Time : 3.00 hrs.

First Revision Examination - 2024

MATHEMATICS

olet hipres

Choose the correct answer

2. If $P(A)=P([A \mid B])$, then the system $A x=B$ of linear equations is
a) consistent and has a unique solution b) consistent c) consistem and has effinty many sotutan a momessiem
3. IIz is a non-zero complex number, such that $2 z^{2}=\bar{z}$ then iza is a) $\frac{1}{2}$ b) 1 c) $2 d 3$
4. The product of all four values of $\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{\frac{3}{4}}$, is a) -2 b) -1 c) 1 d) 2
5. A polymomial equation in x of degree n always has
a) n distinct roots
b) n real roots
c) n complex roots
d) at most one root
6. The domain of the function defined by $f(x)=\sin ^{-1} \sqrt{x-1}$ is a) $[1,2]$ b) $[-1,4] \quad$ c) $[2,7]=\left[\begin{array}{l}{[-1}\end{array}\right]$
7. If $\sin ^{-1} x+\cot ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{2}$, then x is equal to a) $\frac{1}{2}$ b) $\frac{1}{\sqrt{5}}$ c) $\frac{2}{\sqrt{5}}$ d) $\frac{\sqrt{3}}{2}$
8. The radius of the circie $3 x^{2}+b y^{2}+4 b x-6 b y+b^{2}=0$ is a) 1 bl 3 c) $\sqrt{10}$ d) $\sqrt{11}$
9. The eccentricity of the ellipse $(x-3)^{2}+(y-4)=\frac{y^{2}}{9}$ is a) $\frac{\sqrt{3}}{2}$ b) $\frac{1}{3}$ c) $\frac{1}{3 \sqrt{2}}$ d) $\frac{1}{\sqrt{3}}$
10. The volume of the parallelapiped with its edges represented by the vectors $;-j ; 2 ; i+j-\pi k$
a) $\frac{\pi}{2}$
b) $\frac{\pi}{3}$ c) π d) $\frac{\pi}{4}$
11. If the planes $\vec{i} \cdot(2 \hat{i}-\hat{k}, \hat{k})=3$ and $\vec{r} \cdot(4 \hat{i}+\hat{j}-\mu \hat{k})=5$ are paraliel, then the value of \hat{k} and $a t$ are
a) $\frac{1}{2},-2$
b) $-\frac{1}{2}, 2$
c) $-\frac{1}{2}, 2$ d) $\frac{1}{2}, 2$
12. The minimum value of the function $|3-x|+9$ is a) 0 b) 3 c) 6 d) 9
13. If $(x, y, z)=x y+y z+z x$, then $f x-f z$ is equal to a) $z-x \quad$ b) $y-z \quad$ c) $x-z \quad$ d) $y-x$
14. The volume of solid of revolution of the region bounded by $\mathrm{y}=\mathrm{x}(\mathrm{a}-\mathrm{x})$ about x axis is
a) πa^{3}
b) $\frac{\pi a^{3}}{4}$
c) $\frac{\pi a^{3}}{5}$
d) $\frac{\pi a^{\frac{z}{2}}}{6}$
15. The onder and degree of the differential equation $\sqrt{\sin x}(d x+d y)=\sqrt{\cos x}(d x-d y)$ is
b) 2.2
c) $\mathrm{t}, 1$
d) 2.1
u) 1,2
16. Integreting factor of the differential equation $\frac{d y}{d x}=\frac{x+y+1}{x+1}$ is
a) $\frac{1}{x+1}$ b) $x+1$
c) $\frac{1}{\sqrt{x=1}}$
d) $\sqrt{x+1}$
17. A random variable x nas binornial distribution with $n=25$ and $p=08$ then standard devation of x is
a) 6 b) 4 ci3 d) 2
18. If $P(P x=0)=1-P(x=1)$, , $E(x)=3$ var (x), then $P(x=0)$ is a) $\frac{2}{3}$ b) $\frac{2}{5}$ c) $\frac{1}{5}$ a) $\frac{1}{3}$
19. The operation "defmed by $a^{\circ} b=\frac{a b}{7}$ is not a binaryoperation on a) Q° b) 2 c) R d) C
20. Determine the truth value of each of the following statmants:

- i) $4+2=5$ and $6+3=9$ i) $3+2=5$ and $6+1=7$ (i) $4+5=9$ and $1+2=4 \quad$ w/ $3+2=5$ and $4+7=71$

2x'. ff adj(A) $=\left[\begin{array}{ccc}2 & -4 & 2 \\ -3 & 12 & -7 \\ -2 & 0 & 2\end{array}\right]$. Find A.

[^0]23. Discuss the maximum possible number of positive and negative roots of the polynomial equation.
$9 x^{8}-4 x^{6}+4 x^{7}-3 x^{6}+2 x^{6}+x^{3}+7 x^{2}+7 x+2=0$
24. Find the equation of the parabola with vertex $(-1,-2)$ axis parallel to y-axis and passing through $(3,6)$
25. Prove by vector method thal the parallelograms on the same base and between the same parallels are equal in area.
26. Find the values in the interval $(1,2)$ of the mean value theorem satisfied by the function $f(x)=x-x^{2}$ for $1 \leq x \leq 2$.
27. Evaluate $\int_{3}^{4} \frac{d x}{x^{2}-4}$
28. Find the differential equation of the family of parabolas $y^{2}=4 a x$, where a is an arbitrary constant.
29. Three coins are tossed simultaneously. Find the probability mass function for number of heads occured.
30. Show that $\mathrm{p} \rightarrow \mathrm{q}$ and $\mathrm{q} \rightarrow \mathrm{p}$ are not equivalent.

PART - C
Answer any 7questions. Q.No. 40 is compulsory.
$7 \times 3=21$
31. Solve : $5 x-2 y+16=0, x+3 y-7=0$
32. If $|z|=2$, show that $8 \leq|z+6+8 i|<12$.
33. Find the value of $\tan ^{-1}(-1)+\cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{2}\right)$
34. Find the equations of tangents to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{64}=1$ which are parallel to $10 x-3 y+9=0$.
35. Find the parametric form of vector equation and Cartesian equations of the straight line passing through the point $(-2,3,4)$ and parallel to the straight line $\frac{x-1}{-4}=\frac{y+3}{5}=\frac{8-z}{6}$
36. Expand $\log (1+x)$ as a Maclaurin's series up to 4 non-zero terms for $-1<x \leq 1$.
37. Let $U(x, y, z)=x^{2}-x y+3 \sin z, x, y, z \in R$. Find the linear approximation for U at $(2,-1,0)$
38. Evaluate $\int_{0}^{\pi / 2}\left(\sin ^{2} x+\cos ^{4} x\right) d x$
39. Solve $\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$
40. The probability that a certain kind of component will survive a electrical test is $\frac{3}{4}$, Find the probability that exactly 3 of the 5 components tested survive. PART - D
Answer all the questions.
$7 \times 5=35$
41. a) Investigate the values of λ and μ the system of linear equations $2 x+3 y+5 z=9,7 x+3 y-5 z=8$, $2 x+3 y+\lambda z=\mu$ here
i) no solution ii) a unique solution iii) an infinite number of solutions. (OR) b) Find all cube roots of $\sqrt{3}+1$
42. a) Solve the equation $(x-2)(x-7)(x-3)(x+2)+19=0$ (OR)
b) Find the number of solutions of the equation $\tan ^{-1}(x-1)+\tan ^{-1} x+\tan ^{-1}(x+1)=\tan ^{-1}(3 x)$
43. a) A bridge has a parabolic arch that is 10 m high in the centre and 30 m circle at the bottom. Find the height of the arch 6 m from the centre on either sides. (OR) b) If $\vec{a}=-2 \hat{i}+3 \hat{j}-2 \hat{k}, \vec{b}=3 \hat{i}-\hat{j}+3 \hat{k}, \vec{c}=2 \hat{i}-5 \hat{j}+\hat{k}$, Find ($\vec{a} \times \vec{b}$) $\times \vec{c}$ and $\vec{a} \times(\vec{b} \times \vec{c})$. State whether they are equal.
44. a) A police jeep, approaching an orthogonal intersection from the northern direction, is chasing a speeding car that has turned and moving straight east. When the Jeep is 0.6 km north of the intersection and the car is 0.8 km to the east. The police determine with a radar that the distance between them and the car is increasing at $20 \mathrm{~km} / \mathrm{hr}$. If the jeep is moving at $60 \mathrm{~km} / \mathrm{hr}$ at the instant of measurement. What is the speed of the car?
(OR)
b) If $U=\sin ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u$
45. a) Find the area of the region bounded between the parabola $x^{2}=y$ and the curve $y=|x|$ (OR)
b) In a murder investigation, a corpse was found by a detective at exactly 8 p.m. Being alert, the detective also measured the body temperature and found it to be $70^{\circ} \mathrm{F}$. Two hours later, the detective measured the body temperature again and found it to be $60^{\circ} \mathrm{F}$. If the room temperature is $50^{\circ} \mathrm{F}$. and assuming that the body temperature of the person before death was $98.6^{\circ} \mathrm{F}$, at what time did the murder occur? $[\log (2.43)=0.88789 ; \log (0.5)=-0.69315$)
46. a) A six sided die is marked ' 1 ' on one face, ' 2 ' an two of its faces; and ' 3 ' on remaining three faces. The die is rolled twice.'
If x denotes the total scores in two throws.
i) Find the probability mass function. Ii) Find the cumulative distribution function.iii) Find $P(3 \leq x<6)$ iv) Find $P(x \geq 4)$
(OR) b) Verify i) closure property ii) commutative property iii) associative propis $(O R)$ b) Verify i) closure property ii) commutative property iii) associative property, iv) existence of identity and v) existence of inverse for the operationt, on' z, Using table corresponding to addition modulo 5 .
47. a) Find the non-parametric form of vector equation, and cartesian equation of the plane passing through the point $(2,3,6)$ and parallel to the straight lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-3}{1}$ and $\frac{x+3}{2}=\frac{y-3}{-5}=\frac{z+1}{-3}$ (OR)
b) A farmer plans to fence a rectangular pasture adjacent to a river. The paasture must contain $1,80,000$ sq.mits in order to provide enough grass for herds. No fencing is needed along the river. What is the length of the minimum needed fencing material?

[^0]:

