PRIT~EDUCATION-SS RRITHWIGGLIGKNEOR MORE

www.TrbTnpsc.com

١.

FIRST REVISION TEST - 2024								
	Α	Standard XII		Reg No.				
MATHEMATICS								
	ne : 3.00 hrs		irt - I	Marks : 90 20 x 1 = 20				
	A zero of x3 + 64 is	ct answer:						
	a) 0	b) 4	c) 4i	d) -4				
2	$\sum_{i=1}^{2} if \left(\frac{1-i}{1+i}\right)^{2O_1} = a+ib \text{ then } (a, b) \text{ is}$							
3.	The area of the tria	b) (1, 0) ngle formed by the c	 c) (0, 1) complex numbers z. 	d) (-1, 2) iz and z+iz in the Argand's				
	diagram is							
	$ a = \frac{1}{2} z ^2$	b) z ²	c) $\frac{3}{2} z ^2$	d) $ \mathbf{z} \mathbf{z} ^2$				
4	If the rank of the m	atrix $\begin{pmatrix} 1 & 0 & -1 \\ 2 & 5 & 1 \\ 0 & 0 & 7 \end{pmatrix}$ is 3	3 then the value of 2	Lis				
	a) 1	b) 0	c) 4	d) any real number				
	If $A^T A^{-1}$ is symmetric a) A^{-1} $sin^{-1}x - cos^{-1}(-x) =$		H					
	a) - 1/2	b) 54	c) - 31/2	d) 31/2				
7	sin (tan-1x), x < 1		14	12				
,		b) $\frac{1}{\sqrt{1-x^2}}$	c) $\frac{1}{\sqrt{1+x^2}}$	d) $\frac{x}{\sqrt{1+x^2}}$				
8				m at two distinct points if				
				5 d) -35 < m < 15				
9		as semi minor axis, centricity of the ellip		d the angle FBF' is a right				
10.	a) $\frac{1}{\sqrt{2}}$ If the volume of th 8 cubic units, then	b) $\frac{1}{2}$ e parallele piped w the volume of the pa	c) 1/4 ith ā - b, b × č, ć - á arallelopiped with	d) $\frac{1}{\sqrt{3}}$ as cotorminous edges is				
	(ā × b) × (b × c), (b × c) × (c = a) and (c × a) = (a × b) as coterminous edges is a) 8 cubic units b) 512 cubic units c) 64 cubic units d) 24 cubic units							
11	If the length of th	he perpendicular f		the plane $2x+3y+\lambda z = 1$				
	$\lambda > 0$ is $\frac{1}{5}$, then the a) $2\sqrt{3}$	b) $3\sqrt{2}$	c) 0	d) 1				

PRIT~EDUCATION-SS RRITHVIdGLIGKNEOR MORE

www.TrbTnpsc.com

XII Maths

			2	XII Maths					
12	12 The abscissa of the point on the curve $f(x) = \sqrt{8} - 2x$, at which the slope of the tangent								
14	is -0 25?	e point on the curve		d) 0					
		b) -4	c) -2	di O					
13	The function sin ⁴ x + cos ⁴ x is increasing in the interval								
		b) $\begin{bmatrix} \frac{\pi}{2} & 5\pi \\ \frac{\pi}{2} & 8 \end{bmatrix}$		d) 0, =					
14	If $g(x, y) = 3x^2 - 5y + 2y^2$, $x(x) = o^1$ and $y(t) = cost$ then $\frac{dg}{dt}$ is equal to								
	a fait a 5 sint -	Acost sin t	b) 6 e ²¹ - 5 sin t • 4	cost sint					
	 be²¹ + 5 sin t - 4cost sin t 3e²¹ + 5 sin t + 4 cost sint 			d) 3e ²¹ - 5 sin t + 4 cost sinf <					
15	The value of $\int_{-\infty}^{1} x(t)$			< C					
0.0									
			c) 10010 +						
1.0	The area between the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ and its auxiliary circle is								
10	a) 6 z	b) 20 m 25 9	с) 10 п	d) 12 ms					
. 7	a) 6 ± 6) 20 ± 6 7 The differential equation of the family of curves y = Ae ^x + Be ^{-x} , where A and B ar								
37									
	arbitrary constants is								
	a) $\frac{d^2y}{dx^2} + y$	b) $\frac{d^2 \gamma}{dx^2} - \gamma = 0$	$e) \frac{\partial Y}{\partial x} + y = 0$	d) $\frac{dy}{dx} - y = 0$					
18. If a compound statement involves 3 simple statement, then the number of r									
1.671	truth table is								
	a) 9	b) 8	c) 6	d) 3					
	u) <i>o</i>	and the							
10	A random variable	X has trinomial distr	ibution with n = 25 and	p = 0 8 then standard					
1.07	deviation of X is								
	a) 6	b) 4	ci 3	d) 2					
20.	If sin x is the integra	ating factor of the line	ar differential equation	$\frac{dy}{dx} = Py = Q$ then P is					
	a) log sin x	b) cos x	c) tan x	d) cot x					
	Part - II								
0	Answer any 7 que	stions. (Q.No.30 is	compulsory)	7 x 2 = 14					
21	Find rank of the matrix by using minor method $\begin{bmatrix} 1 & -2 & -1 & 0 \\ 3 & -6 & -3 & 1 \end{bmatrix}$								
22	Construct the cubic equation with roots 2, 1/2 and 1								

Kindly send me your answer keys to us - padasalai.net@gmail.com

- 23. Find the domain of the $\tan^{-1}\sqrt{q} x^2$
- 24. If $|\vec{a} + \vec{b}| = 60$, $|\vec{a} \vec{b}| = 40$ and $|\vec{a}| = 22$ then find $|\vec{b}|$
- 25 Suppose of (x) is differentiable function for all x with $f'(x) \le 29$ and f(2) = 17. What is the maximum value of f(7)?
- 26. If $w(x,y) = x^3 3xy + 2y^2$, $x, y \in \mathbb{R}$, find the linear approximation for w at (1, -1)
- 27. Evaluate : $\int_{0}^{1} e^{-ax} x^{n} dx$
- 28. Find the differential equation for the family of all straight lines passing through the origin.
- 29. Four coins are tossed once find the probability mass function for number of heads.
- 30. Prove De Morgan's law by using Truth table.

Part - III

7 x 3 = 21

III. Answer any 7 questions. (Q.No.40 is compulsory)

31. If $A = \frac{1}{9} \begin{bmatrix} -8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & -8 & 4 \end{bmatrix}$, Prove that $A^{-1} = A^{T}$

32. Prove by Vector method that the area of the quadrilateral ABCD having diagonal AC

and BD is $\frac{1}{2} | \overrightarrow{AC} \times \overrightarrow{BD} |$

- 33. Represent the complex number 1 + 1/3 in polar form
- 34. If p and q are the roots of the equation $x^2 + nx + n = 0$, show that $\sqrt{p_q} + \sqrt{q_p} + \sqrt{n_1} = 0$
- 35. Find the value of $2\cos^{-1}\left(\frac{1}{2}\right) + \sin^{-1}\left(\frac{1}{2}\right)$
- 36. If the equation $3x^2 + (3-p)xy + gy^2 2px = 8pq$ represents a circle, find p and q. Also determine the centre and radius of the circle.
- 37. If the radius of the sphere, with radius 10,cm, has to decrease by 0.1 cm approximately how much with it's volume decrease?

38. Evaluate:
$$\int_{0}^{\frac{3}{2}} \frac{dx}{1+5\cos^2 x}$$

39. Find the mean and variance of random variable, x whose probability density function is

$$f(\mathbf{x}) = \begin{cases} \lambda e^{-\lambda \mathbf{x}} & , \mathbf{x} \ge \mathbf{0} \\ \mathbf{0} & , \text{ otherwise} \end{cases}$$

40. Find the local extrema of the function $f(x) = x^4 + 32x$.

Kindly send me your answer keys to us - padasalai.net@gmail.com

1

XII Maths

Part - IV

7 x 5 = 35

IV. Answer all the questions. Determine the values of λ for which the following system of equations 41. a) x + y + 3z = 0; $4x + 3y + \lambda z = 0$ and 2x + y + 2z = 0 has (i) unique solution (ii) a non-trivial solution

b) Solve the equation
$$z^3 + 8i = 0, z \in C$$

- Solve: (x 5) (x 7) (x + 6) (x + 4) = 50442. a) (OR)
 - Solve: $\tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4}$ b)
- A rod of length 1.2 m moves with its ends always touching the coordinate axis. 43. a) The locus of a point P on the rod, which is 0.3 m from the end in contact with x-axis is an ellipse. Find the eccentricity.

(OR)

- b) If $f(x, y) = \tan^{-1}\left(\frac{x}{y}\right)$, find fx, fy and show that fxy = fyx.
- 44. a) If $\vec{a} = 2\vec{i} + 3\vec{j} \vec{k}$, $\vec{b} = -2\vec{i} + 5\vec{k}$, $\vec{c} = \vec{j} 3\vec{k}$ then find $(\vec{a} \times \vec{b}) \times \vec{c}$ and $\vec{a} \times (\vec{b} \times \vec{c})$. Also verify whether they are equal.

(OR)

Show that the lines $\frac{x-3}{3} = \frac{y-3}{-1}$, z-1 = 0 and $\frac{x-6}{2} = \frac{z-1}{3}$, y-2 = 0 inersect b)

and also find the point of intersection. Show that the two curves $x^2 - y^2 = r^2$ and $xy = c^2$ where c, r are constants cut 45 a) orthogonally.

(OR)

- A hollow cone with base radius a cm and height b cm is placed on a table. Show b) that the volume of the largest cylinder that can be hidden underneath is $\frac{4}{9}$ times volume of the cone.
- Find the area of the region common to the circle x²+y²=16 and the parabola 46. a) $y^2 = 6x$.

(OR)

- In a murder investingation, a corpse was found by a detective at exactly 8 pm. b) Being alert, the detective also measured the body temperature and found it to be 70° F. Two hours later the detective measured the body temperature again and found it to be 60°F. If the room temperature is 50°F and assuming that the body temperature of the person before death was 98.6°F at what time murder occur? [log 2.43 = 0.88789, log (0.5) = -0.69315]
- The mean and variance of a binomial distribution X are respectively 2 and 1.5 47. a) (iii) $P(X \ge 1)$ (ii) P(X = 1)(i) P(X = 0)Find

(OR)

Prove that $P \rightarrow (\neg q \lor r) \equiv \neg p \lor (\neg q \lor r)$ using truth table. b)

Kindly send me your answer keys to us - padasalai.net@gmail.com