FIRST REVISION TEST - 2024

Standard XII
RegNo

MATHEMATICS
Marks : 90
Part - 1
$20 \times 1=20$
I. Choose the correct answer:

1. A zeto of $x^{3}+64$ is
a) 0
b) 4
C) 4
d) -4
2. If $\left(\frac{1-i}{1+i}\right)^{201}-a+$ ib then (a. b) is
a) $(2,-1)$
b) $(1,0)$
C) $(0,1)$
d) $(-1,2)$
3. The area of the triangle formed by the complex numbers z. z and $z+i z$ in the Argand s diagram is
a) $\frac{1}{2}|z|^{2}$
b) $|z|^{2}$
c) $\frac{3}{2}|z|^{2}$
d) $2|z|^{2}$
4. If the rank of the matrix $\left(\begin{array}{ccc}1 & 0 & -1 \\ 2 & 5 & 1 \\ 0 & 0 & 7\end{array}\right)$ is 3 then the value of 2 is
a) 1
b) 0
c) 4
d) any real number
5. If $A^{\top} A^{-1}$ is symmetric then $A^{2}=$
a) A^{-1}
$\left(A^{T} T^{2}\right.$

$$
\text { (c) } A^{T}-\square \text { d) } \mid A^{-1} \vec{F}^{T}
$$

6. $\sin ^{-1} x-\cos ^{-1}(-x)=$
a) $-\pi / 2$
b) $\pi / 2$
c) $-3 \pi / 2$
d) $3 \pi / 2$
7. $\sin \left(\tan ^{-1} x\right),|x|<1$ is equal to
a) $\frac{x}{\sqrt{1-x^{2}}}$
b) $\sqrt{1-x^{2}}$
c) $\frac{1}{\sqrt{1+x^{2}}}$
d) $\frac{x}{\sqrt{1+x^{2}}}$

8 The circle $x^{2}+y^{2}=4 x+8 y+5$ intersects the line $3 x-4 y=m$ at two distinct points if
a) $15<m<65$
b) $35<m<85$
c) $-85<m<-35$
d) $-35<m<15$

9 An ellipse has $O B$ as semi minor axis, F and F^{\prime} its foci and the angle $F B F^{\prime}$ is a right angle. Then the eccentricity of the ellipse is
a) $1 / \sqrt{2}$
b) $1 / 2$
c) 1_{4}
d) $1 / \sqrt{3}$
10. If the volume of the parallele piped with $\bar{a} \cdot \bar{b}, \bar{b} \times \bar{c}, \bar{c}$. a as cotorminous edges is 8 cubic units, then the volume of the parallelepiped with $(\vec{a} \times \bar{b})=(\bar{b}, \bar{c}),(\bar{b} \times \bar{c}),(\bar{c} \cdot \bar{a})$ and $(\bar{c} \times \bar{a})-(\bar{a} \times \bar{b})$ as coterminous edges is
a) 8 cubic units
b) 512 cubic units
c) 64 cubic units
d) 24 cubic unts
11. If the length of the perpendicular from the orgin to the plane $2 x+3 y+j z=1$ $\lambda>0$ is $1 / 5$, then the value of λ, is
a) $2 \sqrt{3}$
b) $3 \sqrt{2}$
c) 0
d) 1

12 The abscissa of the point on the cuive if $\sqrt[1]{ }$, $2 x$. at which the wope of the tangent is -025 ?
a) -8
b) -4
c) -2
d) 0

13 The function $\sin ^{4}$ s $\cdot \cos ^{4} x$ ne increating in the intorval
a) $\left|\begin{array}{cc}3- & 34 \\ 5 & 4\end{array}\right|$
b) $\left[\frac{3}{2}, \frac{4}{4}\right.$
c. $\left\lvert\, \begin{array}{ll}3 & \pi \\ 4 & \frac{\pi}{2}\end{array}\right.$
d) $0, \frac{5}{4}$

14 If $g(x y)=3 x^{2}-5 y+2 y^{2}, y(1) \equiv g^{\prime}$ and $y(f)=$ cost then $\frac{d t}{d t}$ is equal to
b) $6 \mathrm{n}^{2 \pi}-5 \sin 1=4 \cos t \operatorname{sint}$
c) $3 e^{27}+5 \sin t+4$ cost sint
d) ${ }^{4}$ tert $-5 \sin 1+4 \cos 1$ sint
p) $6 \mathrm{e}^{2 t}+5 \sin$! $-4 \operatorname{cost} \sin$ I

15 The value of $\int_{0}^{1} \times 6$ w $)^{95}$ ds
a) $\frac{1}{11000}$
bi $\frac{1}{10100}$
c) $\frac{1}{10010}$
d) $\frac{1}{10001}$

16 The area beween the ellipse $\frac{\mathrm{c}^{i}}{25}+\frac{y^{2}}{9}-1$ and its auwhary circle is
a) $6=$
b) 20π
c) 10 न
d) $12 \pi 5$

17 The differential equation of the famity of curves $y=A 9^{-2}+B e^{-*}$ where A and B are arbitrany constants is
a) $\frac{d^{2} y}{d x^{2}}$
$+y-0)$
$\frac{d^{4} y}{d x}-y=0$ $\pi \frac{d y}{5}-y-6$
d) $\frac{d y}{d x}-y=0$
18. If a compound statement involves 3 simple statement then the number of rows in the truth table is
a) 9
D) 8
c) 6
d) 3
19. A random variable X has trinomial distribution w th $n=25$ and $p=0$ then standard deviation of X is
a) 6
b) 4
c) 3
d) 2
20. If \sin ris the ntegrating factor of the lifear dfferental equaton $\frac{d y}{d x}=P y=Q$ then P is
a) $\log \sin x$
b) $\cos x$
c) $\tan x$
d) $\cot x$

Part + II
11. Answer any 7 questions. (O. No. 30 is compulsory)
21. Find rank of the matra by using minor method $\left.\left\lvert\, \begin{array}{cccc}1 & -2 & 1 & 0 \\ 3 & -6 & -3 & 1\end{array}\right.\right]$
22 Gonstrug the Gubic equation with roots $2 . \frac{1}{2}$ and 1
23. Find the domain of the $\tan ^{-1} \sqrt{9-x^{2}}$
24. If $|\dot{a}+\dot{b}|=60,|\dot{a}-\dot{b}|=40$ and $|\mathrm{a}|=22$ then find $|\hat{b}|$

25 Suppose of (x) is differentiable function for all x with $f(x) \leq 29$ and $f(2)=17$. What is the maximum value of $f(7)$?
26. If $w(x, y)=x^{3}-3 x y+2 y^{2}, x, y, R$, find the linear approximation for w at $(1,-1)$
27. Evaluate : $\int_{0}^{\infty} e^{-a x} x^{n} d x$
28. Find the differential equation for the family of all straight lines passing through the origin.
29. Four coins are tossed once find the probability mass function for number of heads.
30. Prove De Morgan's law by using Truth table.

Part - III
III. Answer any 7 questions. (Q.No. 40 is compulsory)
31. If $A=\frac{1}{9}\left[\begin{array}{ccc}-8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & -8 & 4\end{array}\right]$. Prove that $A^{-1}=A^{\top}$
32. Prove by Vector method that the area of the quadrilateral ABCD having diagonal AC and $B D$ is $\frac{1}{2}|\overrightarrow{A C} \times \overrightarrow{B D}|$
33. Represent the complex number $1+\sqrt{3}$ in polar form
34. If p and q are the roots of the equation $/ x^{2}+n x+n=0$, show inat $\sqrt{p / q}+\sqrt{q / p}+\sqrt{n / l}=0$
35. Find the value of $2 \cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}\left(\frac{1}{2}\right)$
36. If the equation $3 x^{2}+(3-p) x y+q y^{2}-2 p x=8 p q$ represents a circle, find p and q. Also determine the centre and radius of the circle.
37. If the radius of the sphere, with radius $10 . \mathrm{cm}$, has to decrease by 0.1 cm approximately how much with it's volume decrease?
38. Evaluate: $\int_{0}^{\pi / 2} \frac{d x}{1+5 \cos ^{2} x}$
39. Find the mean and variance of random variable, x whose probability density fupction is $f(x)=\left\{\begin{array}{cl}\lambda e^{-\lambda x} & , x \geq 0 \\ 0 & , \text { otherwise }\end{array}\right.$
40. Find the local extrema of the function $f(x)=x^{4}+32 x$.
IV. Answer all the questions.
41. a) Determine the values of λ for which the following system of equations $x+y+3 z=0 ; 4 x+3 y+i z=0$ and $2 x+y+2 z=0$ has (i) unique solution (ii) a non-trivial solution
b) Solve the equation $z^{3}+8 i=0, z \in C$
42. a) Solve: $(x-5)(x-7)(x+6)(x+4)=504$
b) Solve: $\tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}$
43. a) A rod of length 1.2 m moves with its ends always touching the coordinate axis The locus of a point P on the rod, which is 0.3 m from the end in contact with x-axis is an ellipse. Find the eccentricity.
(OR)
b) If $f(x, y)=\tan ^{-1}\left(\frac{x}{y}\right)$, find $f x$, fy and show that $f x y=f y x$.
44. a) If $\vec{a}=2 \vec{i}+3 \vec{j}-\vec{k}, \vec{b}=-2 \vec{i}+5 \vec{k}, \vec{c}=\vec{j}-3 \vec{k}$ then find $(\vec{a} \times \vec{b}) \times \vec{c}$ and $\vec{a} \times(\vec{b} \times \vec{c})$. Also verify whether they are equal.
(OR)
b) Show that the lines $\frac{x-3}{3}=\frac{y-3}{-1}, z-1=0$ and $\frac{x-6}{2}=\frac{z-1}{3}, y-2=0$ inersect and also find the point of intersection.
45 a) Show that the two curves $x^{2}-y^{2}=r^{2}$ and $x y=c^{2}$ where c, r are constants cut orthogonally.

$$
(O R)
$$

b) A hollow cone with base radius a cm and height bcm is placed on a table. Show that the volume of the largest cylinder that can be hidden underneath is $4 / 9$ times volume of the cone.
46. a) Find the area of the region common to the circle $x^{2}+y^{2}=16$ and the parabola $y^{2}=6 x$.
(OR)
b) In a murder investingation, a corpse was found by a detective at exactly 8 pm . Being alert, the detective also measured the body temperature and found it to be $70^{\circ} \mathrm{F}$. Two hours later the detective measured the body temperature again and found it to be $60^{\circ} \mathrm{F}$. If the room temperature is $50^{\circ} \mathrm{F}$ and assuming that the body temperature of the person before death was $98.6^{\circ} \mathrm{F}$ at what time murder occur?

$$
[\log 2.43=0.88789, \log (0.5)=-0.69315]
$$

47. a) The mean and variance of a binomial distribution X are respectively 2 and 1.5
Find
(i) $P(X=0)$
(ii) $P(X=1)$
(iii) $P(X \geq 1)$
(OR)
b) Prove that $P \rightarrow(\neg q \vee r) \equiv \neg p \vee(\neg q \vee r)$ using truth table.
