www.Padasalai.Net www.TrbTnpsc.com Tenkasi District Tsi12M First Revision Examination, January - 2024 31-01-2024 Standard 12 Maximum Marks: 90 MATHEMATICS Time Allowed: 3.00 Hours PART-I 20×1=20 Note: i) Answer all the questions. ii) Choose the most suitable answer from the given four alternatives and write the option code and corresponding answer. 1) If A = $\begin{pmatrix} 3/5 & 4/5 \\ 5 & 3/5 \\ x & 3/c \end{pmatrix}$ and A^T = A⁻¹ then the value of x is d) 4/5 a) $-\frac{4}{5}$ b) $-\frac{3}{5}$ c) $\frac{3}{5}$ 2) If |Z| = 1 then the value of $\frac{1+z}{1+z}$ is c) 1/2 d) 1 b) 7 a) z If cot⁻¹2 and cot⁻¹3 are two angles of a triangle then the third angle is b) $\frac{3\pi}{4}$ c) $\pi/6$ d) 1/3 a) π/ 4) The radius of the circle $3x^2+by^2+4bx-6by+b^2 = 0$ is c) √10 d) $\sqrt{11}$ b) 3 a) 1 5) If the length of the perpendicular from the origin to the plane $2x+3y+\lambda z = 1$, $\lambda > 0$ is $\frac{1}{5}$, then the value of λ is d) 1 c) 0 a) $2\sqrt{3}$ b) 3√2 6) The number of real numbers in [0, 2π] satisfying sin⁴x – 2 sin²x + 1 is d) ∞ c) 1 b) 4 a) 2 7) If a+ib = (8-6i) - (2i-7) then the value of a & b are d) 15, -8 c) 1, 4 b) 8, 15 a) 8, -15 8) If the projection of \vec{a} on \vec{b} and projection of \vec{b} on \vec{a} are equal then the angle between $\vec{a} + \vec{b} & \vec{a} - \vec{b}$ is b) $\frac{\pi}{3}$ c) $\frac{\pi}{4}$ d) $\frac{2\pi}{3}$ a) $\frac{\pi}{2}$ 9) If P = $\begin{pmatrix} 1 & x & 0 \\ 1 & 3 & -0 \\ 2 & 4 & -2 \end{pmatrix}$ is the adjoint of 3×3 matrix A and |A| = 4 then x is c) 14 d) 11 b) 12 a) 15 10) The locus of a point whose distance from (-2, 0) is $\frac{2}{3}$ times its distance from the line $x = -\frac{9}{2}$ is c) an ellipse d) a circle b) a hyperbola a) a parabola

Kindly send me your answer keys to us - padasalai.net@gmail.com

10

	www.Padasala	i.Net	www.Tr	bTnpsc.com	
Tsi12M 2					
11) Angle between $y^2 = x$ and $x^2 = y$ at the origin is					
	a) $\tan^{-1}\frac{3}{4}$	b) $\tan^{-1}\frac{4}{3}$	c) $\frac{\pi}{2}$	d) $\frac{\pi}{4}$	
12) The minimum value of the function $ 3-x +9$ is					
	a) 0	b) 3	c) 6	d) 9	
13) If w(x, y, z) = x ² (y-z) + y ² (z-x)+z ² (x-y) then $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z}$ is					
	a) xy+yz+zx	b) x(y+z)	c) y(z+x)	d) 0	
14) The operation * defined by $a*b = \frac{ab}{7}$ is not a binary operation on					
	a) Q+	b) Z	c) R	d) C	
15)	15) If a compound statement involves 3 simple statements then the number of rows in the truth table is				
	a) 9	b) 8	c) 6	d) 3	
16)			mean 0.4, then the v	ariance of 2x-3 is	
	a) 0.24	b) 0.48	c) 0.6	d) 0.96	
17) The solution of the differential equation $\frac{dy}{dx} = 2xy$ is					
	a) $y = Ce^{x^2}$	b) $y = 2x^2 + C$	c) $y = Ce^{-x^2} + C$	d) $y = x^2 + C$	
18) If f(x) is an odd function then $\int_{-a}^{a} f(x) dx$ is					
	a) 0	b) 2j f(x) dx	c) 2	d) ∫ f(x) dx	
19	19) If $y = Ke^{\lambda x}$ then its differential equation is				
	a) $\frac{dy}{dx} = \lambda y$	b) $\frac{dy}{dx} = Ky$	c) $\frac{dy}{dx} + Ky = 0$	d) $\frac{dy}{dx} = e^{\lambda x}$	
20) The area between $y^2 = 4x$ and its latus rectum is					
	a) $\frac{2}{3}$	b) $\frac{4}{3}$	c) $\frac{8}{3}$	d) $\frac{5}{3}$	
PART-II					
Answer any seven questions. Question No. 30 is compulsory. 7×2=14					
21) If A is a non-singular matrix of odd order. Prove that [adj A] is positive.					

- 22) Solve: $2x^3 + 11x^2 9x 18 = 0$
- 23) If the equation $3x^2+(3-p)xy+qy^2-2px = 8pq$ represents a circle. Find p and q. Also determine the radius of the circle.

24) Prove that
$$\tan^{-1} \frac{2}{11} + \tan^{-1} \frac{7}{24} = \tan^{-1} \frac{1}{2}$$

- 25) Find the angle between the planes $\vec{r} \cdot (\hat{i} + \hat{j} 2\hat{k}) = 3$ and 2x 2y + z = 2
- 26) Solve: $\frac{dy}{dx} + 2y = e^{-x}$

Kindly send me your answer keys to us - padasalai.net@gmail.com

www.Padasalai.Net

www.TrbTnpsc.com

7x5=35

Tsi12M

- 27) If $\int_{0}^{\infty} e^{-\alpha x^2} x^3 dx = 32$, $\alpha > 0$ find α
- 28) Find the points on the curve $y^2-4xy = x^2+5$ for which the tangent is horizontal.

3

- 29) On R define * by $a*b = a\sqrt{b}$, $\forall a, b \in R$. Is * binary on R?
- 30) If ω is a cube root of unity find the value of $(1-\omega+\omega^2)^4+(1+\omega-\omega^2)^4$

PART-III

Answer any seven questions. Question No. 40 is compulsory. 7×3=21

- 31) Solve the system of linear equations by matrix inversion method: 2x+5y = -2; x+2y = -3
- 32) Find the square root of -5-12i.
- 33) Find the value of $\sin^{-1}\left(\sin\frac{5\pi}{9}\cos\frac{\pi}{9} + \cos\frac{5\pi}{9}\sin\frac{\pi}{9}\right)$
- 34) Find the foot of the perpendicular drawn from the point (5, 4, 2) to the line

$$\frac{x+1}{2} = \frac{y-3}{3} = \frac{z-1}{-1}$$

- 35) Find the equation of the circle through the points (1, 0) (-1, 0) and (0, 1)
- 36) If $v(x, y) = x^2 xy + \frac{1}{4}y^2 + 7$, x, $y \in \mathbb{R}$ find the differential dv.
- 37) Evaluate $\int |5x 3| dx$ using properties of integration.
- 38) Find the differential equation of the curve represented by $xy = ae^{x}+be^{-x}+x^{2}$
- 39) The probability density function of x is given by $f(x) = \begin{cases} Kxe^{-2x} & x > 0 \\ 0 & x \le 0 \end{cases}$ find the value of K.
- 40) Find the value of a so that the curves $y = 3e^x$ and $y = \frac{a}{3}e^{-x}$

PART - IV

Answer all the questions:

41) a] Investigate the values of λ and μ the system of linear equations 2x+3y+5z = 9, 7x+3y-5z = 8, $2x+3y+\lambda z = \mu$ have (i) no solution (ii) a unique solution (iii) an infinite number of solutions.

(OR)

- b] A conical water tank with vertex down of 12 meters height has a radius of 5 meters at the top. If the water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 meters deep?
- 42) a] Prove $p \rightarrow (q \rightarrow r) \equiv (p \land q) \rightarrow r$ using truth table.

(OR)

b] If z = x + iy is a complex number such that $Im\left(\frac{2z+1}{iz+1}\right) = 0$, show that the

locus of z is $2x^2 + 2y^2 + x - 2y = 0$

Kindly send me your answer keys to us - padasalai.net@gmail.com

www.Padasalai.Net

Tsi12M

43) a] If the roots of $x^3 + px^2 + qx + r = 0$ are in H.P. Prove that $9pqr = 27r^2 + 2q^3$, $p, q, r \neq 0$

(OR)

b] Find the vertex, focus, directrix and length of the latus rectum of the parabola $x^2 - 4x - 5y - 1 = 0$

www.TrbTnpsc.com

44) a] Find the non-parametric form of vector equation and cartesian equation of the plane passing through the point (1, -2, 4) and perpendicular to

the plane x+2y-3z = 11 and parallel to the line $\frac{x+7}{3} = \frac{y+3}{-1} = \frac{z}{1}$

(OR)

b] If x is the random variable with probability density function f(x) given by

 $f(x) = \begin{cases} x+1 & -1 \le x < 0 \\ -x+1 & 0 \le x < 1 \\ 0 & \text{otherwise} \end{cases}$ then find (i) the distribution function f(x)(ii) $p(-0.5 \le x \le 0.5)$

45) a] Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 3,00,000 to 4,00,000. SIVAKUMBR-M

(OR)

- b] Evaluate: $\int_{0}^{\pi} \frac{x \sin x}{1 + \sin x} dx$
- Soi Ram Matoic HSS Vallam-622809 Tenkasi Dist 46) a] Prove by vector method that $\sin(\alpha+\beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$

(OR)

- b] Solve (2x+3y)dx + (y-x)dy = 0
- 47) a] Find the area of the region common to the cricle $x^2+y^2 = 16$ and the parabola $y^2 = 6x$.

(OR)

b] At a water fountain, water atttains a maximum height of 4 m at horizontal distance of 0.5 m from its origin. If the path of water is a parabola, find the height of water at a horizontal distance of 0.75 m from the point of

Kindly send me your answer keys to us - padasalai.net@gmail.com