fRM FIRST REVISION TEST - 2024
 12 - std MATHEMATICS

Time : 3.00 Hrs

PART - I

Choose the correct answer.

1. The solution of the equation $|z|-z=1+2 i$ is
a) $\frac{3}{2}-2 i$
b) $\frac{-3}{2}+2 i$
c) $2-\frac{3 i}{2}$
d) $2+\frac{3 i}{2}$
2. If $\omega \neq 1$ is a cubic root of unity and $(1+\omega)^{7}=A+B \omega$, then (A, B) equals
a) $(1,0)$
b) $(-1,1)$
c) $(0,1)$
d) $(1,1)$
3. The rank of the matrix $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4\end{array}\right]$ is a) $1 \begin{array}{llll}\text { b) } 2 & \text { c) } 4 & \text { d) } 3\end{array}$
4. If $A\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]=\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]$ then $A=$ a) $\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]$ b) $\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$ c) $\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$ d) $\left[\begin{array}{cc}4 & -1 \\ 2 & 1\end{array}\right]$
5. If $x^{3}+12 x^{2}+10 a x+1999$ definitely has a positive zero, if and anly if
a) $a \geq 0$
b) $a>0$
c) a <0
d) a ≤ 0
6. If $\sin ^{-1} x+\sin ^{-1} y=\frac{2 \pi}{3}$; then $\cos ^{-1} x+\cos ^{-1} y$ is equal to
a) $\frac{2 \pi}{3}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{6}$
d) π
7. Find the value of $\sin \left(\frac{\pi}{3}-\sin ^{-1}\left(\frac{-1}{2}\right)\right)$ a) $0 \quad$ b) $1 \quad$ c) $\frac{1}{2} \quad$ d) $\frac{\pi}{3}$
8. If the coordinates at one end of a diameter of the circle $x^{2}+y^{2}-8 x-4 y+c=0$. are $(11,2)$ the coordinates of the other end are
a) $(-5,2)$
b) $(-3,2)$
C) $(5,-2)$
d) $(-2,5)$
9. If \bar{a} and \bar{b} are parallel vectors, then $[\vec{a}, \vec{c}, \vec{b}]$ is equal to
a) 2
b) -1
c) 1
d) 0
10. Find the value of $[\hat{i}, \hat{j}, \hat{k}]$
a) 0
b) 2
c) 1
d) 3

FRM 12 கணणிதம் EM Page - 1
11. The slope of the line normal to the curve $\mathrm{f}(\mathrm{x})=2 \cos 4 \mathrm{x}$ at $x=\frac{\pi}{12}$ is
a) $-4 \sqrt{3}$
b) -4
c) $\frac{\sqrt{3}}{12}$
d) $4 \sqrt{3}$
12. The maximum value of the product of two positive numbers, when their sum of
the square is 200 , is
a) 100
b) $25 \sqrt{7}$
c) 28
d) $24 \sqrt{14}$
13. The approximate change in the volume V of a cube of side x metres caused by increasing the side by 1% is,
a) $0.3 x \mathrm{dx} \mathrm{m}^{3}$
b) $0.03 \mathrm{x} \mathrm{m}^{3}$
c) $0.03 x^{2} \mathrm{~m}^{3}$
d) $0.03 \mathrm{x}^{3} \mathrm{~m}^{3}$
14. Find the degree of $F(x, y)=\frac{x^{2}+5 x y-10 y^{2}}{5 x-5 y}$
a) 1
b) 2
c) 5
d) -10
15. The value of $\int_{0}^{\pi} \frac{d x}{1+5^{\cos x}}$ is
$\begin{array}{ll}\text { a) } \frac{\pi}{2} & \text { b) } \pi\end{array}$
C) $\frac{3 \pi}{2}$
d) 2π
16. The order and degree of the differential equation $\sqrt{\sin x}(d x+d y)=\sqrt{\cos x}(d x-d y)$ is
a) 1,2
17. If $P(X=0)=1-P(X=1)$. If $E(X)=3 \operatorname{Var}(x)$ then $P(X=0)$ is
a) $\frac{2}{3}$
b) $\frac{2}{5}$
C) $\frac{1}{5}$
d) $\frac{1}{3}$
18. Standard deviation of binomial distribution is a) $n p$ b) n c) $n p q$ d) $\sqrt{n p q}$
19. Subtraction is not a binary operation in a) $R \quad$ b) $Z \quad$ c) N d) Q
20. Which one of the following statements has the truth value T ?
$\begin{array}{lll}\text { a) } \sin x & \text { is an even function } & \text { b) Every square matrix is non - singular. }\end{array}$
c) The product of complex number and its conjugate is purely imaginary.
d) $\sqrt{5}$ is an irrational number.

PART - II
 Answer any 7 questions. Q.No. 30 is compulsory:-

 $2-\sqrt{3} i$ as a root.22. Find the square root of $6-8 i$.
23. If adj $A=\left[\begin{array}{ccc}-1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ find A^{-1}.
24. Explain why Rolle's theorem is not applicable to the following functions in the respective intervals $\mathrm{f}(\mathrm{x})=\tan \mathrm{x}, x \in[0, \pi]$.
25. If the radius of a sphere, with radius 10 cm , has to decrease by 0.1 cm , approximately how much will its volume.decrease?
26. If $2 \hat{i}-\hat{j}+3 \hat{k}, \quad 3 \hat{i}+2 \hat{j}+\hat{k}, \quad \hat{i}+m \hat{j}+4 \hat{k}$ are coplanar, find the value of m.
27. Find the equation of the parabola with focus $(-\sqrt{2}, 0)$ and directrix $x=\sqrt{2}$.
28. Evaluate : $\int_{-\pi / 2}^{\pi / 2} x \cos x d x$.
29. The probability density functionof x is given by $f(x)=\left\{\begin{aligned} k x e^{-2 x} & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{aligned}\right.$ find the value of k.
30. Prove that, In an algebraic structure the identity element (if exists) must be unique.

> PART - III

Answer any 7 questions. Q.No. 40 is compulsory. $7 \times 3=21$
31. Find the rank of the matrix
33. Find the centre and radius of the circle $3 x^{2}+(a+1) y^{2}+6 x-9 y+a+4=0$.
34. For the random variable x with the given probability mass function as below, find the mean and variance. $f(x)=\left\{\frac{4-x}{6}, x=1,2,3\right.$.
35. Find two positive numbers whose sum is 12 and their product is maximum.
36. Find the domain of $\sin ^{-1}\left(2-3 x^{2}\right)$.
37. Solve : $2 x y d x+\left(x^{2}+2 y^{2}\right) d y=0$.
38. Establish the equivalence property connecting the bi - conditional with conditional $p \leftrightarrow q$ 天 $(p \rightarrow q) \wedge(q \rightarrow p)$.
39. Show that the equation $x^{9}-5 x^{5}+4 x^{4}+2 x^{2}+1=0$ has atleast 6 imaginary solutions.
40. Find the torque of the resultant of the three forces represented by $-3 \hat{i}+6 \hat{j}-3 \hat{k}$, $4 \hat{i}-10 \hat{j}+12 \hat{k}$ and $4 \hat{i}+7 \hat{j}$ acting at the point with position vector $8 \hat{i}-6 \hat{j}-4 \hat{k}$ about the point with position vector $18 \hat{i}+3 \hat{j}-9 \hat{k}$.

PART- IV

Answer all the questions.

41. a) On the average 20% of the products manufactured by $A B C$ company are found to be defective. If we select 6 of these products at random and x denotes the number of defective products find the probability that (i) two products are defective (ii) at most one product is defective (iii) at least two products are defective. (OR) b) Find the centre, foci and eccentricity of the hyperbola $11 x^{2}-25 y^{2}-44 x+50 y-256=0$.
42. a) Verify (i) closure property (ii) commutative property (iii) associative property (iv) existence of identity and (v) existence of inverse for the operation X_{11} on a subset $A=\{1,3,4,5 ; 9\}$ of the set of remainders $\{0,1,2,3,4,5,6,7,8,9,10\}$ (OR)
b) If $z=x+i y$ and $\arg \left(\frac{z-i}{z+2}\right)=\frac{\pi}{4}$, show that $x^{2}+y^{2}+3 x-3 y+2=0$.
43. a) Expand $\log (1+x)$ as a Maclaurin's series upto 4 non - zero terms for $-1<x \leq 1$. (OR) \quad b) If $2+i$ and $3-\sqrt{2}$ are roots of he equation $x^{6}-13 x^{5}+62 x^{4}-126 x^{3}+65 x^{2}+127 x-140=0$, find all roots.
44. a) Find the value of \tan
b) Find the volume of the solid formed by revolving the region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \mathrm{a}>\mathrm{b}$ about the major axis.
4.5. a) Test for consistency of the following system of linear equations and if possible solve : $x+2 y-z=3, \quad 3 x-y+2 z=1, \quad x-2 y+3 z=3, \quad x-y+z+1=0$. (OR) b) Find the parametric vector, non - parametric vector and Cartesion form of the equations of the plane passing through the three non - collinear points $(3,6,-2),(-1,-2,6)$ and $(6,4,-2)$.
45. a) Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from $3,00,000$ to $4,00,000$. (OR) At a water fountain, water attains a maximum height of 4 m at horizontal distance at a horizontal dis 0.5 m from. If the path of water is a parabola, find the height of water

$$
\begin{aligned}
& \text { 47. a). If } \vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \quad \vec{b}=3 \hat{i}+5 \hat{j}+2 \hat{k} \quad \vec{c}=-\hat{i}-2 \hat{j}+3 \hat{k} \quad \text { verify that } \\
& \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} . \bar{c}) b-(\vec{a} . \vec{b}) \vec{c} \text { (OR) }
\end{aligned}
$$

