FIRST REVISION TEST - 2024

Exam No.

Time : 3-00 Hours

XII - MATHS

Marks: 90

PART - I

Note: i) Answer all the questions.

ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer. (20x1=20)

- 1. If A and B are orthogonal then (AB) (AB) is
 - 1) A

2) B

3) I

- 4) A^T
- 2. If $0 \le \theta \le \pi$ and the system of equations $x+(\sin\theta)y-(\cos\theta)z=0$, $(\cos\theta)x-y+z=0$, $(\sin\theta)x+y-z=0$ has a non trivial solution then θ is
 - 1) $2\pi/3$

2) $3\pi/4$

3) $5\pi/6$

- 4) $\pi/4$
- 3. The solution of the equation |z|-z=1+2i is
 - 1) $\frac{3}{2}$ 2i

2) $-\frac{3}{2} + 2i$

3) $2 - \frac{3}{2}i$

4) $2 + \frac{3}{2}i$

4. If
$$\omega = \cos \frac{2\pi}{3}$$
 then the number of distinct roots of
$$\begin{bmatrix} z+1 & \omega & \omega^2 \\ \omega & z+\omega^2 & 1 \\ \omega^2 & 1 & z+\omega \end{bmatrix} = 0$$

1) 1

2) 2

3) 3

- 4) 4
- If $x^3+12x^2+10ax+1999$ definitely has a positive zero, if and only if 5.

- 2) a>0
- 3) a≤0
- **4)** a≥0
- 6. If cot-12 and cot-13 are two angles of a triangle then the third angle is
 - 1) $\pi/4$

2) $3\pi/4$

3) $\pi/3$

- 4) $\pi/6$
- The area of quadrilateral formed with foci of the hyperbolas $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ and 7.

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$

- 1) $4(a^2+b^2)$
- 2) $2(a^2+b^2)$
- 3) a^2+b^2
- 4) $1/2(a^2+b^2)$

- $y^2-2x-2y+5=0$ is a 8.
 - a) circle with centre (1, 1)

- 2) parabola with vectar (1, 2)
- c) parabola with directrix x=3/2
- 4) parabola with directrix x=1/2
- If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + \hat{j}$, $\vec{c} = \hat{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$ then the value of 9. λ+µis
 - 1)3
- ะเมลุลกา ซี นี เอฟ เซา เซนโป **2**ในไม่และ และเอล
- 3) 0

- 10. If the length of the perpendicular from the origin to the plane $2x+3y+\lambda z=1$, λ >0 is 1/5 then the value of λ is
 - 1) $2\sqrt{3}$

2) $3\sqrt{2}$ 4) 1

3) 0

- The maximum slope of the tangent to the curve $y=e^x \sin x$, $x \in [0, 2\pi]$ is at 11.
 - 1) $x = \pi/4$

2) $x = \pi/2$

3) $x = \pi$

4) $x=3\pi/2$

	www.Padasalai.Ne	sc.Com							
12.	Suppose $f(x)$ is a differentiable function for all x with $f'(x) \le 29$ and $f(2)=17$. What is maximum value of $f(7)=?$								
13.	1) 162	2) 160 3) 152 4) 150 at age error of fifth root of 31 is approximately how many times the							
	1) 1/31	2) 1/5	3) 31	4) 5					
14.	The value of $\int_{0}^{\infty} e^{-x} x^{n} dx$	lx (n is a non negativ	ve integer)						
	1) (n-1)!	2) (n+1)!	3) n!	4) $\frac{n!}{a^{n+1}}$					
15.	The volume of solid of revolution of the region bounded by $y^2=x(a-x)$ about x-axis is								
	1) _{πa} 3	2) $\frac{\pi a^3}{4}$	$3) \frac{\pi a^3}{5}$	4) $\frac{\pi a^3}{6}$					
16.	The degree and order	of the differential equ	ation $\left(\frac{dx}{dy}\right)^2 + 5y^{\frac{1}{3}}$	= x					
17.	1) 1, 2 2) 2, 1 3) 6, 1 4) 3, 1 A rod of lenth 2L is broken into two pieces at random. The probability density function of the shorter of the two pieces is $f(x) = \begin{cases} 1/I & 0 < x < I \\ 0 & I \le x < 2I \end{cases}$ The mean and variance of the shorter of the two pieces								
	(0 l≤x<2l	The mean and variance of the shorter of the two pieces are respectively							
	1) $\frac{1}{2}$, $\frac{1^2}{3}$		2) $\frac{1}{2}$, $\frac{1^2}{6}$						
	3) I, $\frac{I^2}{12}$	20	4) $\frac{1}{2}$, $\frac{1^2}{12}$						
18.	Let x have a Bernoulli 1) 0.24	2) 0.48	3) 0.96	4) 0.6					
19.	If cosx is the integration	g factor of the linear of	differential equation	$\frac{dy}{dx} + py = Q$					
20.	then p is 1) log sinx 3) -tanx Subtraction is not a bin 1) R	ary operation in 2) Z	2) cosx 4) cotx	4) Q					
		PART - II							
Nota	Note: Answer any seven questions. Question No.30 is compulsory. (7x2=14)								

- If $z_1 = 2-i$ and $z_2 = -4+3i$ find the inverse of $\frac{z_1}{z_2}$. 21.
- Show that the polynomial $9x^9+2x^5-x^4-7x^2+2=0$ has at least six imaginary roots. 22.
- State the reason for $\cos^{-1} \left| \cos \left(-\frac{\pi}{6} \right) \right| \neq -\frac{\pi}{6}$ 23. 12-Maths-2

- 24. Find the internals of monotoncity for the function $f(x)=x^2-4x+4$
- 25. Use the linear approximation to find approximate values of $\sqrt[3]{26}$.
- 26. Show that $y=e^{-x}+mx+n$ is a solution of the differential equation $e^{x}\left(\frac{d^{2}y}{dx^{2}}\right)-1=0$

27. Solve:
$$\frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}$$

28. A random variable x has the following probability mass function.

X	1	2	3	4	5	6
f(x)	Κ	2K	6K	5K	6K	10K

Find the value of K.

- 29. Compute p(x=k) for the binomial distribution B(n, p) where n=10, p=1/5, k=4.
- 30. Exprees $|\vec{a} + \vec{b} + \vec{c}|$, $|\vec{a} \vec{b}|$, $|\vec{c}|$ in terms of $|\vec{a}|$ $|\vec{b}|$ $|\vec{c}|$.

PART - III

Note: Answer any seven questions. Question No.40 is compulsory.

(7x3=21)

31. Verify
$$(AB)^{-1}=B^{-1}A^{-1}$$
 with $A=\begin{bmatrix} 0 & -3 \\ 1 & 4 \end{bmatrix}$, $B=\begin{bmatrix} -2 & -3 \\ 0 & -1 \end{bmatrix}$.

- 32. Prove that $\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \frac{\pi}{4}$.
- 33. Find the value of $\sum_{K=1}^{8} \left(\cos \frac{2K\pi}{9} + i \sin \frac{2K\pi}{9} \right)$
- 34. Obtain the condition that the roots of $x^3+px^2+qx+r=0$ are in A.P.
- 35. If $y=2\sqrt{2}x+c$ is a tangent to the circle $x^2+y^2=16$, find the value of c.
- 36. Find the distance of a point (2, 5, -3) from the plane $\vec{r} \cdot (6\hat{i} 3\hat{j} + 2\hat{k}) = 5$.
- 37. Assume that the cross section of the artery of human is circular. A drug is given to a patient to dilate his arteries. If the radius of an artery is increased from 2mm to 2.1mm how much is cross sectional area increased approximately?
- 38. Find by integration the volume of the solid generated by revolving about y-axis the region bounded by the curves $y=\log x$, y=0, x=0 and y=2.
- 39. The probability density function of x is given by

$$f(x) = \begin{cases} Kxe^{-2x}, & \text{for } x > 0 \\ 0, & \text{for } x \le 0 \end{cases}$$

40. Evaluate:
$$\lim_{x \to \infty} \frac{\frac{1}{x^2} - 2 \tan^{-1} \left(\frac{1}{x}\right)}{\frac{1}{x}}$$

PART - IV

Note. Answer all the questions.

(7x5=35)

- 41. a) By using Gaussian elimination method balance the chemical reaction equation $C_3H_4+O\rightarrow H_2O_2+CO_3$. (OR)
 - b) Prove by vector method that $sin(\alpha+\beta)=sin\alpha cos\beta + cos\alpha sin\beta$.
- 42. a) If z=x+iy is a complex number such that $Im\left(\frac{2z+1}{iz+1}\right)=0$ show that the locus of z is $2x^2+2y^2+x-2y=0$.
 - b) Find the points on the unit circle $x^2+y^2=1$ nearest and farthest from (1, 1)
- 43. a) Find the centre, foci and eccentricity of the hyperbola $11x^2-25y^2-44x+50y-256=0$.
 - b) A camera is accidentally knocked off an edge of a cliff 400ft high. The camera falls a distance of S=16t² in t seconds.
 - i) How long does the camera fall before it hits the ground?
 - ii) What is the average velocity with which the camera falls during the last 2 seconds?
 - iii) What is the instantaneous velocity of the camera when it hits the ground?
- 44. a) If a_1 , a_2 , a_3 ,.... a_n is an arithmetic progresion with common difference d- prove

that
$$\tan \left[\tan^{-1} \left(\frac{d}{1 + a_1 a_2} \right) + \tan^{-1} \left(\frac{d}{1 + a_2 a_3} \right) + \dots + \tan^{-1} \left(\frac{d}{1 + a_n a_{n-1}} \right) \right] = \frac{a_n - a_1}{1 + a_1 a_n}$$
.

- b) If $\vec{a} = 2\hat{i} + 3\hat{j} \hat{k}$, $\vec{b} = 3\hat{i} + 5\hat{j} + 2\hat{k}$, $\vec{c} = -\hat{i} 2\hat{j} + 3\hat{k}$ verify that $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} (\vec{a} \cdot \vec{b})\vec{c}$
- 45. a) Solve the equation $6x^4-5x^3-38x^2-5x+6=0$ if it is known that 1/3 is a solution.
 - b) Suppose the amount of milk sold daily at a milk booth is distributed with a minimum of 200 litres and a maximum of 600 litres with probability density function

$$f(x) = \begin{cases} K & 200 \le x \le 600 \\ 0 & \text{otherwise} \end{cases}$$

- find i) the value of k
- ii) the distribution function
- iii) The probability that daily sales will fall between 300 litres and 500 litres?
- 46. a) Solve: $[y(1-xtanx)+x^2cosx]dx-xdy=0$.

(OR)

- b) Prove that $p\rightarrow (\neg qvr) \equiv \neg pv(\neg qvr)$ using truth table.
- 47. a) Show that the locus of a point which moves so that the difference of its distance from the points (5, 0) and (-5, 0) is 8 is $9x^2-16y^2=144$.

(OR)

b) Find the area of smaller port of the circle $x^2+y^2=a^2$ cut off by the line $x=\frac{a}{\sqrt{2}}$.

12-Maths-4