Virudhunagar District Common First Revision Test - January 2024

Standard 12 MATHEMATICS

Time Allowed: 3.00 Hours

Maximum Marks: 90

PART - I

Choose the correct answer:

20×1=20

1)	If A is a non singular matrix such that A^{-1}	$=\begin{bmatrix} 5 \\ -2 \end{bmatrix}$	$\begin{bmatrix} 3 \\ -1 \end{bmatrix}$, then $(A^T)^{-1} =$
----	--	--	---

a)
$$\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$$

b)
$$\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$$

a)
$$\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$$
 b) $\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$ c) $\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix}$ d) $\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$

$$\mathbf{d})\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$$

2) If z = x+iy is a complex number such that |z+2| = |z-2|, then the locus of z

- a) real axis
- b) imaginary axis
- c) ellipse

d) circle

- 3) The number of real numbers in $[0, 2\pi]$ satisfying $\sin^4 x 2 \sin^2 x + 1$ is
 - a) 2

- b) 4
- c) 1

4) The domain of the function defined by $f(x) = \sin^{-1} \sqrt{x-1}$ is

- a) [1, 2]
- b) [-1, 1]
- c) [0, 1]

5) The equation of the normal to the circle $x^2+y^2-2x-2y+1=0$ which is parallel to the line 2x+4y = 3 is

a)
$$x+2y = 3$$

b)
$$x+2y+3=0$$

b)
$$x+2y+3=0$$
 c) $2x+4y+3=0$ d) $x-2y+3=0$

d)
$$x-2y+3 = 0$$

6) The angle between the line $\vec{r} = (\hat{i} + 2\hat{j} - 3\hat{k}) + t(2\hat{i} + \hat{j} - 2\hat{k})$ and the plane

$$\vec{r} \cdot (i + j) + 4 = 0$$
 is

- b) 30°
- c) 45°
- d) 90°

The curve y = ax⁴+bx², with ab > 0

- a) has no horizontal tangent
- b) is concave up

c) is concave down

d) has no points of inflection

8) If
$$v(x, y) = \log(e^x + e^y)$$
, then $\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y}$ is equal to

b)
$$\frac{1}{e^x + e^y}$$

d) 2

9) The volume of solid of revolution of the region bounded by $y^2 = x(a-x)$ about x-axis is

b)
$$\frac{\pi a^3}{4}$$
 c) $\frac{\pi a^3}{5}$

c)
$$\frac{\pi a^3}{5}$$

d) $\frac{\pi a^3}{2}$

10) Integrating factor of the differential equation $\frac{dy}{dy} = \frac{x + y + 1}{y + 1}$ is

a)
$$\frac{1}{x+1}$$

c)
$$\frac{1}{\sqrt{x+1}}$$

d)
$$\sqrt{x+1}$$

11) If P(X = 0) = 1 - P(X = 1). If E(X) = 3var(X) then P(X = 0)

a)
$$\frac{2}{3}$$

b)
$$\frac{2}{5}$$

d)
$$\frac{1}{3}$$

712M

12) The operation * defined by a* b = $\frac{ab}{7}$ is not a binary operation on

- a) Q⁺
- b) Z

c) R

d) C

13) If $x = \cos \theta + i \sin \theta$, then the value of $x^n + \frac{1}{x^n}$

- a) 2 cos θ
- b) 2i sin n0

d) 2i cos no

14) The number of solutions of the equation $tan^{-1}2x + tan^{-1}3x = \frac{\pi}{4}$ is

- b) 3

15) The point of contact of $y^2 = 4ax$ and the tangent y = mx + c is

a) $\left(\frac{2a}{m^2}, \frac{a}{m}\right)$ b) $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$ c) $\left(\frac{a}{m}, \frac{2a}{m^2}\right)$ d) $\left(\frac{-a}{m^2}, \frac{-2a}{m}\right)$

16) If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar, non-zero vectors such that $[\vec{a}, \vec{b}, \vec{c}] = 3$, then

$$\left\{ \left[\tilde{\mathbf{a}} \times \tilde{\mathbf{b}}, \, \tilde{\mathbf{b}} \times \tilde{\mathbf{c}}, \, \tilde{\mathbf{c}} \times \tilde{\mathbf{a}} \right] \right\}^2$$

- a) 81
- b) 9

d) 18

17) The value of the limit $\lim_{x \to 0} \cot x - \frac{1}{x}$ is

a) 0 b) 1

18) The value of $\int_{0}^{a} (\sqrt{a^{2} - x^{2}})^{3} dx$ is

- b) $\frac{3\pi a^4}{16}$ d) $\frac{3\pi a^2}{8}$

d) $\frac{3\pi \, a^4}{8}$

19) If $f(x) = Cx^2$, 0 < x < 2 is the probability density function of x, then C is

- c) 8/3

d) $\frac{3}{6}$

20) The general solution of the differential equation $\frac{dy}{dx} = \frac{y}{x}$ is

- a) xy = K b) $y = K \log x$
- c) y = Kx

d) $\log y = Kx$

PART - II

Answer any seven questions. Question No. 30 is compulsory.

7×2=14

21) If $A = \begin{bmatrix} -2 & 4 \\ 1 & -3 \end{bmatrix}$ then find A^{-1} .

22) If $Z_1 = 3-2i$ and $Z_2 = 6+4i$, find $\frac{Z_1}{Z_2}$ in the rectangular form.

- 23) Find the principal value of $\cot^{-1}(\sqrt{3})$
- 24) Find the length of latus rectum of the parabola $y^2 = 4ax$.

25) Find the volume of the parallelopiped whose coterminous edges are represented by the vectors $-6\hat{i} + 14\hat{j} + 10\hat{k}$, $14\hat{i} - 10\hat{j} - 6\hat{k}$ and $2\hat{i} + 4\hat{j} - 2\hat{k}$. Kindly send me your answer keys to us - padasalai.net@gmail.com

- 26) Evaluate: $\frac{\text{Lim}}{x \to 0} \frac{\sin mx}{x}$
- 27) Evaluate: ∫x³e^{-2x} dx
- 28) Find the order and degree of the differential equation $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + \int y dx x^3$
- 29) Suppose two coins are tossed once, if x denote number of tails (i) write down the sample space (ii) find the inverse image of 1.
- Verify associative property of the following operation * defined by a*b = ab, $\forall a, b \in \mathbb{N}$

PART - III

Answer any seven questions. Question No. 40 is compulsory.

- 31) If |z| = 3, show that $7 \le |z+6-8i| \le 13$
- 32) Form a polynomial equation with integer coefficients with
- 33) The equation $Y = \frac{1}{32} x^2$ models cross sections of parabolic mirrors that are used for solar energy. There is a heating tube located at the focus of each parabola, how high is this tube located above the vertex of the parabonal
- 34) Find the coordinates of the point where the straight line
- $\vec{r} = \left(2\hat{i} \hat{j} + 2\hat{k}\right) + t\left(3\hat{i} + 4\hat{j} + 2\hat{k}\right) \text{ intersects the plane } x y + z 5 = \mathbf{0}$ $\mathbf{35}) \text{ Let } \mathbf{u}(\mathbf{x}, \mathbf{y}) = e^{-2y} \cos{(2\mathbf{x})} \ \forall (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^2, \text{ prove that } \mathbf{u} \text{ is a harmonic function in } \mathbf{n}^2$
- 36) Find the area of the region bounded by the line 6x+5y = 30, x-axis and the o lines x = -1 and x = 3.
- 37) Solve: $\frac{dy}{dx} + 2y = e^{-x}$
- 38) A random variable x has the probability mass function

	×	1	2	3	4	5
)	f(x)	K ²	2K ²	3K ²	2K	3K

- (i) Find the value of K
- (ii) $P(2 \le X \le 5)$
- 39) Prove that $p^{(q, r)} = (p^q)^r$ using truth table.
- 40) Find the rank of the matrix $\begin{bmatrix} 1 & 1 & 1 & 3 \\ 2 & -1 & 3 & 4 \\ 5 & -1 & 7 & 11 \end{bmatrix}$

PART - IV

Answer all the questions:

7×5=35

41) a] Solve
$$3x+3y-z = 11$$
, $2x-y+2z = 9$, $4x+3y+2z = 25$ (OR)

b] Evaluate:
$$\int\limits_{\pi_8^{\prime}}^{3\pi_8} \frac{1}{1+\sqrt{\tan x}} \, dx$$

4

42) a) If
$$2 \cos \alpha = x + \frac{1}{x}$$
 and $2 \cos \beta = y + \frac{1}{y}$ show that

(i)
$$\frac{x}{y} + \frac{y}{x} = 2\cos(\alpha - \beta)$$

(ii)
$$\frac{x^m}{y^n} - \frac{y^n}{x^m} = 2i \sin(m\alpha - n\beta)$$

(OR)

b] Solve: $(x^2-3y^2)dx + 2xy dy = 0$

43) a] Solve: $6x^4-35x^3+62x^2-35x+6=0$

(OR)

- b] Find the mean and variance of the random variable x whose probability density function is $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$
- 44) a] i) Find the value of $tan^{-1}(\sqrt{3}) sec^{-1}(-2)$
 - ii) Prove that $\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \frac{\pi}{4}$

(OR)

- b) Find the centre, foci and vertices of the hyperbola $9x^2-y^2-36x-6y+18=0$
- 45) a) Prove by vector method that the perpendiculars from the vertices to the opposite sides of a triangle are concurrent.

(OR)

- **b**] Sketch the curve $y = f(x) = x^3 6x 9$
- 46) a) $f(x, y) = tan^{-1} \left(\frac{x}{y}\right)$, find f_x , f_y and show that $f_{xy} = f_{yx}$

(OR)

- b) Verify (i) closure property (ii) commutative property (iii) associative property (iv) existence of identity and (v) existence of inverse for the operation XII on a subset A = {1, 3, 4, 5, 9} of the set of remainders {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
- 47) a] Find the parametric form of vector equation and Cartesian equation of the plane passing through the points (2, 2, 1) (1, -2, 3) and parallel to the straight line passing through the pants (2, 1, -3) and (-1, 5, -8)

 (OR)
 - b] Using integration find the area of the region bounded by triangle ABC whose vertices A, B and C are (-1, 1) (3, 2) and (0, 5) respectively