statemen	t among the fo	ollowing is			
a) Nickel is refined by	Mond's pro	cess b) Titan	ium is refined b	y Van Arkel's p	rocess c
Zinc blende is concentr	rated by froth	floatation d)	In the metallu	rgy of gold, the	metal is
leached with dilute sod	ium chloride	solution			

		RE, 41/1-PWD ROA which one of the follo	·	
a) Pure copper	b) Impure copper	c) Carbon rod	d) Platinu	m electrode
12. Which of the fo	ollowing plot gives Ell	lingham diagram		
a) ΔS Vs T	b) $\Delta G^0 Vs T$	c) $\Delta G^0 \text{ Vs } \frac{1}{T}$	d) $\Delta G^0 Vs T^2$	
13.An aqueous so	lution of borax is			
a) neutra	al b) acidic c) basic	d) amphoteric		
15. Boric acid is a	n acid because its mol	ecule (NEET)		
a) contains rep	laceable H ⁺ ion	b) g	gives up a proton	
c) combines w	vith proton to form v	water molecule d) a	ccepts OH- from v	vater ,releasing
proton.			1	
16. Which among	the following is not a	borane?		
a) B_2H_6 b) B_3I	H_6 c) B_4H_{10} d	l) none of these		
17. Which of the fo	ollowing metals has th	ne largest abundance i	n the earth's crust?	
a) Aluminium	b) calcium c	e) Magnesium d) s	odium	
18.In diborane, the	e number of electrons	that accounts for bana	ana bonds is	
a) six	b) two	c) four	d) three	
19. The element th		nation among the follo		ents is
a) Carbon	b) silicon	c) Lead	d) germanium	
		nula C_{60} have a) sp^3 hy		sp hybridised
c) sp ² hybrid	dised d) partially sp	² and partially sp ³ hyb	oridised	
21.Oxidation state	of carbon in its hydri	ides a) +4 b) -4	c) +3	d) +2
22. Which of these	e is not a monomer for	a high molecular mas	ss silicone polymer	?
a) Me ₃ SiCl	b) PhSiCl ₃	c) MeSiCl ₃	d) Me ₂ SiCl ₂	
23. The compound	that is used in nuclea	r reactors as protectiv	e shields and contro	ol rods is
a) Metal boride	es b) metal oxide	es c) Metal carbon	ates d) metal c	arbide
24. The stability of	f +1 oxidation state in	creases in the sequenc	ee	
a) Al < Ga < Ir	n < Tl b) $Tl < In < C$	Ga < Alc) In $< Tl < G$	a < Al d) Ga< In	< A1 < T1
25.On hydrolysis,	PCl ₃ gives			
a) H ₃ PO ₃ b) P	H_3 c) H_3PO_4	d) POCl ₃		
26.P ₄ O ₆ reacts wit	th cold water to give			

ACTC CHEMISTRY TUITION CENTRE, 41/1-PWD ROAD, NAGERCOIL 9940847892 a) H ₃ PO ₃ b) H ₄ P ₂ O ₇ c) HPO ₃ d) H ₃ PO ₄
27. The basicity of pyrophosphorous acid ($H_4P_2O_5$) is
a) 4 b) 2 c) 3 d) 5
28. The molarity of given orthophosphoric acid solution is 2M. its normality is
a) 6N b) 4N c) 2N d) none of these
29. Assertion: bond dissociation energy of fluorine is greater than chlorine gas
Reason: chlorine has more electronic repulsion than fluorine
a) Both assertion and reason are true and reason is the correct explanation of assertion.
b) Both assertion and reason are true but reason is not the correct explanation of assertion.
c) Assertion is true but reason is false. d) Both assertion and reason are false.
30. Among the following, which is the strongest oxidizing agent?
a) Cl_2 b) F_2 c) Br_2 d) l_2
31. The correct order of the thermal stability of hydrogen halide is
a) HI > HBr > HCl > HF b) HF > HCl > HBr > HI c) HCl > HF > HBr > H
d) HI > HCl > HF > HBr
32. Which one of the following compounds is not formed?
a) XeOF ₄ b) XeO ₃ c) XeF ₂ d) NeF ₂
33.Most easily liquefiable gas is
a) Ar b) Ne c) He d) Kr
34.XeF ₆ on complete hydrolysis produces
a) XeO _{F4} b) XeO ₂ F ₂ c) XeO ₃ d) XeO ₂
35. Which of the following is strongest acid among all?
a) HI b) HF c) HBr d) HCl
36. When copper is heated with conc HNO ₃ it produces
a) $Cu(NO_3)_2$, NO and NO_2 b) $Cu(NO_3)_2$ and N_2O c) $Cu(NO_3)_2$ and NO_2 d) $Cu(NO_3)_2$ are NO
37. Which of the following d block element has half filled penultimate d sub shell as well a
half-filled valence sub shell?
a) Cr b) Pd c) Pt d) none of these
38. The magnetic moment of Mn ²⁺ ion is
E.MUTHUSAMY MSc(Che)., MSc(Psy)., MEd., MPhil., MA(Eng)., MA(T)., MA(PA)., MA(Soc)., BLISC., DML7

B. SARANYA MUTHUSAMY BE., BEd., You Tube: ACTC Educare Whatsapp: 9940847892

- a) 5.92BM
- b) 2.80BM
- c) 8.95BM
- d) 3.90BM
- 39.the catalytic behaviour of transition metals and their compounds is ascribed mainly due to
 - a) their magnetic behaviour

- b) their unfilled d orbitals
- c) their ability to adopt variable oxidation states
- d) their chemical reactivity
- 40. The correct order of increasing oxidizing power in the series
 - a) $VO_2^+ \le Cr_2O_7^{2-} \le MnO_4^-$ b) $Cr_2O_7^{2-} \le VO_2^+ \le MnO_4^-$
 - c) $Cr_2O_7^{2-} \le MnO_4^{-} \le VO_2^{+}$ d) $MnO_4^{-} \le Cr_2O_7^{2-} \le VO_2^{+}$
- 41. In acid medium, potassium permanganate oxidizes oxalic acid to
 - a) oxalate b) Carbon dioxide
- c) acetate
- d) acetic acid
- 42. Which of the following oxidation states is most common among the lanthanoids?
 - a) 4
- b) 2
- c) 5
- d) 3
- 43. The actinoid elements which show the highest oxidation state of +7 are
 - a) Np, Pu, Am
- b) U, Fm, Th
- c) U, Th, Md d) Es, No, Lr

- 44. Which one of the following is not correct?
 - a) La(OH)₂ is less basic than Lu(OH)₃ b) In lanthanoid series ionic radius of Ln³⁺ ions decreases
 - c) La is actually an element of transition metal series rather than lanthanide series
 - d) Atomic radii of Zr and Hf are same because of lanthanide contraction
- 45. Which type of isomerism is exhibited by [Pt(NH₃)₂Cl₂]
 - a) Coordination isomerism b) Linkage isomerism
 - c) Optical isomerism d) Geometrical isomerism
- 46. Which one of the following complexes is not expected to exhibit isomerism?
- a) $[Ni(NH_3)_4(H_2O)_2]^{2+}$ b) $[Fe(CO)_5]$ c) $[Co(NH_3)_5 SO_4]Cl$ d) $[Fe(en)_3]^{3+}$

- 47.A complex in which the oxidation number of the metal is zero is
- a) $K_4[Fe(CN)_6]$
- b) $[Fe(CN)_3(NH_3)_3]$
- c) $[Fe(CO)_5]$ d) both (b) and (c)
- 48. Which of the following is paramagnetic in nature?
- a) $[Zn(NH_3)_4]^{3+}$
- b) $[Co(NH_3)_6]^{3+}$ c) $[Ni(H_2O)_6]^{2+}$ d) $[Ni(CN)_4]^{2-}$

- 49. Fac-mer isomerism is shown by
- a) $[Co(en)_3]^{3+}$
- b) $[Co(NH_3)_4(Cl)_2]^+$ c) $[Co(NH_3)_3(Cl)_3]$ d) $[Co(NH_3)_5Cl]SO_4$
- 50. Choose the correct statement.

- a) Square planar complexes are more stable than octahedral complexes
- b) The spin only magnetic moment of $[Cu(Cl)4]^2$ is 1.732 BM and it has square planar structure. c) Crystal field splitting energy (Δ_0) of $[FeF_6]^{4-}$ is higher than the (Δ_0) of $[Fe(CN)_6]^{4-}$
- d) crystal field stabilization energy of $[V(H_2O)_6]^{2+}$ is higher than the crystal field stabilization of $[Ti(H_2O)_6]^{2+}$

ALL THE BEST

PHYSICAL CHEMISTRY ONE MARK **MARKS: 50 DAY 22 ART 22**

Choose correct answer

50x1=50

- 1. Solid CO₂ is an example of
- a) Covalent solid b) metallic solid
- c) molecular solid
- d) ionic solid
- 2. Assertion: monoclinic sulphur is an example of monoclinic crystal system Reason: for a monoclinic system, $a \neq b \neq c$ and $\alpha = \gamma = 90^{\circ}$, $\beta = 90^{\circ}$,
- a) Both assertion and reason are true and reason is the correct explanation of assertion.
- b) Both assertion and reason are true but reason is not the correct explanation of assertion.
- c) Assertion is true but reason is false.
- d) Both assertion and reason are false.
- 3. In calcium fluoride, having the flurite structure the coordination number of Ca2+ ion and Fc) 8 and 4 d) 4 and 8 Ion are a) 4 and 2 b) 6 and 6
- 4. The number of unit cells in 8 gm of an element X (atomic mass 40) which crystallizes in bcc pattern is (N_A is the Avogadro number)
- a) 6.023 X 10²³

- b) 6.023 X 10^{22} c) 60.23 X 10^{23} d) $\left(\frac{6.023 \times 10^{23}}{8 \times 40}\right)$
- 5. The number of carbon atoms per unit cell of diamond is
- a) 8
- b) 6
- c) 1
- d) 4
- 6. The vacant space in bcc lattice unit cell is
- a) 48%
- b) 23%
- c) 32%
- d) 26%
- 7. if 'a' is the length of the side of the cube, the distance between the body centered atom and one corner atom in the cube will be
 - a) $\left(\frac{2}{\sqrt{3}}\right)a$
- b) $\left(\frac{4}{\sqrt{3}}\right)a$
- c) $\left(\frac{\sqrt{3}}{4}\right)$ a
- d) $\left(\frac{\sqrt{3}}{2}\right)a$
- 8. Potassium has a bcc structure with nearest neighbor distance 4.52 A⁰ . its atomic weight is 39. its density will be
 - a) 915 kg m⁻³
- b) 2142 kg m⁻³
- c) 452 kg m^{-3}
- d) 390 kg m^{-3}

- 9. Schottky defect in a crystal is observed when
 - a) unequal number of anions and anions are missing from the lattice
 - b) equal number of anions and anions are missing from the lattice
 - c) an ion leaves its normal site and occupies an interstitial site d) no ion is missing from its lattice.
- 10. The cation leaves its normal position in the crystal and moves to some interstitial position, the defect in the crystal is known as

a) Schottky defect	b) F center	c) Fr	enkel defect	d)	non-			
stoichiometric defect								
11. Assertion: due to Frenkel defect, density of the crystalline solid decreases.								
Reason: in Frenkel defect cation and anion leaves the crystal.								
a) Both assertion and re	eason are true and re	eason is th	e correct explai	nation of ass	sertion.			
b) Both assertion and re	eason are true but re	eason is no	t the correct ex	planation of	assertion.			
c) Assertion is true but								
12. For a first order reaction	n $A \rightarrow B$ the rate con	nstant is <i>x</i>	\min^{-1} . If the i	nitial conce	ntration of A			
is 0.01M, the concentra		_	-					
a) $0.01 e^{-x}$, ,	· ·					
13. A zero order reaction 2	$X \rightarrow Product$, with a	ın initial co	oncentration 0.0	02M has a h	alf life of 10			
min. if one starts with c								
) 20 min d		-					
4. The addition of a cat	alyst during a ch	emical re	action alters v	vhich of th	ne following			
quantities?			7					
a) Enthalpy				d) Internal e	<u> </u>			
15. For a first order reaction	n, the rate constant	is 6.909 n	nin ⁻¹ .the time ta	aken for 759	% conversion			
in minutes is	(2)	(2)		(4)				
a) $\left(\frac{3}{2}\right)\log 2$	c) $\left(\frac{2}{3}\right)\log 2$	$\left(\frac{3}{2}\right)\log\left(\frac{3}{4}\right)$	d) $\left(\frac{2}{3}\right)$ l	$og\left(\frac{4}{3}\right)$				
16.In a first order reaction					tration of the			
reactant x is 0.1M, then,		20						
a) $\left(\frac{\log 2}{k}\right)$ b	$\left(\frac{0.693}{}\right)$	$\left(\frac{ln2}{}\right)$	d) none of the	ese				
17. For the reaction $N_2O_5(g)$	2							
given as 6.5×10^{-2} mol L			NO ₂ and O ₂ is	given respec	ctively as			
a) $(3.25 \times 10^{-2} \text{mol L}^{-1} \text{s}^{-1})$								
b) $(1.3 \times 10^{-2} \text{mol L}^{-1} \text{s}^{-1})$		ŕ						
c) $(1.3 \times 10^{-1} \text{mol L}^{-1} \text{s}^{-1})$	and $(3.25 \times 10^{-2} \text{mol})$	$1 L^{-1} s^{-1}$	d) None of the	nese				
18. During the decompositi			_	ned per min	ute at certain			
point of time. The rate of	of formation of wate	er at this po	oint is	1				
a) 0.75 mol min ⁻¹	b) 1.5 mol min	n^{-1}	c) 2.25 mol m	nin ⁻¹	d) 3.0 mol			
min ⁻¹								
19.If the initial concentra		nt is doub	led, the time f	for half rea	ction is also			
doubled. Then the order		_						
a) Zero b) one	•	tion	*					
20.In a homogeneous react			_	P_0 and after	time t it was			
P. expression for rate co								
a) $k = \left(\frac{2.303}{t}\right) \log \left(\frac{2p_0}{3p_0-1}\right)$	$\frac{1}{b}$ b) $k = (\frac{2.303}{t})$	$\log\left(\frac{2p_0}{p_0-n}\right)$)					
	· · · · ·	-FU P						

ACTC CHEMISTRY TUITION CENTRE, 41/1-PWD ROAD, NAGERCOIL 9940847892 c) $k = \left(\frac{2.303}{t}\right) \log \left(\frac{3p_0 - p}{2p_0}\right)$ d) $k = \left(\frac{2.303}{t}\right) \log \left(\frac{2p_0}{3p_0 - 2p}\right)$ 21. Concentration of the Ag^+ ions in a saturated solution of $Ag_2C_2O_4$ is $2.24 \times 10^{-4} \text{mol } L^{-1}$ solubility product of $Ag_2C_2O_4$ is (NEET – 2017) a) $2.42 \times 10^{-8} \text{mol}^3 \text{L}^{-3}$ b) $2.66 \times 10^{-12} \text{ mol}^3 \text{L}^{-3} \text{c}$) $4.5 \times 10^{-11} \text{ mol}^3 \text{L}^{-3} \text{ d}$) $5.619 \times 10^{-12} \text{ mol}^3 \text{L}^{-3}$ 23.pH of a saturated solution of Ca(OH)₂ is 9. The Solubility product (K_{sp})of Ca(OH)₂ b) 0.25×10^{-10} a) 0.5×10^{-15} c) 0.125×10^{-15} d) 0.5×10^{-10} 24. Conjugate base for bronsted acids H₂O and HF are a) OH⁻ and H₂FH⁺, respectively b) H₃O⁺ and F⁻, respectively d) H₃O⁺ and H₂F⁺, respectively c) OH and F, respectively 25. Which of the following fluro – compounds is most likely to behave as a Lewis base? C) CF₄ a) BF₃ b) PF₃ d) SiF₄ 26. Which of these is not likely to act as Lewis base? b) PF₃ C) CO 27. If the solubility product of lead iodide is 3.2×10^{-8} , its solubility will be b) 4×10^{-4} M c) 1.6×10^{-5} M a) 2×10^{-3} M d) 1.8×10^{-5} M 28. The pH of 10⁻⁵ M KOH solution will be c) 19 d) none of these a) 9 b) 5 29.H₂PO₄²⁻ the conjugate base of d) HPO₄²⁻ a) PO₄³⁻ c) H₃PO₄ b) P_2O_5 30. Which of the following can act as lowery – Bronsted acid well as base? c) HPO₄²⁻ b) SO₄²⁻ a) HCl d) Br 31. The pH of an aqueous solution is Zero. The solution is b) strongly acidic c) neutral a) slightly acidic 32. The hydrogen ion concentration of a buffer solution consisting of a weak acid and its salts is given by a) $[H^{+}] = \frac{K_{a}[acid]}{[salt]}$ b) $[H^{+}] = K_{a}[salt]$ c) $[H^{+}] = K_{a}[acid]$ d) $[H^{+}] = \frac{K_{a}[salt]}{[acid]}$ 33. The number of electrons that have a total charge of 9650 coulombs is a) 6.22×10^{23} c) 6.022×10^{22} b) 6.022×10^{24} d) 6.022×10^{-34} 34. Faradays constant is defined as a) charge carried by 1 electron b) charge carried by one mole of electrons c) charge required to deposit one mole of substance d) charge carried by 6.22×10^{10} electrons. 35. While charging lead storage battery a) PbSO₄ on cathode is reduced to Pb b) PbSO₄ on anode is oxidised to PbO₂ c) PbSO₄ on anode is reduced to Pb d) PbSO₄ on cathode is oxidised to Pb 36. Zinc can be coated on iron to produce galvanized iron but the reverse is not possible. It is because E.MUTHUSAMY MSc(Che)., MSc(Psy)., MEd., MPhil., MA(Eng)., MA(T)., MA(PA)., MA(Soc)., BLISC., DMLT.

B. SARANYA MUTHUSAMY BE., BEd., You Tube: ACTC Educare Whatsapp: 9940847892

b) Zinc has lower melting point than iron c) Zinc has lower a) Zinc is lighter than iron negative electrode potential than iron d) Zinc has higher negative electrode potential than iron

37. Assertion: pure iron when heated in dry air is converted with a layer of rust.

Reason: Rust has the compositionFe₃O₄

- a) if both assertion and reason are true and reason is the correct explanation of assertion.
- b) if both assertion and reason are true but reason is not the correct explanation of assertion.
- c) assertion is true but reason is false
- d) both assertion and reason are false.
- 38. For freudlich isotherm a graph of $\log \frac{m}{r}$ is plotted against $\log P$. The slope of the line and its

y – axis intercept respectively corresponds to

- a) $\frac{1}{n}$, k
- b) $\log \frac{1}{n}$, k c) $\frac{1}{n}$, $\log k$
- d) $\log \frac{1}{n}$, $\log k$
- 39. Which of the following is incorrect for physisorption?
- a) reversible

- b) increases with increase in temperature
- c) low heat of adsorption
- d) increases with increase in surface area
- 40. Which one of the following characteristics are associated with adsorption? (NEET)
- a) ΔG and ΔH are negative but ΔS is positive b) ΔG and ΔS are negative but ΔH is positive
- c) ΔG is negative but ΔH and ΔS are positive
- d) Δ G, Δ H and Δ S all are negative.

- 41. Fog is colloidal solution of
- a) solid in gas
- b) gas in gas
- c) liquid in gas d) gas in liquid
- 42. Assertion: Coagulation power of Al³⁺ is more than Na⁺.

Reason: greater the valency of the flocculating ion added, greater is its power to cause precipitation

- a) if both assertion and reason are true and reason is the correct explanation of assertion. b) if both assertion and reason are true but reason is not the correct explanation of assertion.
- c) assertion is true but reason is false d) both assertion and reason are false.
- 43. Statement: To stop bleeding from an injury, ferric chloride can be applied. Which comment about the statement is justified?
- a) It is not true, ferric chloride is a poison.
- b) It is true, Fe³⁺ ions coagulate blood which is a negatively charged sol
- c) It is not true; ferric chloride is ionic and gets into the blood stream.
- d) It is true, coagulation takes place because of formation of negatively charged sol with Cl.
- 44. Hair cream is
- a) gel b) emulsion
- c) solid sol
- d) sol.
- 8. Which one of the following is correctly matched?
- a) Emulsion
- Smoke
- b) Gel
- butter
- c) foam
- Mist
- d) whipped cream
 - sol
- 45. The most effective electrolyte for the coagulation of AS₂S₃Sol is

a) NaCl c) $K_3[Fe(CN)_6]$ d) $Al_2(SO_4)_3$ b) Ba(NO_3)₂

46. Which one of the is not a surfactant?

- a) $CH_3 (CH_2)_{15} N^+ (CH_3)_2 CH_2Br$
- b) $CH_3 (CH_2)_{15} NH_2$
- c) CH₃ (CH₂)₁₆ CH₂OSO₂ Na⁺
- d) OHC $(CH_2)_{14}$ CH_2 COO Na^+
- 47. The phenomenon observed when a beam of light is passed through a colloidal solution is
- a) Cataphoresis
- b) Electrophoresis
- c) Coagulation
- d) Tyndall effect
- 48. In an electrical field, the particles of a colloidal system move towards cathode. The coagulation of the same sol is studied using K_2SO_4 (i)Na₃PO₄ (ii)K₄[Fe(CN)₆] (iii) and NaCl
- (iv) Their coagulating power should be
- a) II > I>IV > III
- b) III > II > I > IV
- c) I > II > III > IV
- d) none of these
- 49. Collodion is a 4% solution of which one of the following compounds in alcohol—ether mixture? a) Nitroglycerine b) Cellulose acetate c) Glycol dinitrate d) Nitrocellulose
- 50. Adsorption of a gas on solid metal surface is spontaneous and exothermic, then
- a) ΔH increases
- b) ΔS increases
- c) ΔG increases
- d) ΔS decreases

ALL THE BEST SCORE CENTUM MARKS

DAY 23 ART 23 INORGANIC SHORT ANSWER MARKS: 70

Answer the following

35x2=70

- 1. What is the difference between minerals and ores?
- 2. Give the basic requirement for vapour phase refining?
- **3.** What do you meant by cementation?
- Explain about Van-Arkel method for refining zirconium/titanium:
- 5. Difference between calcination and roasting
- 6. Write a note on Fisher tropsch synthesis.
- 7. Write a short note on hydroboration
- 8. How will you identify presence of borate radical
- 9. What is burnt alum
- 10. What is inert pair effect
- 11. How will you prepare borax beads from borax
- 12. How is potash alum prepared?
- 13. What are inter halogen compounds? Give ex.
- 14. Fluorine is more reactive than other halogens?
- 15. Give a reason to support that sulphuric acid is a dehydrating agent.
- 6. Write the reason for the anamolous behaviour of Nitrogen.
- 17. What is Aquaregia?. Write down its use.
- 18.Explain about Holmes signal
- 19.Explain about Manufacture of sulphuric acid by contact process
- 20. How is nitric acid manufactured using Ostwald's process?
- 21. What are inner transition elements?
- 22. Describe the preparation of potassium dichromate

- 23. What are interstitial compounds?
- 24. Calculate the number of unpaired electrons in Ti³⁺, Mn²⁺ and calculate the spin only magnetic moment
- 25. Explain about Hume-Rothery rule to form a substitute alloy
- 26. What is Chromyl chloride test
- 27. What is linkage isomerism? Explain with an ex
- 28. What are hydrate isomers? Explain with an ex
- 29. What is crystal field stabilization energy (CFSE)
- 30. What are the limitations of VB theory?
- 31. Give characteristics of ionic crystals
- 32. Define unit cell.
- 33. Explain about impurity defect
- 34. Define average rate and instantaneous rate.

ALL THE BEST SCORE CENTUM MARKS

DAY 24 ART 24 DIFFERENCE QUESTIONS

ANSWER THE FOLLOWING

15x3=45

MARKS: 50

- 1. Differentiate between minerals and ores.
- 2. What are the differences between white phosphorus and red phosphorus?
- 3. Differentiate between lanthanoids and actinoids.
- 4. Differentiate between double salts and co-ordination compounds.
- 5. Differentiate between crystalline and amorphous solids.
- 6. Differentiate between tetrahedral voids and octahedral voids.
- 7. Differentiate between rate of the reaction and rate constant of the reaction.
- 8. Distinction the order of the reaction and molecularity of a reaction.
- 9. Differences between Lewis acids and Lewis bases.
- 10. Differences between Physical and Chemical adsorption.
- 11. Differences between Homogeneous catalysis and heterogeneous catalysis.
- 12. What is the difference between a sol and a gel?
- 13. Differences between DNA and RNA.
- 14. Differences between Hormones and Vitamins.
- 15. Differences between Disinfectants and Antiseptics.

Answer in detail

1x5=5

16. Differences between Glucose and Fructose.

ACTC CHEMISTRY TUITION CENTRE, 41/1-PWD ROAD, NAGERCOIL 9940847892 ALL THE BEST SCORE CENTUM MARKS

Share, subscribe, comment, Like @ our

you tube channel:

ACTC Educare

DAY 25 ART 25 APPLICATION & USES

Answer the following

25x2=50

- 1. Applications of Aluminium.
- 2. Applications of Zinc.
- 3. Applications of Gold.
- 4. Applications of Iron.
- 5. Applications of Copper.
- 6. Uses of Boron.
- 7. Uses of Borax.
- 8. Uses of Boric acid
- 9. Uses of diborane & Boron trifluoride.
- 10. Uses of Aluminium chloride.
- 11.Uses of Alum.
- 12. Uses of CO and CO₂.
- 13.Uses of silicone.
- 14. Uses of Nitrogen, Nitric acid.
- 15.Uses of phosphorus and phosphine.
- 16. Uses of oxygen.
- 17.Uses of sulphur dioxide & sulphuric acid.
- 18. Uses of Chlorine and HCl.
- 19. Uses of Helium.
- 20. Uses of Neon, Argon, Krypton.
- 21. Uses of Xenon, Radon.
- 22. Uses of K₂Cr₂O₇
- 23.Uses of KMnO₄.
- 24. Medicinal uses of colloids.
- 25. Medicinal uses of co-ordination compounds.
- 26. Biological importance coordination compound.

Answer in detail: 2x5=10

27. Uses of Kohlraush's law.

E.MUTHUSAMY MSc(Che)., MSc(Psy)., MEd., MPhil., MA(Eng)., MA(T)., MA(PA)., MA(Soc)., BLISc., DMLT.

B. SARANYA MUTHUSAMY BE., BEd., You Tube: ACTC Educare Whatsapp: 9940847892

Kindly send me your answer keys to us - padasalai.net@gmail.com

MARKS: 60

28. Applications of adsorptions.

29. Application of colloids.

ALL THE BEST SCORE CENTUM MARKS

Share, subscribe, comment, Like @ our

you tube channel:

ACTC Educare

DAY 26 ART 26 ORGANIC PROBLEM MARKS: 50

ANSWER THE FOLLOWING

10X5=50

- 1. Compound A of molecular formula C₇H₆O reduces Tollen's reagent when A reacts with 50% NaOH gives compound B of molecular formula C₇H₈O and C of molecular formula C₇H₅O₂Na. compound C on treatment with dil HCl gives compound D of molecular formula C₇H₆O₂. When D is heated with soda lime gives compound E. identify A, B,C,D & E. Write the corresponding equations.
- 2. An organic compound (A) of molecular formula C₂H₆O on reaction with conc. H₂SO₄ at 443 k gives and unsaturated hydrocarbon (B) . (B) on reaction with Baeyer's reagent produces (C) of molecular formula C₂H₆O₂. (C) on reaction with anhydrous ZnCl₂ Produces (D) of molecular formula C₂H₄O. (D) reduces Tollen's reagent. Identify A,B,C and D and explain the reactions involved.
- 3. An organic compound (A) of molecular formula CH₄O on mild oxidation gives (B) of formula CH₂O that reduces Tollen's reagent. (B) on reaction with methyl magnesium bromide followed by acid hydrolysis will give (C). of molecular formula C₂H₆O which liberates H₂ gas with metallic sodium. Identify A,B,C, and explain the reactions involved.
- 4. An organic compound (A) of molecular formula C₂H₆O reacts with metallic Na and liberates H₂ gas (A) on mild oxidation with Cu at 573 k gives (B) of molecular formula C₂H₄O. (B) on reaction with methyl magnesium bromide followed by acid hydrolysis gives (C) of molecular formula C₃H₈O. (C) gives Blue colour in Victor Meyer's test. (C) on mild oxidation with Cu at 573 K gives (D) of formula C₃H₆O. Identify A,B,C,D and explain the reactions
- 5. An aromatic compound (A) of molecular formula C₆H₅Cl on reaction with aqueous NaOH gives (B) of formula C₆H₆O that give violet colouration with neutral FeCl₃.(B) on reaction with ammonia in presence of anhydrous ZnCl₂ gives (C) of formula C₆H₇N. Identify A,B,C and explain the reactions.
- 6. An organic compound (A) of molecular formula C₆H₅Cl on reaction with aqueous NaOH gives (B) of formula C₆H₆O. (B) on reaction with NaOH gives (C) of formula C₆H₅ONa. (C) on treatment with CO₂ followed by acid hydrolysis yield (D) of formula C₇H₆O₃ an aromatic hydroxyl acid. Identify A,B,C,D and explain the reactions involved.

- 7. An organic compound (A) of molecular formula $C_6H_5N_2Cl$ on boiling with hot water gives (B) of molecular formula C_6H_6O . (B) on reaction with Zinc dust gives (C) a simplest aromatic hydrocarbon. (C) on reaction with methyl chloride in the presence of anhydrous $AlCl_3$ gives (D) of Molecular formula C_7H_8 . Identify A,B,C,D and explain the reaction.
- 8. An organic compound (A) of molecular formula C₆H₆ reacts with propylene in the presence of H₃PO₄ at 532 K gives (B) formula C₉H₁₂O₂ as (C). (C) on acidification with H₂SO₄ gives (D) of formula C₆H₆O and (E) of formula C₃H₆O. Identify A,B,C,D and E and explain the reactions.
- 9. An organic compound (A) of molecular formula C_3H_8O an reaction P/I_2 gives C_3H_7I as (B). (B) on reaction with $AgNO_2$ produces (C) with formula $C_3H_7NO_2$. (C) on reaction with nitrous acid gives (D) of molecular formula $C_3H_6N_2O_3$. (D) on reaction with KOH produces blue colour. Identify A,B,C,D and explain the reaction.
- 10.An organic compound A (C_2H_6O) liberates hydrogen with sodium metal. A when heated with alumina at 620 K gives an alkene B which when passed through Bayer's reagent gives $C(C_2H_6O_2)$. C reacts with PI₃ and gives back B. Identify A, B and C. Write the reactions.
- 11.Compound (A) with molecular formula C_6H_6O gives violet colour with neutral FeCl₃, reacts with CHCl₃ and NaOH gives (B) with molecular formula $C_7H_6O_2$. Compound (A) reacts with Ammonia at 473 K in the presence of $ZnCl_2$ and gives compound (C) with molecular formula C_7H_7N . Compound (D) undergoes carbylamines test. Identify (A), (B), and (C). Explain the reactions.

Share, subscribe, comment, Like @ our

you tube channel:

ACTC Educare

DAY 27 ART 27 FULL PORTION EXAM +2 Chemistry MODEL Exam Question – FULL PORTION 15x1=15Part I Choose the correct answer Glucose and Mannose are epimers at: a)C₃ carbon c) C₁ carbon d) C₂ carbon b) C₄ carbon $C_6H_5 - N_2Cl \xrightarrow{Cu_2Cl_2/HCl} C_6H_5 - Cl + N_2$ this reaction is known as: b) Gomberg reaction a)Gattermann reaction d) Sandmeyer reaction c) Schotten – Baumann reaction 3. In $H_2 - O_2$ fuel cell, the reaction occurs at cathode is: a) $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)}$ b) $H^+ + e^- \rightarrow \frac{1}{2} H_2$ c) $O_{2(g)} + 2H_2O_{(1)} + 4e^- \rightarrow 4OH_{(aq)}$ d) $H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow H_2O_{(l)}$ 4. _____ is used in the manufacture of thermosoftening plastic Perspex b) Acetone a) Benzaldehyde c) Acetaldehyde d) Benzophenone 5. The P^H of an aqueous solution is zero. The solution is: b) Basic a) neutral c) Slightly acidic d) Strongly acidic 6. Inorganic benzene is: a) B_2H_6 b) $B_3H_3H_6$ c) H₃BO₃ d) $H_2B_4O_7$ 7. Extraction of gold involves leaching with cyanide ion. Gold is later recovered by: a) Metal displacement with Zinc b) Liquation c) Distillation d) Zone refining 8. Cold dilute alkaline KMnO₄ is known as: b) Fenton's reagent c) Bayer's reagent d) Nessler's reagent a) Schiff's reagent

- 9. Amide-linked local anaesthetic is:
- a) Ranitidine
- b) Omeprazole
- c) Procaine
- d) Lidocaine
- 10. The formula used to identify density of the unit cell:
- a) $\rho = a^3 N_A \times n M$ b) $a^3 N_A n M$ c) $\rho = \frac{n M}{a^3 N_A}$ d) $\rho = \frac{a^3 N_A}{n M}$

- 11. The Oxidation state of chloride in Cl_2O_7 is: a) +6 b) +7
- d) + 5

- 12. The common name of 1,2,3 trihydroxy benzene is:
- a) Pyrogallol
- b) Resorcinol
- c) Hydroxyquinol
- d) Phloroglucino

- 13. Match the following:
 - (1) $[Ni(CO)_4]$
- (i) Trigonal bipyramidal
- $(2) \left[Pt(NH_3)_4 \right]^{2+}$
- (ii) Octahedral
- (3) $[Fe(CO)_5]$
- (iii) Tetrahedral
- $(4) \left[\text{Co}(\text{NH}_3)_6 \right]^{3+}$
- (iv) Square planar
- a) (1) (ii); (2) (iii); (3) (iv); (4) (i) b) (1) (iii); (2) (i); (3) (iv); (4) (ii)
- c) (1) (iii); (2) (iv); (3) (i); (4) (ii) d) (1) (iv); (2) (i); (3) (ii); (4) (iii)
 - 14. A magnetic moment of 1.73B will be shown by one among the following:
- a) $[Cu(NH_3)_4]^{2+}$

- b) $[Ni(CN)_4]^{2-}$ c) $TiCl_4$
- d) $[CoCl_6]^{4-}$
- 15. The mechanism proposed for the enzyme catalysis reaction is:
- a) $P + E \rightarrow E + S \rightleftharpoons ES$
- b) $E + S \rightleftharpoons ES \rightarrow P + E$
- c) $ES \rightleftharpoons P + E \rightarrow E + S$
- d) $E + S \rightarrow ES \rightleftharpoons P + E$

Part II Answer any six Questions. Question No. 24 is Compulsory

- 6x2=12
- 16. What is the role of limestone in the extraction of iron from of oxide Fe₂O₃?
- 17. Give the difference between double salts and co-ordination compounds.
- 18. Define Buffer action.
- 19. Define Common ion effect.
- 20. Write a note on Tyndall Effect
- 21. What is Urotropine? How it is prepared?
- 22. Aniline does not undergo Friedal Crafts reaction. Give reason.
- 23. Name the vitamins whose deficiency causes. (a) Rickets (b) Scurvy
- 24. A hydride of 2nd period alkali metal (A) on reaction with compound of Boron (B) in the presence of ether to give a reducing agent (C). Identify A, B and C

ACTC CHEMISTRY TUITION CENTRE, 41/1-PWD ROAD, NAGERCOIL 9940847892 Part III Answer any six Questions. Question No. 33 is Compulsory 6x3=18

- 25. Which types of ores can be concentrated by froth floatation method? Give two examples.
- 26. What type of hybridisation is found in the following? (a) BrF (b) BrF₅
- (c) BrF₃
- 27. In an octahedral crystal field, draw the figure to show splitting of d-orbitals.
- 28. Differentiate between crystalline solids and amorphous solids.
- 29. Derive an expression for Ostwald's dilution law.
- 30. Mention the mechanism in the following reactions:
 - (a) One mole of HI reacts with methoxy ethane
 - (b) One mole of HI reacts with 2-methoxy 2-methyl propane
- 31. Write the test for Carboxylic Acid group.
- 32. Give short note on Gabriel Phthalimide Synthesis
- 33. Powdered CaCO₃ reacts much faster with dilute HCl than with the same mass of CaCO₃ as marble. Give reason.

Part IV Answer the following in detail

5x5=25

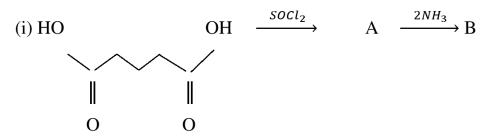
- 34. (a) i) How is potash alum prepared?
 - ii) Indicate the possible type of Isomerism for the following complexes

$$(A)[Co(en)_3]^{3+}$$

(B)
$$[Pt(NH_3)_2Cl_2]^{2+}$$

(OR)

- (b) i) Explain Deacon's process for manufacture of chlorine.
 - ii) Sulphuric Acid is a dibasic acid. Prove it.
- 35. (a) What is Lanthanide or Lanthanoid contraction? Explain its consequences. (OR)
 - (b) i) If the radius of the compound is between 0.155 0.225, find out the co-ordination number an structure of the compound .
- ii) Arrange the following in the increasing order of relative reactivity of acid derivatives and mention the reason alone. CH₃COOC₂H₅, CH₃COCl, CH₃CONH₂, CH₃COOCOCH₃
- 36. (a) i) The rate constant for a first order reaction is $1.54 \times 10-3$ s-1. Calculate its half life time.
- (ii) Identify the conjugate Acid Base pair for the following reactions in aqueous solution.
- $(A) HS_{(aq)}^- + HF \rightleftharpoons F_{(aq)}^- + H_2S_{(aq)}$


(B)
$$HPO_4^{2-} + SO_3^{2-} \rightleftharpoons PO_4^{3-} + HSO_3^{-}$$
 (OR)

(b) State Kohlrausch's law and explain any one of the application.

37. (a) Write any five characteristics of Catalysts.

(OR)

- (b) How to distinguish 1°, 2° and 3° alcohols by Victor Meyer's test.
- 38. (a) Identify A and B (by bond line structure)

(ii) How are RNA molecules classified? Explain.

(OR)

- (b) i) Give a brief account on Antioxidants.
 - ii) How do you classify the following into various class of drugs?
 - (A) Milk of Magnesia
- (B) Aspirin
- (C) Penicillin
- (D) Procaine

ALL THE BEST SCORE CENTUM MARKS

Share, subscribe, comment, Like @ our

you tube channel:

ACTC Educare

Daily exam question paper 2024 Download pdf @

ACTC Educare YouTube channel Description

Thank you