31-01-2024.

Time Allowed: 3.00 Hours

Standard 12
MATHEMATICS
PART-I

Maximum Marks: 90
$20 \times 1=20$

Note: i) Answer all the questions.
ii) Choose the most suitable answer from the given four alternatives and write the option code and corresponding answer.

1) If $A=\left(\begin{array}{cc}3 / 5 & 4 / 5 \\ x & 3 / 5\end{array}\right)$ and $A^{\top}=A^{-1}$ then the value of x is
a) $-4 / 5$
b) $-3 / 5$
c) $3 / 5$
d) $4 / 5$
2) If $|z|=1$ then the value of $\frac{1+z}{1+z}$ is
a) z
b) \bar{z}
c) $1 / 2$
d) 1
3) If $\cot ^{-12}$ and $\cot ^{-13}$ are two angles of a triangle then the third angle is
a) $\pi / 4$
b) $3 \pi / 4$
c) $\pi / 6$
d) $\pi / 3$
4) The radius of the circle $3 x^{2}+b y^{2}+4 b x-6 b y+b^{2}=0$ is
a) 1
b) 3
c) $\sqrt{10}$
d) $\sqrt{11}$
5) If the length of the perpendicular from the origin to the plane $2 x+3 y+\lambda z=1$, $\lambda>0$ is $1 / 5$, then the value of λ is
a) $2 \sqrt{3}$
b) $3 \sqrt{2}$
c) 0
d) 1
6) The number of real numbers in $[0,2 \pi]$ satisfying $\sin ^{4} x-2 \sin ^{2} x+1$ is
a) 2
b) 4
c) 1
d) ∞
7) If $a+i b=(8-6 i)-(2 i-7)$ then the value of $a \& b$ are
a) $8,-15$
b) 8,15
c) 1,4
d) $15,-8$
8) If the projection of \bar{a} on \bar{b} and projection of \bar{b} on \vec{a} are equal then the angle between $\vec{a}+\vec{b} \& \vec{a}-\vec{b}$ is
a) $\pi / 2$
b) $\pi / 3$
c) $\pi / 4$
d) $2 \pi / 3$
9) If $P=\left(\begin{array}{ccc}1 & x & 0 \\ 1 & 3 & -0 \\ 2 & 4 & -2\end{array}\right)$ is the adjoint of 3×3 matrix A and $|A|=4$ then x is
a) 15
b) 12
c) 14
d) 11
10) The locus of a point whose distance from $(-2,0)$ is $2 / 3$ times its distance from the line $x=-9 / 2$ is
a) a parabola
b) a hyperbola
c) an ellipse
d) a circle
11) Angle between $y^{2}=x$ and $x^{2}=y$ at the origin is
a) $\tan ^{-1} 3 / 4$
b) $\tan ^{-1} 4 / 3$
C) $\pi / 2$
d) $\pi / 4$
12) The minimum value of the function $|3-x|+9$ is
a) 0
b) 3
c) 6
d) 9
13) If $w(x, y, z)=x^{2}(y-z)+y^{2}(z-x)+z^{2}(x-y)$ then $\frac{\partial w}{\partial x}+\frac{\partial w}{\partial y}+\frac{\partial w}{\partial z}$ is
a) $x y+y z+z x$
b) $x(y+z)$
c) $y(z+x)$
d) 0
14) The operation * defined by $a * b=\frac{a b}{7}$ is not a binary operation on
a) Q^{+}
b) Z
c) R
d) C
15) If a compound statement involves 3 simple statements then the number of rows in the truth table is
a) 9
b) 8
c) 6
d) 3
16) Let X have a Bernoulli distribution with mean 0.4 , then the variance of $2 x-3$ is
a) 0.24
b) 0.48
c) 0.6
d) 0.96
17) The solution of the differential equation $\frac{d y}{d x}=2 x y$ is
a) $y=C e^{x^{2}}$
b) $y=2 x^{2}+C$
c) $y=C e^{-x^{2}}+C$
d) $y=x^{2}+C$
18) If $f(x)$ is an odd function then $\int_{-a}^{a} f(x) d x$ is
a) 0
b) $2 \int_{0}^{\mathrm{a}} f(x) \mathrm{dx}$:
c) 2
d) $\int_{0}^{a} f(x) d x$
19) If $y=K e^{i x}$ then its differential equation is.
a) $\frac{d y}{d x}=\lambda y$
b) $\frac{d y}{d x}=K y$
c) $\frac{d y}{d x}+K y=0$
d) $\frac{d y}{d x}=e^{\lambda x}$
20) The area between $y^{2}=4 x$ and its latus rectum is
a) $2 / 3$
b) $4 / 3$
c) $8 / 3$
d) $5 / 3$

PART-II

Answer any seven questions. Question No. 30 is compulsory.
$7 \times 2=14$
21) If A is a non-singular matrix of odd order. Prove that $|\operatorname{adj} A|$ is positive.
22) Solve: $2 x^{3}+11 x^{2}-9 x-18=0$
23) If the equation $3 x^{2}+(3-p) x y+q y^{2}-2 p x=8 p q$ represents a circle. Find p and q.

Also determine the radius of the circle.
24) Prove that $\tan ^{-1} 2 / 11+\tan ^{-1} 7 / 24=\tan ^{-1} 1 / 2$
25) Find the angle between the planes $\vec{r} \cdot(\hat{i}+\hat{j}-2 \hat{k})=3$ and $2 x-2 y+z=2$
26) Solve: $\frac{d y}{d x}+2 y=e^{-x}$
27) If $\int_{0}^{\infty} e^{-\alpha x^{2}} x^{3} d x=32, \alpha>0$ find α
28) Find the points on the curve $y^{2}-4 x y=x^{2}+5$ for which the tangent is horizontal.
29) On R define * by $a * b=a \sqrt{b}, \forall a, b \in R$. Is * binary on R ?
30) If ω is a cube root of unity find the value of $\left(1-\omega+\omega^{2}\right)^{4}+\left(1+\omega-\omega^{2}\right)^{4}$

PART - III

Answer any seven questions. Question No. 40 is compulsory.
$7 \times 3=21$
31) Solve the system of linear equations by matrix inversion method:
$2 x+5 y=-2 ; x+2 y=-3$
32) Find the square root of $-5-12 i$.
33) Find the value of $\sin ^{-1}\left(\sin \frac{5 \pi}{9} \cos \frac{\pi}{9}+\cos \frac{5 \pi}{9} \sin \frac{\pi}{9}\right)$
34) Find the foot of the perpendicular drawn from the point $(5,4,2)$ to the line $\frac{x+1}{2}=\frac{y-3}{3}=\frac{z-1}{-1}$
35) Find the equation of the circle through the points $(1,0)(-1,0)$ and $(0,1)$
36) If $v(x, y)=x^{2}-x y+1 / 4 y^{2}+7 ; x, y \in R$ find the differential $d u$.
37) Exaluate $\int_{0}^{1}|5 x-3| d x$ using properties of integration.
38) Find the differential equation of the curve represented by $x y=a e^{x}+b e^{-x}+x^{2}$
39) The probability density function of x is given by $f(x)=\left\{\begin{array}{rl}k x e^{-2 x} & x>0 \\ 0 & x \leq 0\end{array}\right.$ find the value of K.
40) Find the value of a so that the curves $y=3 e^{x}$ and. $y=a / 3 e^{-x}$

PART-IV

Answer all the questions:
41) a] Investigate the values of λ and μ the system of linear equations $2 x+3 y+5 z=9, \quad 7 x+3 y-5 z=8, \quad 2 x+3 y+\lambda z=\mu$ have (i) no solution (ii) a unique solution (iii) an infinite number of solutions.
(OR)
b] A conical water tank with vertex down of 12 meters height has a radius of 5 meters at the top. If the water flows into the tank at a rate 10 cubic $\mathrm{m} / \mathrm{min}$, how fast is the depth of the water increases when the water is 8 meters deep?
42) a] Prove $p \rightarrow(q \rightarrow r) \equiv(p \wedge q) \rightarrow r$ using truth table.
(OR)
b] If $z=x+i y$ is a complex number such that $\operatorname{Im}\left(\frac{2 z+1}{i z+1}\right)=0$, show that the locus of z is $2 x^{2}+2 y^{2}+x-2 y=0$

Kindly send me your answer keys to us - padasalai.net@gmail.com
43) a] If the roots of $x^{3}+p x^{2}+q x+r=0$ are in H.P. Prove that $9 p q r=27 r^{2}+2 q^{3}$, $p, q, r \neq 0$
(OR)
b] Find the vertex, focus, directrix and length of the latus rectum of the parabola $x^{2}-4 x-5 y-1=0$
44) a] Find the non-parametric form of vector equation and cartesian equation of the plane passing through the point $(1,-2,4)$ and perpendicular to the plane $x+2 y-3 z=11$ and parallel to the line $\frac{x+7}{3}=\frac{y+3}{-1}=\frac{z}{1}$
(OR)
b] If x is the random variable with probability density function $f(x)$ given by $f(x)=\left\{\begin{array}{cc}x+1 \quad-1 \leq x<0 \\ -x+1 & 0 \leq x<1 \\ 0 & \text { otherwise }\end{array}\right.$ then find (i) the distribution function $f(x)$ (ii) $p(-0.5 \leq x \leq 0.5)$
45) al Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 3,00,000 to $4,00,000$.
(OR)
SIVAKUMARM. Sri Ram matric Hes
b] Evaluate: $\int_{0}^{\pi} \frac{x \sin x}{1+\sin x} d x$

Vallam-622809
Tenkasidist
46) a] Prove by vector method that $\sin (\alpha+\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$ (OR)
b] Solve $(2 x+3 y) d x+(y-x) d y=0$
11) a] Find the area of the region common to the cricle $x^{2}+y^{2}=16$ and the parabola $y^{2}=6 x$.
(OR)
b] At a water fountain, water atttains a maximum height of 4 m at horizontal distance of 0.5 m from its origin. If the path of water is a parabola, find the height of water at a horizontal distance of 0.75 m from the point of minim.

