12

FIRST REVISION TEST - 2024

Time : 3.00 Hrs
PART - I
Choose the correct answer.

1. The solution of the equation $|z|-z=1+2 i$ is
a) $\frac{3}{2}-2 i$
b) $\frac{-3}{2}+2 i$
c) $2-\frac{3 i}{2}$
d) $2+\frac{3 i}{2}$
2. If $\omega \neq 1$ is a cubic root of unity and $(1+\omega)^{\prime}=A+B \omega$, then (A, B) equals
a) $(1,0)$
b) $(-1,1)$
c) $(0,1)$
d) $(1,1)$
3. The rank of the matrix $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4\end{array}\right]$ is a) $1 \quad$ b) $2 \quad$ c) 4 d) 3
4. If $A\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]=\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]$ then $A=$ a) $\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]$ (b) $\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$ c) $\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$ d) $\left[\begin{array}{cc}4 & -1 \\ 2 & 1\end{array}\right]$
5. If $x^{3}+12 x^{2}+10 a x+1999$ definitely has a positive zero, if and only if
a) $a \geq 0$
b) $a>0$
c) $a<0$
d) $a \leq 0$
6. If $\sin ^{-1} x+\sin ^{-1} y=\frac{2 \pi}{3}$; then $\cos ^{-1} x+\cos ^{-1} y$ is equal to
a) $\frac{2 \pi}{3}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{6}$
d) π
7. Find the value of $\sin \left(\frac{\pi}{3}-\sin ^{-1}\left(\frac{-1}{2}\right)\right)$ a) $0 \quad$ b) $1 \quad$ c) $\frac{1}{2} \quad$ d) $\frac{\pi}{3}$
8. If the coordinates at one end of a diameter of the circle $x^{2}+y^{2}-8 x-4 y+c=0$
are $(11,2)$ the coordinates of the other end are
a) $(-5,2)$
b) $(-3,2)$
c) $(5,-2)$
d) $(-2,5)$
9. If \vec{a} and \vec{b} are parallel vectors, then $[\vec{a}, \vec{c}, \vec{b}]$ is equal to
a) 2
b) -1
c) 1
d) 0
10. Find the value of $[\hat{i}, \hat{j}, \hat{k}]$
a) 0
b) 2
c) 1
d) 3
11. The slope of the line narmal to the curve $\mathrm{f}(\mathrm{x})=2 \cos 4 \mathrm{x}$ at $x=\frac{\pi}{12}$ is
a) $-4 \sqrt{3}$
b) -4
C) $\frac{\sqrt{3}}{12}$
d) $4 \sqrt{3}$
12. The maximum value of the product of two positive numbers, when their sum of the square is 200 , is $\begin{array}{lllll}\text { a) } 100 & \text { b) } 25 \sqrt{7} & \text { c) } 28 & \text { d) } 24 \sqrt{14}\end{array}$
13. The approximate change in the volume \vee of a cube of side x metres caused by
increasing the side by 1% is
a) $0.3 x \mathrm{dx} \mathrm{m}^{3}$
b) $0.03 \times \mathrm{m}^{3}$
c) $0.03 \mathrm{x}^{2} \mathrm{~m}^{3}$
d) $0.03 \mathrm{x}^{3} \mathrm{~m}^{3}$
14. Find the degree of $F(x, y)=\frac{x^{2}+5 x y-10 y^{2}}{5 x-5 y}$ a) 1 b) $2 \quad$ c) $5 \quad$ d) -10
15. The value of $\int_{0}^{\pi} \frac{d x}{1+5^{\cos x}}$ is
a) $\frac{\pi}{2}$
b) π
c) $\frac{3 \pi}{2}$
d) 2π
16. The order and degree of the differential equation $\sqrt{\sin x}(d x+d y)=\sqrt{\cos x}(d x-d y)$ is
a) 1,2
b) 2, 2
c) 1,1
d) 2, 1
17. If $P(X=0)=1-P(X=1)$. If $E(X)=3 \operatorname{Var}(x)$ then $P(X=0)$ is
a) $\frac{2}{3}$
b) $\frac{2}{5}$
C) $\frac{1}{5}$
d) $\frac{1}{3}$
18. Standard deviation of binomial distribution is \qquad
a) $n p$
b) n c) $n p q$ d) $\sqrt{n p q}$
19. Subtraction is not a binary operation in
a) R
b) Z
c) N
d) Q
20. Which one of the following statements has the truth value T ?
a) $\sin x$ is an even function
b) Every square matrix is non-singular.
c) The product of complex number and its conjugate is purely imaginary.
d) $\sqrt{5}$ is an irrational number.

PART - II

Answer any 7 questions. Q.No. $\mathbf{3 0}$ is compulsory:-

$7 \times 2=14$
21. Find the monic polynomial equation of minimum degree with real coefficients having $2-\sqrt{3} i$ as a root.
22. Find the square root of $\mathbf{6 - 8 i}$.
23. If $\operatorname{adj} A=\left[\begin{array}{ccc}-1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ find A^{-1}.
24. Explain why Rolle's theorem is not applicable to the following functions in the respective intervals $f(x)=\tan x, x \in[0, \pi]$.
25. If the radius of a sphere, with radius 10 cm , has to decrease by 0.1 cm , approximately how much will its volume decrease?
26. If $2 \hat{i}-\dot{j}+3 \hat{k}, \quad 3 \dot{i}+2 \dot{j}+\dot{k}, \cdot \hat{i}+m \dot{j}+4 \dot{k}$ are coplanar, find the value of m.
27. Find the equation of the parabola with focus $(-\sqrt{2}, 0)$ and directrix $x=\sqrt{2}$.
28. Evaluate : $\int_{-\pi}^{\pi / 2} x \cos x d x$.
29. The probability density functionof x is given by $f(x)=\left\{\begin{aligned} k x e^{-21} & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{aligned}\right.$ find the value of k.
30. Prove that, In an algebraic structure the identity element (if exists) must be unique.

PART - III

Answer any 7 questions. Q.No. 40 is compulsory.
31. Find the rank of the matrix $\left[\begin{array}{cccc}2 & -2 & 4 & 37 \\ -3 & 4 & -2 & -1 \\ 6 & 2 & -1 & 7\end{array}\right]$ by reducing it to an Echelon form.
32. Simplify $\left(\sin \frac{\pi}{6}+i \cos \frac{\pi}{6}\right)^{13}$.
33. Find the centre and radius of the circle $3 x^{2}+(a+1) y^{2}+6 x-9 y+a+4=0$.
34. For the random variable x with the given probability mass function as below, find the mean and variance. $f(x)=\left\{\frac{4-x}{6}, x=1,2,3\right.$.
35. Find two positive numbers whose sum is 12 and their product is maximum.
36. Find the domain of $\sin ^{-1}\left(2-3 x^{2}\right)$.
37. Solve : $2 x y d x+\left(x^{2}+2 y^{2}\right) d y=0$.
38. Establish the equivalence property connecting the bi - conditional with conditional $p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$.
39. Show that the equation $x^{9}-5 x^{5}+4 x^{4}+2 x^{2}+1=0$ has atteast 6 imaginary solutions.
40. Find the torque of the resuitant of the three forces represented by $-3 \hat{i}+6 \hat{j}-3 \hat{k}$, $4 \hat{i}-10 \hat{j}+12 \hat{k}$ and $4 \hat{i}+7 \hat{j}$ acting at the point with position vector $8 \hat{i}-6 \hat{j}-4 \dot{k}$ about the point with position vector $18 \hat{i}+3 \hat{j}-9 \hat{k}$.

Answer all the questions.

PART- IV

a) On the average 20% of the products manuract $7 \times 5=35$ found to be defective. If we select 6 of there productured by ABC company are the number of defective products find these products at random and x denotes defective (ii) at most one product is de probability that (i) two products are defective. (OR) b) Find the centre, forl (iii) at least two products are $11 x^{2}-25 y^{2}-44 x+50 y-256=0$, foci and eccentricity of the hyperbola
a) Verify (i) closure property (ii) commutative property (iii) associative property (iv) existence of identity and (v) existence of inverse for the operation $X_{i 1}$ on a subset $A=\{1,3,4,5,9\}$ of the set of remainders $\{0,1,2,3,4,5,6,7,8,9,10\}$ (OR)
b) If $z=x+$ iy and $\arg \left(\frac{z-i}{z+2}\right)=\frac{\pi}{4}$, show that $x^{2}+y^{2}+3 x-3 y+2=0$.
43. a) Expand $\log (1+x)$ as a Maclaurin's series upto 4 non - zero terms for $-1<x \leq 1$. (OR) \quad b) If $2+1$ and $3-\sqrt{2}$ are roots of he equation $x^{6}-13 x^{5}+62 x^{4}-126 x^{3}+65 x^{2}+127 x-140=0$, find all roots.
44. a) Find the value of $\tan \left(\cos ^{-1}\left(\frac{1}{2}\right)\right)^{-} \sin ^{-1}\left(\frac{-1}{2}\right)$. (OR)
b) Find the volume of the solid formed by revolving the region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>\mathrm{b}$ about the major axis.
45. a) Test for consistency of the following system of linear equations and if possible solve : $x+2 y-z=3, \quad 3 x-y+2 z=1, \quad x-2 y+3 z=3, \quad x-y+z+1=0$. (OR) b) Find the parametric vector, non - parametric vector and Cartesion form of the equations of the plane passing through the three non - collinear points $(3,6,-2),(-1,-2,6)$ and $(6,4,-2)$.
46. a) Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from $3,00,000$ to $4,00,000$. (OR) At a water fountain, water attains a maximum height of 4 m at horizontal distance of 0.5 m from its origin. If the path of water is a parabola, find the height of water at a horizontal distance of 0.75 m from the point of origin.
47.

$$
\begin{aligned}
& \text { a) If } \vec{a}=2 \dot{i}+3 \dot{j}-\dot{k}, \quad \vec{b}=3 \hat{i}+5 \dot{j}+2 \dot{k} \quad \vec{c}=-i-2 \dot{j}+3 \dot{k} \quad \text { verify that } \\
& \vec{a} x(\vec{b} x \vec{c})=(\vec{a} \cdot \vec{c}) b-(\vec{a} \cdot \vec{b}) \vec{c} \quad \text { (OR) }
\end{aligned}
$$

b) If $w(x, y)=x y+\sin (x y)$ then prove that $\frac{\partial^{2} w}{\partial y \partial x}=\frac{\partial^{2} w}{\partial x c y}$.

