www.Padasalai.Net MATHEMATICSvww.TrbTnpsc.com Marks: 90					
Choo	se the correct An	PART-	·1	20x1=20	
1) The principal argument of $\frac{-2}{1+i\sqrt{3}}$ is					
	a) 7/3	b) $2\pi/3$	c) $-2\pi/3$	d) $-\pi/2$	
	2) If A ^T A ⁻¹ is symm	netric then $A^2 =$		/ 2	
	a) A^{-1} 3) If $x + y - K$ is a	b) (A ^T) ²	c) A ^T	d) (A ⁻¹) ²	
	3) If $x+y = K$ is a normal to the parabola $y^2 = 12x$ then the value of K is a) 3 b) -1 c) 1 d) 9				
	4) According to the	rational root theore	c) 1 m which number is r	d) 9	
4) According to the rational root theorem which number is not possible rational zero of $4x^7 + 2x^4 - 10x^3 - 5?$					
	a) -1	b) 5/4	c) 4/5	d) 5	
5) The angle between the line $\vec{r} = (\hat{i} + 2\hat{j} - 3\hat{k}) + t(2\hat{i} + \hat{j} - 2\hat{k})$ and the plane					
	$\vec{r} \cdot (\hat{i} + \hat{j}) + 4 = 0$ is				
	a) 0°	⁄b) 30°	c) 45°	d) 90°	
6) If $\sin^{-1} \frac{x}{5} + \csc^{-1} \frac{5}{4} = \frac{\pi}{2}$ then the value of x is					
	·a) 4	b) 5	c) 2	d) 3	
7) The eccentricity of the ellipse $(x-3)^2 + (y-4)^2 = \frac{y^2}{2}$ is					
	a) $\sqrt{3}/2$	b) $\frac{1}{3}$	c) $\frac{1}{3\sqrt{2}}$	d) $\frac{1}{\sqrt{3}}$	
8) The product of all four values of $(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3})^{\frac{3}{4}}$ is					
		b) -1	c) 1	d) 2	
9) If $\rho(A) = \rho(A_B)$ then the system Ax = B of linear equations is					
 a) consistent and has unique solution c) consistent and has infinitely many solutions 				b) consistentd) inconsistent	
10)	10) $2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 3\hat{\mathbf{k}}$, $3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\hat{\mathbf{l}} + m\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ are coplanar then m is				
	a) 3	b) 0	c) -3	d) 1	
11) Substraction is not a binary operation in					
	a) R	b) Z	c) N	d) Q	
12)	If the function $f(x) = \frac{1}{12}$ for a < x < b represents a probability density				
	function of a continuous random variable x then which of the following cannot be the value of a & b				
	a) 0 & b	b) 5 & 17	c) 7 & 19	d) 16 & 24	

Kindly send me your answer keys to us - padasalai.net@gmail.com

- 23) Find the domain of $\tan^{-1}\sqrt{9-x^2}$
- 24) Examine the position of the point (2, 3) with respect to the circle $x^2+y^2-6x-8y+12=0$
- 25) Find the length of the perpendicular from the point (1, -2, 3) to the plane x-y+z = 5
- 26) Solve: $x^3-3x^2-33x+35 = 0$.

27) Evaluate:
$$\int_{0}^{1} \mathbf{x}^{2} (1-\mathbf{x})^{3} d\mathbf{x}$$

28) The mean and variance of a binomial variate x are respectively 2 and 1.5 find P(X = 0)

Kindly send me your answer keys to us - padasalai.net@gmail.com

Tsi12M

- 3

29) $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ be any two boolean matrices of the same type find $A \lor B$ and $A \land B$

30) Find the asymptotes of the curve $f(x) = \frac{x^2}{x+1}$

PART - III

7x3=21

Answer any 7 questions. Qn. no. 40 is compulsory.

- 31) Solve 2x+2y+z = 5, x-y+z = 1, 3x+y+2z = 4 by rank method.
- 32) If $\omega \neq 1$ is a cube root of unity. Show that $(1-\omega+\omega^2)^6+(1+\omega-\omega^2)^6 = 128$.
- Prove that an angle in a semi circle is a right angle.
- 34) The orbit of Halley's comet is an ellipse 36.18 astronomical units long and by 9.12 astronomical units wide. Find its eccentricity.

$$\begin{array}{ccc} \text{Lt} & \text{sec x} \\ \text{35) Evaluate:} & x \to \pi_2' & \text{tan x} \end{array}$$

36) If v(x, y, z) = log (x³+y³+z³) find
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$$

37) Evaluate:
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x \, dx$$

- 38) A six sided die is marked 2 on one face, 3 on two of its faces and 4 on remaining three faces. The die is thrown twice. If x denotes the total score in two throws, find the values of the random variable and number of points in its inverse images.
- 39) Construct the truth table $(p \lor q) \land \neg q$

2 2 5

40) Form the differential equation by eliminating the arbitrary constants A and B from $y = A \cos x + B \sin x$

PART - IV

7x5=35

 \supset

Answer all the questions:

41) Investigate for what values of λ and μ the system of linear equations x+2y+z = 7, $x+y+\lambda z = \mu$, x+3y-5z = 5 has (i) no solution (ii) a unique solution (iii) an infinite number of solutions.

(OR)

A garden is to be laidout in a rectangular area and protected by wire fence. What is the largest possible area of the fenced garden with 40 meters of wire.

42) If
$$z = x + iy$$
 and $\arg\left(\frac{z-i}{z+2}\right) = \frac{\pi}{4}$. Show that $x^2 + y^2 + 3x - 3y + 2 = 0$

(OR)

Find the number of solution of the equation

 $\tan^{-1}(x^{-1}) + \tan^{-1}(x) + \tan^{-1}(x+1) = \tan^{-1}(3x)$

Kindly send me your answer keys to us - padasalai.net@gmail.com

Te12M

43) Find the sum of squares of roots of the equation $2x^4-8x^3+6x^2-3=0$

(OR)

 $z(x, y) = x \tan^{-1}(x y), x = t^2, y = se^t, s, t, \in R \text{ find } \frac{\partial z}{\partial s} \text{ at } s = t = 1$

44) Find the area of the region bounded by $y = \cos x$, $y = \sin x$, the lines $x = \frac{\pi}{4}$

and $x = \frac{5\pi}{4}$

(OR)

Find the equations of tangents to the hyperbola $\frac{x^2}{16} = \frac{y^2}{64} = 1$ which are

parallel to 10x-3y+9 = 0.

45) Find the parametric form of vector equation and Cartesian equations of the plane passing through the points (2, 2, 1) (9, 3, 6) and perpendicular to the plane 2x+6y+6z = 9

(OR)

The probability density function of the random variable x is given by

$$f(\mathbf{x}) = \begin{cases} 16\mathbf{x}e^{-4\mathbf{x}} \text{ for } \mathbf{x} > 0\\ 0 \quad \text{for } \mathbf{x} \le 0 \end{cases} \text{ find the mean and variance of X.}$$

46) Solve
$$\frac{dy}{dx} + 2y \cot x = 3x^2 \csc^2 x$$

(OR)

A bridge has a parabolic arch that is 10 m high in the centre and 30 m wide at the bottom. Find the height of the arch 6 m from the centre on either sides.

47) Suppose a person deposits Rs.10,000 in a bank account at the rate of 5% per annum compounded continuously. How much money will be in his bank account 18 months later?

(OR)

 $M = \left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix} : x \in R - \{0\} \right\}$ and let * be the matrix multiplication. Determine

whether m is closed under *. If so examine the commutative and associative properties, existence of identity, existence of inverse properties for the operation * on M