

+2-QUESTION BANK MODEL FULL PORTION TEST

www.Padasalai.Net

www.TrbTnpsc.com

www.Padasalai.Net		www.TrbTnpsc.com	
13. Angle between $y^2 = x$ and $x^2 = y$ at the origin is			
$(1)\frac{\pi}{2}$	$(2)\frac{\pi}{3}$	(3) $\frac{\pi}{6}$	(4) can't find
14. If $v(x, y) = \log(e^x + e^y)$, then $\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y}$ is equal to			
(1) $e^x + e^y$	$(2)\frac{1}{e^{x}+e^{y}}$	(3) 2	(4) 1
15. The value of $\int_{-4}^{4} x+3 dx$ is			
(1) 50	(2) 25	(3) 16	(4) 8
16. The value of $\int_0^{\pi} \sin^4 x dx$ is			
$(1)\frac{3\pi}{10}$	$(2)\frac{3\pi}{8}$	$(3)\frac{3\pi}{4}$	$(4)\frac{3\pi}{2}$
17. The general solution of the differential equation $\frac{dy}{dx} = \frac{y}{x}$ is			
(1) xy = k	$(2) y = k \log x$	(3) y = kx	$(4)\log y = kx$
18. The solution of $\frac{dy}{dx} = 2^{y-x}$ is			
(1) $2^x + 2^y = C$	(2) $2^x - 2^y = C$	$(3)\frac{1}{2^x} - \frac{1}{2^y} = C$	(4) x + y = C
19. If $U = y \sin x$, then $\frac{\partial^2 f}{\partial x \partial y}$ is equal to			
(1) cos x	(2) cos y	(3) sin x	(4) sin y
20. If $\frac{z-1}{z+1}$ is purely imaginary, then $ z $ is			
$(1)\frac{1}{2}$	(2) 1	(3) 2	(4) 3

PART-B

7 x 2 =14

II. Answer any 7questions.(Q.no.30 is compulsory)

21. If
$$\operatorname{adj}(A) = \begin{bmatrix} 0 & -2 & 0 \\ 6 & 2 & -6 \\ -3 & 0 & 6 \end{bmatrix}$$
, find A^{-1} .

22. Show that $(2 + i\sqrt{3})^{10} - (2 - i\sqrt{3})^{10}$ is purely imaginary

- 23. Solve the equation $x^4 14x^2 + 45 = 0$.
- 24. Find the value of $\cos^{-1}(\frac{1}{2}) + \sin^{-1}(-1)$
- 25. Find the general equation of the circle for which (-4, -2) and (1,1) are the ends of a diameter.
- 26. Show that the vectors $\hat{i} + 2\hat{j} 3\hat{k}$, $2\hat{i} \hat{j} + 2\hat{k}$ and $3\hat{i} + \hat{j} \hat{k}$ are coplanar.

27. Solve :)
$$\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$$

28. Evaluate $\int_{0}^{1} x^{3} (1-x)^{4} dx$

29. Let V(x, y, z) = xy + yz + zx, $x, y, z \in \mathbb{R}$. Find the differential dV.

30. Prove that the function $f(x) = x^2 - 2x - 3$ is strictly increasing in $(2, \infty)$

PART-C

III. Answer any 7 questions.(Q.no.40 is Compulsory)

- 31. Evaluate : $\lim_{x \to 1} x^{\frac{1}{1-x}}$.
- 32. If $U(x, y, z) = \log(x^3 + y^3 + z^3)$, find $\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z}$
- 33. Solve : $\frac{dy}{dx} + \frac{y}{x} = \sin x$
- 34. Show that the shortest distance between the lines $\vec{r} = (6\hat{\iota} + \hat{\jmath} + 2\hat{k}) + s(\hat{\iota} + 2\hat{\jmath} 3\hat{k})$ and

$$\vec{r} = (3\hat{\imath} + 2\hat{\jmath} - 2\hat{k}) + t(2\hat{\imath} + 4\hat{\jmath} - 5\hat{k})$$
 is $\frac{7\sqrt{5}}{5}$

- 35. If the normal at the point ' t_1 ' on the parabola $y^2 = 4ax$ meets the parabola again at the point ' t_2 , then
 - prove that $t_2 = -(t_1 + \frac{2}{t_1}).$

36. Solve
$$\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$$
, if $6x^2 < 1$.

37. If *p* is real, discuss the nature of the roots of the equation $4x^2 + 4px + p + 2 = 0$, in terms of *p*. 38. Show that the equation $z^2 = \overline{z}$ has four solutions.

39. Find the rank of the matrix

$$\begin{bmatrix}
 1 & 1 & 1 & 3 \\
 2 & -1 & 3 & 4 \\
 5 & -1 & 7 & 11
 \end{bmatrix}$$

40. Evaluate : $\int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \frac{1}{1+\sqrt{\tan x}} dx$

PART-D

IV. Answer all the questions

41. a) Investigate the values of λ and μ the system of linear equations

$$x + 2y + z = 7$$
, $x + y + \lambda z = \mu$, $x + 3y - 5z = 5$ have

(i) no solution (ii) a unique solution (iii) an infinite number of solutions. **(OR)** b) If z = x + iy and $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{2}$, show that $x^2 + y^2 = 1$.

PREPARED BY: E.PALAVESAM.M.Sc., B.Ed.,

Kindly send me your answer keys to us - padasalai.net@gmail.com

7 x 3 =21

7 x 5 = 35

(OR)

(OR)

(OR)

(OR)

(OR)

(OR)

- 42. a) Solve the following equation: $x^4 10x^3 + 26x^2 10x + 1 = 0$.
 - b) Find the domain of (i) $f(x) = \sin^{-1}\left(\frac{|x|-2}{3}\right) + \cos^{-1}\left(\frac{1-|x|}{4}\right)$
- 43. a) A bridge has a parabolic arch that is 10 m high in the centre and 30 m wide at the bottom. Find the

height of the arch 6*m* from the centre, on either sides.

- b) Prove by vector method that $sin(\alpha + \beta) = sin\alpha \cos\beta + \cos\alpha \sin\beta$,
- 44. a) Sketch the curve $y = f(x) = x^2 x 6$.

b) If
$$u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$$
 show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$

- 45. a) Find the area of the region bounded between the curves $y = \sin x$ and $y = \cos x$ and the lines x = 0 and $x = \pi$.
 - b) A pot of boiling water at 100°C is removed from a stove at time t = 0 and left to cool in the kitchen. After 5 minutes, the water temperature has decreased to 80°C, and another 5 minutes later it has dropped to 65°C. Determine the temperature of the kitchen.

- 46. a) Find the volume of a right circular cone of base radius 'r' and height 'h'
 - b) Find the parametric vector and Cartesian equation of the plane containing the line
 - $\frac{x-2}{2} = \frac{y-2}{3} = \frac{z-1}{-2}$ and passing through the point (-1, 1, -1).
- 47. a) If the curves $ax^2 + by^2 = 1$ and $cx^2 + dy^2 = 1$ intersect each other orthogonally then, show that $\frac{1}{a} \frac{1}{b} = \frac{1}{c} \frac{1}{d}$.
 - b) Find the equation of the circle through the points (1,1), (2, -1), and (3,2).

Prepared by: E.PALAVESAM.M.Sc.,B.Ed.,