FIRST REVISION EXAMINATION, JANUARY - 2024

Time Allowed : 3,00 Hours

1. Answer all the questions by choosing the correct answer from the given 4 alternatives
2. Write question number, correct option and corresponding answer
3. Each question carries 1 mark
4. If $A=\left[\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{0}{2} & 1\end{array}\right]$, and $A B=1_{2}$, then $B=$
(1) $\left(\cos ^{2} \frac{\theta}{2}\right) \wedge$
(2) $\left(\cos ^{2} \frac{8}{2}\right) A^{T}$
(3) $\left(\cos ^{2} \theta\right) \mid$
(4) $\left(\sin ^{2} \frac{9}{2}\right) \mathrm{A}$
5. If $x^{d} y^{b}=e^{m}, x^{c} y^{d}=e^{s}, \Delta_{1}=\left|\begin{array}{ll}m & b \\ n & d\end{array}\right|, \Delta_{2}=\left|\begin{array}{ll}a & m \\ c & n\end{array}\right|, \Delta_{3}=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$ then the values of x and y are respectively,
(1) $e^{(\Delta 2 / \Delta 1)}, e^{(\Delta 3 / \Delta 1)}$
(2) $\log (\Delta 1 / \Delta 3), \log (\Delta 2 / \Delta 3)$
(3) $\log (\Delta 2 / \Delta 1), \log (\Delta 3 / \Delta 1)$
(4) $e^{(\Delta 1 / \Delta I)}, e^{(\Delta 2 / \Delta 3)}$
6. The solution of the equation $|z|-z=1+2 i$ is
(1) $\frac{3}{2}-2 \mathrm{i}$
(2) $-\frac{3}{2}+2 i$
(3) $2-\frac{1}{2} i$
(4) $2+\frac{3}{2} 1$
7. If α, β, and γ are the zeros of $x^{3}+p x^{2}+q x+r$, then $\Sigma \frac{1}{\alpha}$ is
(1) $-\frac{9}{r}$
(2) $-\frac{p}{r}$
(3) $\frac{9}{r}$
(4) $-\frac{q}{p}$
8. $\sin ^{-1}(\cos x)=\frac{\pi}{2}-x$ is valid for
(1) $-\pi \leq x \leq 0$
(2) $0 \leq x \leq \pi$
(3) $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
(4) $-\frac{\pi}{4} \leq x \leq \frac{3 \pi}{4}$
9. The circle $x^{2}+y^{2}=4 x+8 y+5$ intersects the line $3 x-4 y=m$ at two distinct points if
(1) $15<m<65$
(2) $35<m<85$
(3) $.85<m<-35$
(4) $-35<m<15$
10. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} is
(1) $\frac{\pi}{2}$
(2) $\frac{3 \pi}{4}$
(3) $\frac{\pi}{4}$
(4) π
11. If the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{x+2}{2}$ lies in the plane $x+3 y \cdot \alpha z+\beta=0$, then (α, β) is
(1) $(-5,5)$
(2) $(-6,7)$
(3) $(5,-5)$
(4) $(6,-7)$
12. The point on the curve $6 y=x^{3}+2$ at which y-coordinate changes 8 times as fast as x-coordinate is
(1) $(4,11)$
(2) $(4,-11)$
(3) $(-4,11)$
(4) $(-4,-11)$
13. The approximate change in the volume V of a cube of side x metres caused by increasing the side by 1% is
(1) $0.3 \mathrm{xdxm}^{3}$
(2) $0.03 \mathrm{xm}^{3}$
(3) $0.03 \mathrm{x}^{2} \mathrm{~m}^{3}$
(4) $0.03 x^{3} \mathrm{~m}^{3}$
14. If $f(x)=\frac{x}{x+1}$, then its differential is given by
(1) $\frac{-1}{(x+1)^{2}} \mathrm{~d} x$
(2) $\frac{1}{(x+1)^{2}} \mathrm{dx}$
(3) $\frac{1}{x+1} d x$
(4) $\frac{-1}{x+1} d x$
15. The value of $\int_{0}^{1} \frac{d x}{1+5 \cos x}$ is
(1) $\frac{\pi}{2}$
(2) π
(3) $\frac{3 \pi}{2}$
(4) 2π
16. The order and degree of the differential equation $\sqrt{\sin x}(d x+d y)=\sqrt{\cos x}(d x-d y)$ is
(1) 1,2
(2) 2,2
(3) 1,1
(4) 2,1
17. If in 6 trials, X is a binomial variable which follows the relation $9 P(X=4)=P(X=2)$, then the probability of succes:
(1) 0.125
(2) 0.25
(3) 0.375
(4) 0.75
18. In the set Q define $a O b=a+b+a b$. For what value of $y, 3 \odot y \circ 5)=7$?
(1) $y=\frac{2}{3}$
(2) $y=\frac{-2}{3}$
(3) $y=\frac{-3}{2}$
(4) $y=4$
19. $\arg \left(z^{n}\right)=$
(1) $(\arg z)^{n}$
(2) $n(\arg z)$
(3) $\arg (\mathrm{nz})$
(4) $\frac{1}{n} \arg z$
20. $11 x^{2}-25 y^{2}-44 x+50 y-256=0$ represents
(1) circle
(2) Ellipse
(3) Parabola
(4) Hyperbola
21. Stope of the normal to the curve $y=2 x^{2}+3 \sin x$ at $x=0$ is
(1) 3
(2) -3
(3) $\frac{1}{3}$
(4) $\cdot \frac{1}{3}$
22. $\int_{0}^{\sqrt{3}} \frac{1}{1+x^{2}} d x=$
(1) $\frac{\pi}{12}$
(2) $\frac{\pi}{6}$
(3) $\frac{\pi}{4}$
(4) ${ }^{\frac{\pi}{3}}$
23. $4+{ }_{6} 5=$
(1) 2
(2) 3
(3) 9
(4) 20

PART-1I

1. Answer any 7 questions

2. Each question carries 2 marks

3. Question number 30 is compulsory

21. Prove that $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ is orthogonal.
22. If $\omega \neq 1$ is a cube root of unity, show that $\frac{a+b \omega+c w^{2}}{b+c \omega+2 \omega^{2}}+\frac{\partial+b \omega+c \omega^{2}}{c+a \nu+b \omega^{2}}=-1$.
23. Discuss the maximum possible number of positive and negative roots of the polynomial equation $9 x^{9}-4 x^{8}+4 x^{7}-3 x^{6}+2 x^{3}+x^{3}+7 x^{2}+7 x+2=0$.
24. Two fair coins are tossed simultaneously (equivalent to a fair coin is tossed twice). Find the probability mass function for number of heads occurred
25. If the vectors $a i+a j+c k, i+k$ and $c i+c i+b k$ are coplanar, prove that c is the geometric mean of a and b.
26. A person learnt 100 words for an English test. The number of words the person remembers in t days after learning is given by $W(t)=100 \times(1-0.1 t)^{2}, 0 \leq t \leq 10$. What is the rate at which the person forgets the words 2 days after learning?
27. Let $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+\sin \mathrm{x}$. Calculate the differential dg.

28. Evaluate: $\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{4} x d x$
29. Find the equation of the tangent at $t=2$ to the parabola $y^{2}=8 x$
30. Let $\left.M=\left\{\begin{array}{ll}x & x \\ x & x\end{array}\right): x \in R-\{0\}\right\}$ and let \cdot be the matrix multiplication. M is closed under \cdot. If so, examine the existenc of identity, existence of inverse properties for the operation on M.

PABT-目

$7 \times 3=21$

1. Answer any 7 questions

2. Each question carries 3 marks

3. Question number 40 is compulsory
4. Find the square root of $6-8 i$.
5. Solve the equation $9 x^{3}-36 x^{2}+44 x-16=0$ if the roots form an arithmetic progression.
6. Find the value of $\tan ^{-1}(-1)+\cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{2}\right)$
$+2=6 z-6$ are skew and hence find the shortest distance between them.
7. Find the absolute extrema of the following function on the given closed interval : $f(x)=2 \cos x+\sin 2 x ;\left[0, \frac{\pi}{2}\right]$ 36. Let $U(x, y, z)=x^{2}-x y+3 \sin z, x, y, z \in R$. Find the linear approximation for U at $(2,-1,0)$. 37. Evaluate : $\int_{0}^{1} \sqrt{\frac{1-x}{1+x}} d x$
8. Solve the differential equation: $\frac{d y}{d x}+\frac{3 y}{x}=\frac{1}{x^{2}}$, given that $y=2$ when $x=1$

39 Let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ be any two boolean matrices of the same type Find $A \vee B$ and $A \wedge B$.
40. Solve by deternifnant methad: $5 x+2 y=17,3 x+7 y=31$

PART-IV

1. Answer all the questions
2. Each question carries 5 marks
3. a) Find the inverse by Gauss- Jordan method: $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right]$
(OR)
b) If $2+i$ and $3-\sqrt{2}$ are the roots of the equation $x^{6}-13 x^{5}+62 x^{4}-126 x^{3}+65 x^{2}+127 x-140=0$. Find all root 42. a) Find the equation of the circle through the points $(1,0),(-1,0)$ and $(0,1)$.
b) Find the intervals of monotonicity and local extrema of the function $f(x)=\frac{1}{1+x^{2}}$
4. a) Find the area of the region in the first quadrant bounded by the parabola $y^{2}=4 x$, the line $x+y=3$ and y-axds.
b) A random variable X has the following prohability mass function.

x	1	2	3	4	5
$f(x)$	k^{2}	$2 \mathrm{k}^{2}$	$3 \mathrm{k}^{2}$	2 k	3 k

Find (i) the value of k (iii) $\mathrm{P}(2 \leq \mathrm{X}<5)$ (iii) $\mathrm{P}(3<\mathrm{X})$
44. a) Show that the points $1, \frac{-1}{2}+i \frac{\sqrt{3}}{2}$, and $\frac{-1}{2}-i \frac{\sqrt{3}}{2}$ are the vertices of an equilateral triangle
(OR)
b) Find the number of solution of the equation $\tan ^{-1}(x-1)+\tan ^{-1} x+\tan ^{-1}(x+1)=\tan ^{-1}(3 x)$.
45. a) Prove by vector method that $\sin (a+\beta)=\sin a \cos \beta+\cos a \sin \beta$,
b) Let $U(x, y)=e^{x} \sin y$, where $x=s t^{2}, y=s^{2} t, s, t \in R$. Find $\frac{d u}{h}, \frac{d y}{d t}$, and evaluate them at $s=t=1$.
46. a) Solve: $\left(1+3 e^{\frac{1}{x}}\right) d y+3 \mathrm{e}^{\frac{1}{x}}\left(1-\frac{y}{x}\right) d x=0$, given that $y=0$ when $x=1$
b) Using the equivalence property, show that $p \mapsto q \equiv(p \wedge q) \vee(\neg p \wedge \neg q)$.
47. a) Find the angle between $y=x^{2}$ and $y=(x-2)^{2}$.
(OR)
b) Find the vector and cartesian equation of the plane containing the lines $\frac{\pi-2}{1}=\frac{z-1}{2}=\frac{z-4}{2}$ and $\frac{x-1}{-1}=\frac{y-4}{2}=\frac{z-5}{2}$

