1) The principal argument of $\frac{-2}{1+i \sqrt{3}}$ is
a) $\pi / 3$
b) $2 \pi / 3$
c) $-2 \pi / 3$
d) $-\pi / 2$
2) If $A^{\top} A^{-1}$ is symmetric then $A^{2}=$
a) A^{-1}
b) $\left(A^{\top}\right)^{2}$
c) A^{\top}
d) $\left(A^{-1}\right)^{2}$
3) If $x+y=K$ is a normal to the parabola $y^{2}=12 x$ then the value of K is
a) 3
b) -1
c) 1
d) 9
4) According to the rational root theorem which number is not possible rational zero of $4 x^{7}+2 x^{4}-10 x^{3}-5$?
a) -1
b) $5 / 4$
c) $4 / 5$
d) 5
5) The angle between the line $\vec{r}=(\hat{i}+2 \hat{j}-3 \hat{k})+t(2 \hat{i}+\hat{j}-2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}+\hat{j})+4=0$ is
a) 0°
b) 30°
c) 45°
d) 90°
6) If $\sin ^{-1} x / 5+\operatorname{cosec}^{-1} 5 / 4=\pi / 2$ then the value of x is
a) 4
b) 5
c) 2
d) 3
7) The eccentricity of the ellipse $(x-3)^{2}+(y-4)^{2}=y^{2} / 9$ is
a) $\sqrt{3} / 2$
b) $1 / 3$
c) $1 / 3 \sqrt{2}$
d) $1 / \sqrt{3}$
8) The product of all four values of $(\cos \pi / 3+i \sin \pi / 3)^{3 / 4}$ is
a) -2
b) -1
C) 1
d) 2
9) If $\rho(A)=\rho(A / B)$ then the system $A x=B$ of linear equations is
a) consistent and has unique solution
b) consistent
c) consistent and has infinitely many solutions
d) inconsistent
10) $2 \hat{i}-\hat{j}+3 \hat{k}, 3 \hat{i}+2 \hat{j}+\hat{k}, \hat{i}+m \hat{j}+4 \hat{k}$ are coplanar then m is
a) 3
b) 0
c) -3
d) 1
11) Substraction is not a binary operation in
a) R
b) Z
c) N
d) Q
12) If the function $f(x)=1 / 12$ for $a<x<b$ represents a probability density function of a continuous random variable \times then which of the following cannot be the value of $a \& b$
a) $0 \& b$
b) $5 \& 17$
c) $7 \& 19$
d) $16 \& 24$
\times axis is
a) 100π
b) $\frac{100 \pi}{9}$
c) $\frac{100 \pi}{3}$
d) $\frac{100}{3}$
13) P is the amount of certain substance left in after time t. If the rate of
a) $\mathrm{P}=\mathrm{Ce}^{* 1}$
b) $P=C e^{k t}$
c) $P=c K t$
d) $\mathrm{Pt}=\mathrm{c}$
14) If $f(x, y)=e^{v . v}$ then $\frac{\partial f}{\partial x_{i} y}$ is
a) $x y e^{x y}$
b) $(1+x y) e^{x y}$
c) $(1+y) e^{x y}$
d) $(1+x) e^{x y}$
the curve $y=x^{4}$ is at
$\begin{array}{llll}\text { 16) Point of inflection of the curve } y=x^{4} & \text { is at } \\ \text { b) } x=1 & \text { c) } x=12 & \text { d) nowhere }\end{array}$
a) $x=0$
b) $x=1$
15) The value of $\int_{-1}^{1}|x| d x$
a) ${ }^{1}$,
b) $3 / 2$
c) $5 / 2$
d) $7 / 2$
16) The integrating factor of the differential equation $\frac{d y}{d x}+y=\frac{1+y}{\lambda}$ is
a) x^{2}
b) e^{x} / x
c) λe^{x}
d) e^{x}
17) The mean of a binomial distribution is 5 and its standard deviation is 2 then the value of n and p are
a) $(4 / 5,25)$
b) $(25,4 / 5)$
C) $(1 / 5,25)$
d) $(25,1 / 5)$
18) The maximum value of the function $x^{2} e^{-2 x}, x>0$ is
a) $1 / e$
b) $1 / 2 e$
c) $1 / e=$
d) $4 / e^{4}$

PART - II

Answer any 7 questions. Qn.no. 30 is compulsory.

21) Find the inverse of $A=\left(\begin{array}{ll}2 & -1 \\ 5 & -2\end{array}\right)$ by Gauss-Jordan method.
22) Show that $|3 z-5+i|=4$ represents a circle and find its centre and radius.
23) Find the domain of $\tan ^{-1} \sqrt{9-x^{2}}$
24) Examine the position of the point $(2,3)$ with respect to the circle $x^{2}+y^{2}-6 x-8 y+12=0$
25) Find the length of the perpendicular from the point $(1,-2,3)$ to the plane $x-y+z=5$
26) Solve: $x^{3}-3 x^{2}-33 x+35=0$.
27) Evaluate: $\int_{0}^{1} x^{2}(1-x)^{1} d x$
28) The mean and variance of a binomial variate x are respectively 2 and 1.5 find $P(X=0)$

Kindly send me your answer keys to us - padasalai.net@gmail.com

29) $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right) \quad B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ be any two boolean matrices of the same type find $A \times B$ and $A \wedge B$
30) Find the asymptotes of the curve $f(x)=\frac{x}{x+1}$

PART - III

Answer any $\mathbf{7}$ questions. Qn. no. $\mathbf{4 0}$ is compulsory.

31) Solve $2 x+2 y+z=5, x-y+z=1,3 x+y+2 z=4$ by rank method.
32) If $\omega=1$ is a cube root of unity. Show that $\left(1-\omega+\left(\omega^{2}\right)^{6}+\left(1+\omega-\omega^{2}\right)^{6}=128\right.$.
33) Prove that an angle in a semi circle is a right angle.
34) The orbit of Halley's comet is an ellipse 36.18 astronomical units long and by 9.12 astronomical units wide. Find its eccentricity.
35) Evaluate: $\operatorname{lt}_{x \rightarrow \pi / 2}^{L t} \frac{\sec x}{\tan x}$
36) If $v(x, y, z)=\log \left(x^{3}+y^{3}+z^{3}\right)$ find $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$
37) Evaluate: $\int_{\pi / 2}^{\pi / 2} x \cos x d x$
38) A six sided die is marked 2 on one face, 3 on two of its faces and 4 on remaining three faces. The die is thrown twice. If \times denotes the total score in two throws, find the values of the random variable and number of points in its inverse images.
39) Construct the truth table $(p \vee q) \wedge \sim q$
40) Form the differential equation by eliminating the arbitrary constants A and B from $y=A \cos x+B \sin x$

PART - IV
$7 \times 5=35$

Answer all the questions:

41) Investigate for what values of λ and μ the system of linear equations $x+2 y+z=7, x+y+\lambda z=\mu, x+3 y-5 z=5$ has (i) no solution (ii) a unique solution (iii) an infinite number of solutions.
(OR)
A garden is to be laidout in a rectangular area and protected by wire fence. What is the largest possible area of the fenced garden with 40 meters of wire.
42) If $z=x+i y$ and $\arg \left(\frac{z-1}{z+2}\right)=\frac{\pi}{4}$. Show that $x^{2}+y^{2}+3 x-3 y+2=0$
(OR)
Find the number of solution of the equation $\tan ^{-1}\left(x^{-1}\right)+\tan ^{-1}(x)+\tan ^{-1}(x+1)=\tan ^{-1}(3 x)$

Kindly send me your answer keys to us - padasalai.net@gmail.com
43) Find the sum of squares of roots of the equation $2 x^{4}-8 x^{3}+6 x^{2}-3=0$
(OR)

$$
z(x, y)=x \tan ^{-1}(x y), x=t^{2}, y=s e^{t}, s, t, \in R \text { find } \frac{\partial z}{\partial s} \text { at } s=t=1
$$

44) Find the area of the region bounded by $y=\cos x, y=\sin x$, the lines $x=\pi / 4$ and $x=5 \pi / 4$

Find the equations of tangents to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{64}=1$ which are parallel to $10 x-3 y+9=0$.
45) Find the parametric form of vector equation and Cartesian equations of the plane passing through the points $(2,2,1)(9,3,6)$ and perpendicular to the plane $2 x+6 y+6 z=9$

The probability density function of the random variable x is given by
$f(x)=\left\{\begin{array}{cc}16 x e^{-4 x} & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{array}\right.$ find the mean and variance of X.
46) Solve $\frac{d y}{d x}+2 y \cot x=3 x^{2} \operatorname{cosec}^{2} x$
(OR)
A bridge has a parabolic arch that is 10 m high in the centre and 30 m wide at the bottom. Find the height of the arch 6 m from the centre on either sides.
47) Suppose a person deposits Rs. 10,000 in a bank account at the rate of 5% per annum compounded continuously. How much money will be in his bank account 18 months later?
(OR)
$M=\left\{\left(\begin{array}{ll}\mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x}\end{array}\right): \mathbf{x} \in \mathbf{R}-\{0\}\right\}$ and let * be the matrix multiplication. Determine whether m is closed under *. If so examine the commutative and associative properties, existence of identity, existence of inverse properties for the operation * on M

