

Kindly send me your answer keys to us - padasalai.net@gmail.com

CH/12

www.Padasalai.Net

www.TrbTnpsc.com

www.	r auasalal.net	www.frbfnpsc.com	
10. The approximate	change in the volume V of a c	when all all a summaries and a summaries of all all and all all all all all all all all all al	
(1) 0.3xdxm ³	(2) 0.03xm ³	(2) 0 02-2-3	e side by 1% is
11. If $f(x) = \frac{x}{x+1}$, then	its differential is given by	(5) 0.05X-m-	(4) 0.03X III
$(1) - \frac{-1}{-1} dx$	(m. 1.).		
(x+1) ²	$(2) \frac{1}{(x+1)^2} dx$	$(3) \frac{1}{x+1} dx$	$(4) \frac{-1}{x+1} dx$
12. The value of $\int_0^1 \frac{1}{1+1}$	ax 5cos x is		
$(1)\frac{\pi}{2}$	(2) π	$(3)\frac{3\pi}{2}$	(4) 2π
13. The order and deg	ree of the differential equation	ion $\sqrt{\sin x}(dx + dy) = \sqrt{\cos x}(dx - dy)$ is	
(1) 1, 2	(2) 2, 2	(3) 1, 1	(4) 2, 1
14. If in 6 trials, X is a binomial variable which follows the relation $9P(X=4) = P(X=2)$, then the probability of success			
(1)0.125	(2) 0.25	(3) 0.375	(4) 0.75
15. In the set Q define	a O b = a+b+ab . For what v	alue of y, $3 \odot (y \odot 5) = 7$?	
(1) $y = \frac{2}{3}$	$(2)y = \frac{-2}{3}$	(3) $y = \frac{-3}{2}$	(4) y = 4
16. $arg(z^n) =$			6 a.C.
(1) (arg z) ⁿ	(2) n (arg z)	(3) arg (nz)	(4) ¹ / ₋ arg z
17. $11x^2 - 25y^2 - 44x$	+ 50y - 256 = 0 represents	TULIT	-
(1) circle	(2) Ellipse	(3) Parabola	(4) Hyperbola
18. Slope of the norma	al to the curve $y = 2x^2 + 3 \sin^2 x$	x = 0 is	
(1) 3	(2) -3 (2) + 2	$low = -(3)\frac{1}{3} = \frac{3}{3}''$	(4) - T
19. $\int_0^{\sqrt{3}} \frac{1}{1+x^2} dx =$		4x436082C	
(1) #	(2) 5	$(3)^{\frac{\pi}{2}}$	(4)
20. 4+, 5=			(4)3
(1) 2	(2)3	(3) 9	(4) 20
			(1)10
	540 1	PART - II	
1. Answ	ver any 7 questions		7.x.)
2. Each question carries 2 marks			
3. Question number 30 is compulsory			
21. Prove that $\begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$	$-\sin\theta \sin\theta$ is orthogonal.		
Eq.1 LI	AA'S H	A J.	CH/12/
0	Cotte	gern? .	
Kindly	send me your answer ke	eys to us - padasalai.net@gmail.com	

www.Padasalai.Net

www.TrbTnpsc.com

22. If $\omega \neq 1$ is a cube root of unity, show that $\frac{a+b\omega+c\omega^2}{b+c\omega+a\omega^2} + \frac{a+b\omega+c\omega^2}{c+a\omega+b\omega^2} = -1$. 23. Discuss the maximum possible number of positive and negative roots of the polynomial equation $9x^{9} - 4x^{8} + 4x^{7} - 3x^{6} + 2x^{5} + x^{3} + 7x^{2} + 7x + 2 = 0.$ $4 + Ve_{1} = -Ve_{2} Pg_{1} =$ 24. Two fair coins are tossed simultaneously (equivalent to a fair coin is tossed twice). Find the probability mass function for number of heads occurred. 19 11.5 Pg 185 606219) 25. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ are coplanar, prove that c is the geometric mean of a and b. 26. A person learnt 100 words for an English test. The number of words the person remembers in t days after learning is given by $W(t) = 100 \times (1 - 0.1t)^2$, $0 \le t \le 10$. What is the rate at which the person forgets the words 2 days after learning? Eg 73 Pg 4 pro 16 wor dy 27. Let $g(x) = x^2 + \sin x$. Calculate the differential dg. $(2x + \cos x) dx$ Eg & Let $g(x) = x^2 + \sin x$. 28. Evaluate: $\int_0^{\frac{\pi}{2}} \sin^2 x \cos^4 x \, dx \in \mathbb{R} \to \mathbb{R} \to \mathbb{C}$ 29. Find the equation of the tangent at t = 2 to the parabola $y^2 = 8x$ 30. Let $M = \{(X, X) = 0\}$ 30. Let $M = \{\begin{pmatrix} x & x \\ x & x \end{pmatrix} : x \in R - \{0\}\}$ and let • be the matrix multiplication. M is closed under •. If so, examine the existence of identity, existence of inverse properties for the operation • on M . PART - III 7x3=21 1. Answer any 7 questions 2. Each question carries 3 marks 3. Question number 40 is compulsory 31. Find the square root of 6-81. ± (2.12-1.12) = Pg 72 32. Solve the equation $9x^3 - 36x^2 + 44x - 16 = 0$ if the roots form an arithmetic progression. If $x^2 - 3 - 3$ (2) pg 33. Find the value of $\tan^{-1}(-1) + \cos^{-1}\left(\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right) = \frac{1}{12}$ Eq. 1.0 34. Show that the straight line x + 1 = 2y = -12z and x = y + 2 = 6z - 6 are skew and hence find the shortest distance between them. Ex 55 (5) 9 units 35. Find the absolute extrema of the following function on the given closed interval : $f(x) = 2\cos x + \sin 2x$; $[0, \frac{\pi}{2}]$ 36. Let $U(x, y, z) = x^2 - xy + 3 \sin z$, $x, y, z \in \mathbb{R}$. Find the linear approximation for U at (2,-1,0). 5x-24+32-6 37. Evaluate : $\int_0^1 \sqrt{\frac{1-x}{1+x}} dx$ 38. Solve the differential equation: $\frac{dy}{dx} + \frac{3y}{x} = \frac{1}{x^2}$, given that y = 2 when x = 1Ex 10-7 (15) 2x3 - x3+3 - CH/12/Mat/3

Kindly send me your answer keys to us - padasalai.net@gmail.com

www.Padasalai.Net www.TrbTnpsc.com 39. Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ be any two boolean matrices of the same type. Find $A \vee B$ and $A \wedge B$. 40. Solve by determinant method : 5x + 2y = 17, 3x + 7y = 313. 109 Clamble L. PART - IV $7 \times 5 = 35$ 1. Answer all the questions 2. Each question carries 5 marks (1. a) Find the inverse by Gauss-Jordan method: $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \xrightarrow{F_{1}} 1 \xrightarrow{Q} 1 \xrightarrow{G_{1}} 3 \xrightarrow{G_$ (OR) b) If 2 + 1 and 3 - $\sqrt{2}$ are the roots of the equation $x^6 - 13x^5 + 62x^4 - 126x^3 + 65x^2 + 127x - 140 = 0$. Find all root 42. a) Find the equation of the circle through the points (1,0), (-1,0) and (0,1). $\gamma^2 + \gamma^2 +$ (OR) b) Find the intervals of monotonicity and local extrema of the function $f(x) = \frac{x}{1+x^2} + \frac{1}{2}$ T 5 6 F 9 3 9 43. a) Find the area of the region in the first quadrant bounded by the parabola $y^2 = 4x$, the line x + y = 3 and y-axis. 19:9:58 (OR) b) A random variable X has the following probability mass function × 11.2 (6) 5 1 4 x 0 1 (m) 17 (m) 2k² f(x) $3k^2$ 2k 3k Find (i) the value of k (ii) $P(2 \le X \le 5)$ (iii) $P(3 \le X)$ 44. a) Show that the points $1, \frac{-1}{2} + i\frac{\sqrt{3}}{2}$, and $\frac{-1}{2} - i\frac{\sqrt{3}}{2}$ are the vertices of an equilateral triangle Eg 2 14 pg 10 (OR) b) Find the number of solution of the equation $\tan^{-1}(x-1) + \tan^{-1}x + \tan^{-1}(x+1) = \tan^{-1}(3x)$. (x) 4.5 (10) 45. a) Prove by vector method that $sin(\alpha + \beta) = sin \alpha \cos \beta + \cos \alpha \sin \beta$. (OR) b) Let $U(x, y) = e^x \sin y$, where $x = st^2$, $y = s^2t$, $s, t \in \mathbb{R}$. Find $\frac{\partial U}{\partial s}$, $\frac{\partial U}{\partial t}$, and evaluate them at s = t = 1. 46. a) Solve: $(1 + 3e^{\frac{y}{x}}) dy + 3e^{\frac{y}{x}} (1 - \frac{y}{x}) dx = 0$, given that y = 0 when x = 1 (x 10 · G () $(1 + 3e^{\frac{y}{x}}) dy + 3e^{\frac{y}{x}}$ (OR) b) Using the equivalence property, show that $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$. Eq. 2.9 Pg 2.48 (47. a) Find the angle between $y = x^2$ and $y = (x - 2)^2$. (OR) **b)** Find the vector and cartesian equation of the plane containing the lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{x-4}{2}$ and $\frac{x-1}{-1} = \frac{y-4}{2} = \frac{x-5}{1}$

CH/12/Mat/4

Kindly send me your answer keys to us - padasalai.net@gmail.com

L,