2. Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.
1) If $\operatorname{ladj}(\operatorname{adj} A)\left|=|A|^{16}\right.$, then the order of the square matrix A is
a) 3
b) 4
c) 2
d) 5
2) The value of $\leq\left(f+f^{-1} \mid\right.$ is
a) $1+1$
b) 1
c) 1
d) 0
3) If f and g are polynomiais of degree m and n respectiveiy, and if $h(x)=(f \circ g)$ (x), then the degree of h is
a) $m n$
b) $m+n$
c) m^{n}
d) n^{n}
4) If $\sin ^{-1} x=2 \sin ^{-1} a$ has a solution, then
a) $u=\frac{1}{\sqrt{2}}$
b) $|a| \geq \frac{1}{\sqrt{2}}$
c) $|a|<\frac{1}{\sqrt{2}}$
d) $|a|>\frac{1}{\sqrt{2}}$
5) The radius of the circle $3 x^{2}+b y^{2}+4 b x-6 b y+b^{2}=0$ is
a) 1
b) 3
C) $\sqrt{10}$
d) $\sqrt{11}$
6) The volume of the parallelepiped with its edges represented by the vectors i + j,
a)

b)

d) $\pi / 4$
7) The slope of the tangent to the curve $f(x)=2 \cos 4 x$ at $x=\pi / 12$ is
a) $-1 \sqrt{3}$
b) -4
c) $\frac{\sqrt{3}}{12}$
d) $4 \sqrt{3}$
8) If $w(x, y)=x^{v}, x>0$, then $\frac{d w}{d y}$ is equal to
a) $x^{y} \log x$
b) $y \log x$
c) $y x^{x-1}$
d) $x \log y$
9) The value of $\int_{0}^{1} x(1-x)^{\text {set }} d x$ is .
a) $\frac{1}{11000}$
b) $\frac{1}{10100}$
C) $\frac{1}{10010}$
d) $\frac{1}{10001}$
10) The integrating factor of the differential equation $\frac{d y}{d x}+P(x) y=Q(x)$ is x, then $P(x)$ is
a) x
b) $x^{2} / 2$
c) $1 / x$
d) $1 / x^{2}$
11) If $P(X=0)=1-P(X=1)$. If $E(X)=3 \operatorname{Var}(X)$, then $P(X=0)$ is
a) $2 / 3$
b) $1 / 5$
c) $1 / 5$
d) $1 / 3$

Kindly send me your answer keys to us - padasalai.net@gmail.com
12) Which one of the following is a binary operation on N
a) Addition
b) Multuplicaiton
c) Both (1) and (2)
d) None of the above
13) Which of the following is a continuous random vartable?

1. The number of cars crossing a particular signal in a day
2. The number of customers in a queue to buy train tiekets at a motment
3. The time taken to complete a telephone call
a) 1 and II
b) II only
c) III only
d) 11 and III
14) The onder and degree of the differential equation $\frac{d y}{d x}+y^{\prime}=0$ are respectively
a) 2,3
b) 3, 3
c) 2,6
d) 2, 1
15) The value of if $\cos ^{1} 3 x d x$ is
a) 3 ;
b) $\%$
c) $1 / 9$
d) $1 / 3$
16) The curve $y=x^{4}+1$ has point of inflection at
a) $(0,0)$
b) $(0,1)$
c) $(0,4)$
d) nowhere
17) If a and b are parallel vectors, then $[a, c, b]$ is equal to
a) 2
b) -1
C) 1
d) 0
18) If $x+y-k$ is a normal to the parabola $y^{2}=12 x$, then the value of k is
a) 3
b) -1
c) 1
d) 9
19) The value of $\sin ^{-1}(\cos x), 0 \leq x \leq \pi$ is
a) $\pi-x$
b) $x-\pi / 2$
c) $\pi / 2-x$
d) $x-\pi$
20) The principal argument of $\left(\sin 40^{\circ}+i \cos 40^{\circ}\right)^{5}$ is
a) -110°
b) -70°
C) 70°
d) 110°

PART - II

nswer any seven questions. Question No. 30 is compulsory.
$7 \times 2=14$
21) If $\omega \neq 1$ is a cube root of unity, show that $\left(1-\omega+\omega^{2}\right)^{6}+\left(1+\omega-\omega^{2}\right)^{6}=128$
22) Show that, if p, q, r are rational, the roots of the equation $x^{2}-2 p x+p^{2}-q^{2}+2 q r-r^{2}=0$ are rational.
23) Find the value of $\sin ^{-1}[\sin 5]$
24) Examine the position of the point $(2,3)$ with respect to the circle $x^{2}+y^{2}-6 x-8 y+12=0$
25) Verify whether the line $\frac{x-3}{-4}=\frac{y-4}{-7}=\frac{z+3}{12}$ lies in the plane $5 x-y+z=8$
26) Evaluate: $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$
27) If $U=(x-y)(y-z)(z-x)$ find $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$
28) Evaluate: $\left\{x \cos \left(\frac{e^{x}-1}{e^{x}+1}\right) d x\right.$
29) Solve: $\tan y \frac{d y}{d x}=\cos (x+y)+\cos (x-y)$
30) Find A^{-1} if adj $A=\left|\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right|$

PART - III
Answer any seven questions. Question No. $\mathbf{4 0}$ is compulsory.
31) Find the domain of $\sin ^{-1}\left(\frac{2+\cos x}{3}\right)$
32) If $\frac{z+3}{z-4}=\frac{1+4}{2}$, find the complex number z in the rectangular form.
33) A room 34 m long is constructed to be a whispering gallery. The room has an ellipitcal ceiling. If the maximum height of the ceilling in 8 m , determinie where the foci are located.
34) Prove that $[\vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}]=0$
35) Find two positive numbers whose sum is 12 and their product is maximum.
36)

37) Find the area of the region bounded by $y=\cos x, y=\sin x$, the lines $x=\pi / 4$ and $x=5 \pi / 4$
38) Show that $y=a \cos (\log x)+b \sin (\log x), x>0$ is a solution of the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+y=0$
39) A random variable X has the following probability mass function:

x	1	2	3	4	5	6
$f(x)$	k	$2 k$	$6 k$	$5 k$	$6 k$	$10 k$

Find (i) $P(X \leq 4) \quad$ (ii) $P(3<X)$
40) Show that $p \rightarrow q$ and $q \leftrightarrow p$ are not equivalent.

> PART - IV

Answer all the questions:

41) a] Four men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in 4 days. Find the time taken by one man alone and that of one woman alone to finish the same work by using matrix inversion method.
(OR)
b) Show that the line $x-y+4=0$ is a tangent to the ellipse $x^{2}+3 y^{2}=12$. Also find the coordinates of the point of contact.
42) a] Find the value of $\cos \left[\sin ^{-1}(4 / 5)-\tan ^{-1}(3 / 4)\right]$
(OR)
b] Solve: $2 \sqrt{\frac{x}{a}}+3 \sqrt{\frac{a}{x}}=\frac{b}{a}+\frac{6 a}{b}$
43) a] Prove by vector method that $\sin (A-B)=\sin A \cos B-\cos A \sin B$ (OR)
b] Find all the values of $\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)^{1 / 4}$
44) a] For the curve $y=\frac{3 x}{x^{2}-1}$, discuss the following:
(i) Domain
(ii) Symmetry
(iii) Asymptotes
(iv) Intercepts
(v) Monotonicity
(OR)
b] Show that $\int_{0}^{1}\left[\tan ^{-1} x+\tan ^{-1}(1-x)\right] d x=\frac{\pi}{2}-\log 2$
45) a] Let $g(x, y)=2 y+x^{2}, x=2 r-s, y=r^{2}+2 s$, where $r, s \in R$. Find $\frac{\partial g}{\partial r}, \frac{\partial g}{\partial s}$ (OR)
b] Solve $\left(1+2 e^{x} y\right) d x+2 e^{x / y}\left(1-\frac{x}{y}\right) d y=0$
46) a] Find the mean and variance of a random variable x, whose probability density function is $f(x)=\left\{\begin{array}{cc}\lambda e^{-\lambda x} & \text { for } x \geq 0 \\ 0 & \text { otherwise }\end{array}\right.$
(OR)
b] Verify (i) closure property, (ii) commutative property, (iii) associative property, (iv) existence of identity, and (v) existence of inverse for the operation X_{11} on a subset $A=\{1,3,4,5,9\}$ of the set of remainders $\{0,1,2,3,4,5,6,7,8,9,10\}$
47) a] Find the volume of a right-circular cone of base radius r and height h. (OR)
b] Find the parametric vector, non-parametric vector and Cartesian form of the equations of the plane passing through the three non-collinear points $(3,6,-2)(-1,-2,6)$ and $(6,4,-2)$
