www.TrbTnpsc.com

												R2	202	24	
No. of I	Printed F	Pages : 4	4			Re	gister	Number							
12						PART	- 111								
					, awg	μaγ;	/ PH	YSICS							
					-		Version								
Time A	llowed	: 3.	00 Ηοι	urs]				[Max	imur	n Ma	arks	: 7	70	
Instru	ctions	:	(1)		-	-	-	fairness o [.] the Hall S	-	-			ely		
			(2)	Use B I	lue or Bla	ck ink	to write	and unde	erline	and	penc	il to c	lraw (diagra	ams.
						PART	[-]								
Note	:	(i) (ii)	Choos	se the r		oropria		wer from esponding			n fol	15x1 ur alt			and
1.	Which	charge	config	uration	produce	es a un	iform e	electric fie	eld?						
	(a)	point c	charge			(b)	Unifor	mly charg	ged iı	nfinit	te pla	ane			
	(c)	Unifor	mly cha	arged ir	nfinite lin	е									
	(d)	Unifor	mly cha	arged s	pherical	shell		7							
2.	A para	llel plat	e capa	citor st	ores a ch	arge (2 at a v	oltage V.	Supp	ose	the a	area	of th	e pa	rallel
	plate o	capacito	or and	the dis	tance be	etween	the pl	ates are	each	l dou	blec	the	n wh	ich is	s the
	quanti	ty that	will cha	ange?											
	(a)	Capac	itance				(b)	Charge							
	(C)	Voltag			•		(d)	Energy of		-					
3.			esistan	ice of a	2.1 V ce	ll whic	h gives	s a curren	t of C).2A	throu	ugh a	resi	stan	ce of
	10 Ω is														
	(a)	0.2 Ω		(b)	0.5 Ω		(C)	0.8 Ω		(d)		1.0 (2		
4.	A wire	of leng	th I car	ries a c	urrent I a	along t	he Y di	rection ar	nd ma	agne	etic fi	ield is	s give	en by	$\vec{B} =$
	$\frac{\beta}{\sqrt{3}}(\hat{\iota} +$	ĵ + ƙ)1	Г. The	magnit	ude of Lo	orentz	force a	acting on	the w	vire i	S				
	(a)	$\sqrt{\frac{2}{\sqrt{3}}}\beta$	ll	(b)	$\sqrt{\frac{1}{\sqrt{3}}}\beta ll$		(c) √2	βI <i>l</i>		(d)		$\sqrt{\frac{1}{\sqrt{2}}}$	βIl		
5.	In an o	oscillati	ng LC d	circuit,	the maxi	mum	charge	on the ca	apac	itor i	s Q.	The	char	ge or	n the
	capaci	tor whe	en the e	energy	is stored	equal	ly betw	een the e	electr	ic ar	nd m	agne	tic fi	eld is	5:
	(a)	$\frac{Q}{\sqrt{2}}$		(b)	$\frac{Q}{\sqrt{3}}$		(C)	$\frac{Q}{2}$		(d)		Q			

Kindly send me your answer keys to us - padasalai.net@gmail.com

[Turn Over

	-				
www.	Pad	282	lai.	Net	

R202	24				2		•	
					-			
6.	Frau	nhofer lines ar	e an ex	ample of spec	trum.			
	(a)	line emissio	on		(b)	line absorpt	ion	
	(C)	band emiss	ion		(d)	band absor	ption	
7.	Whic	h of the follow	ing is a	n electromagn	ietic wa	ve?		
	(a)	α – rays			(b)	β – rays		
	(C)	γ – rays			(d)	All of the ab	ove	
8.	Stars	s twinkle due t	0:					×.
	(a)	Reflection			(b)	Total interna	al reflec	ction
	(C)	Refraction			(d)	Polarisation		
9.	In a	Young's doubl	e slit e	periment, the	slit sep	paration is dou	bled. T	o maintain the same
	fring	e spacing on t	ne scre	en, the screen	-to-slit d	distance D mus	st be ch	nanged to :
	(a)	2D	(b)	D 2	(C)	$\sqrt{2}$ D	(d)	$\frac{\mathrm{D}}{\sqrt{2}}$
10.	The	wavelength λ_e	of an e	lectron and λ_p	of a ph	noton of same	energy	E are related by
	(a)	$\lambda_p \propto \lambda_e$	(b)	$\lambda_p \propto \sqrt{\lambda_e}$	(c)	$\lambda_p \propto rac{1}{\sqrt{\lambda_e}}$	(d)	$\lambda_p \propto \lambda_e^2$
11.	Emis	sion of electro	ns by t	he absorption	of heat	energy is calle	d	emission.
	(a)	photoelectr	c (b)	field	(c)	thermionic	(d)	secondary
12.	The	nucleus is app	roximat	tely spherical i	n shape	e. Then the sur	face ar	ea of nucleus having
	mass	s number A va	ries as					
	(a)	$A^{\frac{2}{3}}$	(b)	$A^{\frac{4}{3}}$	(C)	$A^{\frac{1}{3}}$	(d)	$A^{\frac{5}{3}}$
13.	The	Zener diode is	primari	ly used as :				
	(a)	Rectifier			(b)	Amplifier		
	(C)	Oscillator			(d)	Voltage regu	llator	
14.	The I	particle size of	ZnO m	aterial is 30 nr	n. Base	ed on the dime	nsion it	is classified as:
	(a)	Bulk materi	al		(b)	Nanomateri	al	
	(C)	Soft materia	al		(d)	Magnetic ma	aterial	
15.	The I	plueprint for m	aking u	ıltra-durable sy	nthetic/	material is mi	micked	from:
	(a)	Lotus leaf			(b)	Morpho butt	erfly	
	(\mathbf{c})	Parrot fish			(d)	Peacock fea	thor	

(c) Parrot fish (d) Peacock feather

PART – II

Note :Answer any six questions. Question No. 24 is compulsory.6x2=12

- 16. Define electric dipole moment. Give its unit.
- 17. What is displacement current?
- 18. State Ampere's circuital law.
- 19. Mention the ways of producing induced emf.
- 20. Write the uses of Infra-Red rays.
- 21. Why does the sky appears blue?
- 22. What is Peltier effect?
- 23. Define stopping potential.
- 24. An ideal transformer has 460 and 40,000 turns in the primary and secondary coils respectively. Find the voltage developed as per turn of the secondary coil if the transformer is connected to a 230V Ac mains.

PART - III

Note :Answer any six questions. Question No. 33 is compulsory.6x3=18

- 25. Obtain the expression for an energy stored in the parallel plate capacitor.
- 26. State Kirchoff's current and voltage rule.
- 27. Mention the various energy losses in a transformer.
- 28. Derive the relation between f and R for a spherical mirror.
- 29. Mention the difference between interference and diffraction.
- 30. Give the uses of polaroid's.
- 31. List out salient features of magnetic Lorentz force.
- 32. Give the construction and working of a photo emission cell.
- 33. Find the impedance of a series RLC circuit, if the inductive reactance, capacitive reactance and resistance are 184Ω , 144Ω and 30Ω respectively. Also calculate the phase angle between voltage and current.

[Turn Over

www.TrbTnpsc.com

4

R2024

PART – IV

Note : Answer **all** the questions.

5x5=25

34. (a) Calculate the electric field due to a dipole on its axial line.

(OR)

- (b) Deduce the relation for the magnetic field at a point due to an infinitely long straight conductor carrying current.
- 35. (a) Explain the determination of the internal resistance of cell using voltmeter.

(OR)

(OR)

- (b) Explain the construction and working of a transformer.
- 36. (a) Write down Maxwell equations in integral form.
 - (b) Obtain lens maker's formula.
- (a) Describe Davisson-Germer experiment which demonstrated the wave nature of electrons.

(OR)

- (b) Explain the spectral series of hydrogen atom.
- 38. (a) What is frequency? List out the advantage and limitations of frequency modulation.

(OR)

(b) Explain the construction and working of a full wave rectifier.

-000-

HIGHER SECONDARY SECOND YEAR REVISION EXAMINATION – JANUARY 2024 PHYSICS KEY ANSWER

Note:

- 1. Answers written with **Blue** or **Black** ink only to be evaluated.
- 2. Choose the most suitable answer in Part A, from the given alternatives and write the option code and the corresponding answer.
- 3. For answers in Part-II, Part-III and Part-IV like reasoning, explanation, narration, description and listing of points, students may write in their own words but without changing the concepts and without skipping any point.
- 4. In numerical problems, if formula is not written, marks should be given for the remaining correct steps.
- 5. In graphical representation, physical variables for X-axis and Y-axis should be marked.

Part – I

Answer all the questions.

15x1=15

Q. No.	OPTION	ANSWER	Q. No.	OPTION	ANSWER
1	(b)	Uniformly charged infinite plane	9.0	(a)	2D
2	(d)	Energy density	10	(d)	$\lambda_p \propto \lambda_e^2$
3	(b)	0.5 Ω	11	(C)	thermionic
4	(a)	$\sqrt{\frac{2}{\sqrt{3}}}\beta ll$	12	(a)	$A^{\frac{2}{3}}$
5	(C)	$\frac{Q}{\sqrt{2}}$	13	(d)	Voltage regulator
6	(b)	line absorption	14	(b)	Nano material
7	(C)	γ – rays	15	(C)	Parrot fish
8	(C)	Refraction			

PART – II

Answer any **six** questions. Question number **24** is compulsory.

6x2=12

	Electric dipole moment and unit		
	The magnitude of the electric dipole moment (p) is equal to the	1 ½	
16	product of the magnitude of one of the charges (q) and the distance		2
	(2a) between them. (i.e) $ \vec{p} $ = q.2a. Its unit is Cm.	1/2	

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

Displacement current		
	2	2
	-	2
	2	2
times net current enclosed by the loop. $\oint \vec{B} \cdot \vec{dl} = \mu_0 I_0$		2
Methods of producing induced emf		
By changing the magnetic field 'B'		2
By changing the area 'A' of the coil	2	2
By changing the relative orientation θ of the coil with magnetic field.		
Uses of infra-red rays		
(i) Producing dehydrated fruits	Any 4	
(ii) Green housed to keep the plants warm,	4 x ½	2
(iii) Heat therapy for muscular pain or sprain	=2	2
(iv) TV remote as a signal carrier , to look through haze off or mist		
(v) Night vision or infrared photography		
		2
	2	2
	2	2
í Ča		
		_
	2	2
(i) Secondary voltage, $V_{\rm S} = \frac{V_{\rm P}N_{\rm S}}{N_{\rm P}}$	1	
$=\frac{230 \times 40000}{460}$; V _S = 20000V		2
Secondary voltage per turn, $\frac{V_S}{N_S} = \frac{20000}{40000}$; = 0.5 V	1	
	Methods of producing induced emfBy changing the magnetic field 'B'By changing the area 'A' of the coilBy changing the relative orientation θ of the coil with magnetic field.Uses of infra-red rays(i)(i)Producing dehydrated fruits(ii)(iii)Heat therapy for muscular pain or sprain(iv)TV remote as a signal carrier, to look through haze off or mist(v)Night vision or infrared photographySky appears blue colourAccording to Rayleigh's scattering, shorter wavelengths (violet) scatteredmuch more than longer wavelengths (Red). As our eyes are moresensitive to blue colour than violet, the sky appears blue during day time.Peltier effectWhen an electric current is passed through a circuit of a thermocouple,heat is evolved at one junction and absorbed at the other junction. This isknown as Peltier effect.Peltier effect is reversible.Stopping potentialThe negative or retarding potential given to collecting electrode which isjust sufficient to stop the most energetic photoelectrons emitted andmake the photo current zero is called stopping potential or cut - offpotential.NP = 460 turns; NS = 40,000 turns; VP = 230 V; RS = 104 Ω (i) Secondary voltage, $V_S = \frac{V_P N_S}{N_P}$ $= \frac{230 \times 40000}{460}$; $V_S = 20000V$	Into play in the region in which the electric field and the electric flux are changing with time. That is whenever the change in electric field takes place, displacement current is produced.2Ampere's circuital law It state that the line integral of magnetic field over a closed loop is μ_0 times net current enclosed by the loop. $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_0$ 2Methods of producing induced emf By changing the magnetic field 'B' By changing the relative orientation θ of the coil with magnetic field.2Uses of Infra-red rays (i) Producing dehydrated fruits (ii) Green housed to keep the plants warm, (iii) Heat therapy for muscular pain or sprain (iv) TV remote as a signal carrier, to look through haze off or mist (v) Night vision or infrared photographyAny 4 $4 \times \frac{1}{2}$ =2Sky appears blue colour According to Rayleigh's scattering, shorter wavelengths (violet) scattered much more than longer wavelengths (Red). As our eyes are more sensitive to blue colour than violet, the sky appears blue during day time.2Pettler effect When an electric current is passed through a circuit of a thermocouple, heat is evolved at one junction and absorbed at the other junction. This is just sufficient to stop the most energetic photoelectrone which is just sufficient to stop the most energetic photoelectrone emitted and make the photo current zero is called stopping potential or cut - off potential.2NP = 460 turns; NS = 40,000 turns; VP = 230 V; RS = 104 Ω (i) Secondary voltage, $V_S = \frac{V_P N_S}{N_P}$ 1 $= \frac{230 \times 40000}{4600}; V_S = 20000V$ 1

Ansv	ver any six questions. Question number 33 is compulsory . 62	x3=18	
25	Energy stored in capacitor Capacitor is a device used to store charges and energy. When a battery is connected to the capacitor, electrons of total charge '-Q' are transferred from one plate to other plate. For this work is done by the battery. This work done is stored as electrostatic energy in capacitor. To transfer ' dQ ' for a potential difference 'V', the work done is	1	3
	$dW = VdQ = \frac{Q}{c} dQ \qquad [\because V = \frac{Q}{c}]$ The total work done to charge a capacitor, $W = \int_{0}^{Q} \frac{Q}{c} dQ ; = \frac{1}{c} \left[\frac{Q^{2}}{2}\right]_{0}^{Q} = \frac{Q^{2}}{2c}$	1	0
	This work done is stored as electrostatic energy of the capacitor, (i.e) $U_{E} = \frac{Q^{2}}{2C} = \frac{1}{2} CV^{2} \qquad [\because Q = CV]$	1	
	<u>Kirchhoff's first law (current rule or junction rule)</u> It states that the algebraic sum of currents at any junction in a circuit is zero . ($\sum I = 0$). It is a statement of conservation of electric charge.	1	
26	<u>Kirchhoff's second law (voltage rule or loop rule)</u> It states that in a closed circuit the algebraic sum of the products of the current and resistance of each part of the circuit is equal to the total emf included in the circuit ($\sum IR = \sum \xi$). It is a statement of conservation of energy for an isolated system.	2	3
27	 Energy losses in a transformer (i) Core loss or Iron loss: Hysteresis loss and eddy current loss are known as core loss or Iron loss. When transformer core is magnetized or demagnetized repeatedly by the alternating voltage applied across primary coil, hysteresis takes place and some energy lost in the form of heat. It is minimized by using silicone steel in making transformer core. Alternating magnetic flux in the core induces eddy currents in it. Therefore, there is energy loss due to the flow of eddy current called eddy current loss. It is minimized by using very thin laminations of transformer core. (ii) Copper loss: The primary and secondary coils in transformer have electrical resistance. When an electric current flows through them, some amount of energy is dissipated due to Joule's heating and it is known as copper loss. It is 	1	3
	 minimized by using wires of larger diameter (thick wire) (iii) Flux leakage: The magnetic flux linked with primary coil is not completely linked with secondary. Energy loss due to this flux leakage is minimize by winding coils one over the other. 	1	

www.TrbTnpsc.com

4

	Relation between f and R						
	(a) Concave mirror	(b) Convex Mirror	1⁄2				
	Let 'C' be the centre of curvature						
	Consider a light ray parallel to th	e principal axis and incident at 'M' on					
	the mirror. After reflection, it will line 'CM' is the normal to the mirr	pass through principal focus 'F'. The	1⁄2				
	From the figure (a),						
28	Angle of incidence; = $\angle AMC$ Angle		3				
	By the law of reflection. we have,						
	Thus, , $\angle MCP = i$ & $\angle MFP$	1					
	From ΔMCP and ΔMFP	-					
	$\tan i = \frac{PM}{PC}$; $\tan 2i = \frac{PI}{P}$						
	FG I						
	As the angles are small, we have	1/2					
	$i = \frac{PM}{PC}$ (1) ; $2i = \frac{PM}{PE}$ (2)						
	Put equation (1) in equation						
	$2\frac{PM}{PC} = \frac{PM}{PF}$ (or) 2 PI	1⁄2					
	$f = \frac{R}{2} \qquad (3)$						
	Interference	Diffraction					
	Superposition of two waves	Bending of waves around edges					
	Superposition of waves from	Superposition wave fronts emitted					
	two Coherent sources.	from various points of the same wave front.					
29	Equally spaced fringes.	Unequally spaced fringes	Any 3	3			
	Intensity of all the bright	Intensity falls rapidly for higher	3 x 1 = 3				
	fringes is almost same	orders	- 3				
	Large number of fringes are	Less number of fringes are					
	obtained	obtained					

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

	<u>Uses of Polaroid's</u> Used in goggles and cameras to avoid glare of light Used in holography (three dimensional motion pictures) Used to improve contrast in old oil paintings Used in optical stress analysis .	Any 6 6 x ½ =3	
30	Used as window glasses to control the intensity of incoming light Polarized needle beam acts as needle to read / write in compact discs (CDs) Polaroid produce polarized lights to be used in liquid crystal display (LCD)		3
	Properties of Lorentz magnetic force (i) \vec{F}_m is directly proportional to the magnetic field (\vec{B})		
	(i) $\mathbf{F_m}$ is directly proportional to the magnetic field (B) (ii) $\vec{F_m}$ is directly proportional to the velocity ($\vec{\mathbf{v}}$)		
	(iii) \vec{F}_{m} is directly proportional to sine of the angle between the velocity and magnetic field.	Any 6 6 x ½	
31	(iv) \vec{F}_m is directly proportional to the magnitude of the charge	=3	3
	(v) The direction of \vec{F}_m is always perpendicular to \vec{v} and \vec{B}		
	(vi) The direction of \vec{F}_m on negative charge is opposite to the		
	direction of \overrightarrow{F}_m on positive charge		
	(vii) If the of the charge is along the magnetic field, then \overrightarrow{F}_m is zero.		
	Photo emissive cell It consists of an evacuated glass or quartz bulb in which two metallic electrodes a cathode and an anode are fixed. The cathode C is semi- cylindrical in shape and is coated with a photo sensitive material. The anode A is a thin rod or wire kept along the axis of the semi- cylindrical cathode. A potential difference is applied between the anode and the cathode through a galvanometer G. Working	1	
32	Working: When cathode is illuminated, electrons are emitted	1	3
	from it. These electrons are attracted by anode and hence a current is produced which is measured by the galvanometer. For a given cathode, the magnitude of the current depends on (1) the intensity to incident radiation and (2) the potential difference between anode and cathode.	1	

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

www.TrbTnpsc.com

6

	$X_L = 184 \Omega; X_C = 144 \Omega; R = 30 \Omega$		
	(i) The impedance is Impedance, Z = $\sqrt{R^{2+(X_{L}-X_{C})^{2}}}$	1 1⁄2	
	$=\sqrt{30^{2+}(184-144)^2}$; $=\sqrt{900+1600}$		
33	Impedance, Z = 50 Ω		3
	(ii) Phase angle is $\tan \phi = \frac{X_L - X_C}{R}$; $\frac{184 - 144}{30}$; = 1.33; ϕ = 53.1°	1 ½	
	Since the phase angle is positive, voltage leads current by 53.1° for this		
	inductive circuit.		

Answer all the questions.

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

Kindly send me your answer keys to us - padasalai.net@gmail.com

8

www.TrbTnpsc.com

9

Construction:		
It consists of two colls of high mutual N turns		
inductance wound over the same transformer		
core made up of silicone steel. To avoid eddy	1	
current loss, the core is generally laminated.		
The alternating voltage is applied across		
primary coil (P), and the output is taken across		
secondary coil (S)		
The assembled core and coils are kept in a container which is filled with		
suitable medium for better insulation and cooling purpose.		
Working:		
The alternating voltage given to the primary coil, set up an alternating		
magnetic flux in the laminated core. As the result of flux change, emf is		
induced in both primary and secondary coils.	1	
The emf induced in the primary coil ' \in_P ' is almost equal and opposite to the		
applied voltage 'VP' and is given by, $V_P = \epsilon_P = -N_P \frac{d\phi_B}{dt}$ (1)		
The frequency of alternating magnetic flux is same as the frequency of		
applied voltage. Therefore induced in secondary will also have same		
frequency as that of applied voltage, The emf induced in the secondary coil	17	
'Es' is $V_s = E_s = -N_c \frac{d\phi_B}{d\phi_B}$	1⁄2	
$ `\in_{S}' is, V_{S} = \in_{S} = -N_{S} \frac{d\phi_{B}}{dt} $ (2) Dividing equating (1) by (2), $\frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}} $ (3)		
Dividing equating (1) by (2), $\frac{13}{V_P} = \frac{13}{N_P}$ (3)		
Where, $K \rightarrow$ Transformation ratio	1/2	
For an ideal transformer, Input Power = Output Power	72	
$V_P i_P = V_S i_S; \frac{V_S}{V_P} = \frac{i_P}{i_S} \dots \dots \dots (4)$		
From equation (3) and (4), we have		
$\frac{V_S}{V_P} = \frac{N_S}{N_P} = \frac{i_P}{i_S} = K$ (5)	1	
(i) If K > 1 (or) N _S > N _P , then $V_S > V_P$ and $\mathbf{i}_s < \mathbf{i}_P$		
This is step up transformer in which voltage increased and the corresponding		
current is decreased.	1 (
(ii) If K < 1 (or) N _S < N _P , then V _S < V _P and $i_{s} > i_{P}$	1/2	
This is step down transformer in which voltage decreased and the		
corresponding current is increased.		
Efficiency of a transformer:		
The efficiency (η) of a transformer is defined as the ratio of the useful output		
power to the input power.		
$\eta = \frac{\text{Output Power}}{\text{Input Power}} \times 100\%$		

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

36	Maxwell equations - Integral form:		
(a)	Electrodynamics can be summarized into four basic equations, known as		
	Maxwell's equations. Maxwell's equations completely explain the behaviour of		
	charges, currents and properties of electric and magnetic fields.		
	This equation ensures the existence of electromagnetic waves.		
	Equation - 1 : It is nothing but Gauss's law		
	It relates the net electric flu to net electric charge enclosed in a surface.		
	Mathematically, Gauss law is expressed as, $\oint \vec{E} \cdot \vec{dA} = \frac{Q_{\text{closed}}}{\epsilon_0} \dots \dots (1)$	1	
	Here, $\vec{E} \rightarrow$ Electric field, $Q_{closed} \rightarrow$ Charge enclosed		
	This equation is true for either discrete or continuous distribution of charges.		
	It also indicates that the electric field lines start from positive change and		
	terminate at negative charge.		
	The electric field lines do not form a continuous closed path (i.e.) isolated		
	positive or negative charges can exist.		
	Equation - 2:		
	It has no name. But this law of similar to Gauss law in electrostatics. Hence this law can be called as Gauss's law in magnetism . According to this law, the		
	surface integral of magnetic field over a closed surface is zero.	1	
	Mathematically, this law can be expressed as, $\oint \vec{B} \cdot \vec{dA} = 0$ (2)		
	$\vec{B} \rightarrow$ Magnetic field.		5
	This equation implies that the magnetic field lines form a continuous closed path. (i.e.) no isolated magnetic monopole exists		
	Equation - 3 :		
	This is Faraday's laws of electromagnetic induction. This law relates electric		
	field with the changing magnetic flux. This equation implies that, the line	1 ½	
	integral of the electric field around any closed path is equal to the rate of		
	change of magnetic flux through the closed path bounded by the surface.		
	Mathematically it is expressed as, $\oint \vec{E} \cdot \vec{dl} = \frac{d\phi_B}{dt}$ (3)		
	$\vec{E} \rightarrow$ Electric field		
	The electrical energy supplied to our houses from electricity board by using		
	Faraday's law of induction.		
	Equation - 4 :		
	It is modified Ampere's circuital law and also called as Ampere - Maxwell's		
	law. This law relates the magnetic field around any closed path to the		
	conduction current and displacement current through that path.		
	Mathematically, $\oint \vec{B} \cdot \vec{dl} = \mu_0 (I_C + I_D)$ (or)	1 1⁄2	
	$\oint \vec{B} \cdot \vec{dl} = \mu_0 I_C + \mu_0 \varepsilon_0 \frac{d}{dt} \int \vec{E} \cdot \vec{dA}.$ Here, $\vec{B} \rightarrow$ Magnetic field.		
	It implies that both conduction and displacement current produces magnetic		
	field.		

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

www.TrbTnpsc.com

11

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

www.TrbTnpsc.com

37 (b) Spectral series of hydrogen atom: When an electron jumps from n th orbit to nth orbit, a spectral line was obtained whose wave number (i.e.) reciprocal of wave length is, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{n^2} - \frac{1}{m^2} \right]$. Here, R → Rydberg Constant (R = 1.097 x 10 ⁷ ms ⁻¹) From m>n, various spectral series are obtained. (1) Lyman Series: n = 1 and m = 2, 3, 4, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{1^2} - \frac{1}{m^2} \right]$ They lie in ultra violet region. (2) Balmer Series: n = 2 and m = 3, 4, 5, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{2^2} - \frac{1}{m^2} \right]$ They lie in visible region. (3) Paschen Series: n = 3 and m = 4, 5, 6, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{m^2} \right]$ They lie in Infra-red region. (4) Brackett Series: n = 4 and m = 5, 6, 7, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ They lie in middle infra-red region. (5) Pfund Series: n = 5 and m = 6, 7, 8, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ They lie in fira-red region. 1 1 1 1 1 1 1 1				
obtained whose wave number (i.e.) reciprocal of wave length is, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{n^2} - \frac{1}{m^2} \right]$. Here, $R \rightarrow Rydberg$ Constant ($R = 1.097 \times 10^7 \text{ ms}^4$) From m>n, various spectral series are obtained. (1) Lyman Series: $n = 1 \text{ and } m = 2, 3, 4, \dots$. Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{1^2} - \frac{1}{m^2} \right]$ They lie in ultra violet region. (2) Balmer Series: $n = 2 \text{ and } m = 3, 4, 5, \dots$. Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{2^2} - \frac{1}{m^2} \right]$ They lie in visible region. (3) Paschen Series: $n = 3 \text{ and } m = 4, 5, 6, \dots$. Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{m^2} \right]$ They lie in infra-red region. (4) Brackett Series: $n = 4 \text{ and } m = 5, 6, 7, \dots$. Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ They lie in middle infra-red region. (5) Pfund Series: $n = 5 \text{ and } m = 6, 7, 8, \dots$. Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$	37	Spectral series of hydrogen atom:		
$\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{n^2} - \frac{1}{m^2} \right]. \text{ Here, } R \rightarrow \text{Rydberg Constant} \\ (R = 1.097 \times 10^7 \text{ ms}^{-1}) \\ \text{From m>n, various spectral series are obtained.} \\ \textbf{(1) Lyman Series:} \\ n = 1 \text{ and } m = 2, 3, 4, \dots. \\ \text{Hence the wave number, } \bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{1^2} - \frac{1}{m^2} \right] \\ \text{They lie in ultra violet region.} \\ \textbf{(2) Balmer Series:} \\ n = 2 \text{ and } m = 3, 4, 5, \dots. \\ \text{Hence the wave number, } \bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{2^2} - \frac{1}{m^2} \right] \\ \text{They lie in visible region.} \\ \textbf{(3) Paschen Series:} \\ n = 3 \text{ and } m = 4, 5, 6, \dots. \\ \text{Hence the wave number, } \bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{2^2} - \frac{1}{m^2} \right] \\ \text{They lie in linfra-red region.} \\ \textbf{(4) Brackett Series:} \\ n = 4 \text{ and } m = 5, 6, 7, \dots. \\ \text{Hence the wave number, } \bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right] \\ \text{They lie in middle infra-red region.} \\ \textbf{(5) Pfund Series:} \\ n = 5 \text{ and } m = 6, 7, 8, \dots. \\ \text{Hence the wave number, } \bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right] \\ \textbf{(5) Pfund Series:} \\ n = 5 \text{ and } m = 6, 7, 8, \dots. \\ \text{Hence the wave number, } \bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right] \\ \textbf{(b) Pfund Series:} \\ n = 5 \text{ and } m = 6, 7, 8, \dots. \\ \text{Hence the wave number, } \bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right] \\ \textbf{(b) Pfund Series:} \\ n = 5 \text{ and } m = 6, 7, 8, \dots. \\ \text{Hence the wave number, } \bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right] \\ \textbf{(b) Pfund Series:} \\ n = 5 \text{ and } m = 6, 7, 8, \dots. \\ \textbf{(b) Pfund Series:} \\ n = 5 \text{ and } m = 6, 7, 8, \dots. \\ \textbf{(b) Pfund Series:} \\ n = 5 \text{ and } m = 6, 7, 8, \dots. \\ \textbf{(b) Pfund Series:} \\ n = 5 \text{ and } m = 6, 7, 8, \dots. \\ \textbf{(b) Pfund Series:} \\ n = 5 \text{ and } m = 6, 7, 8, \dots. \\ \textbf{(b) Pfund Series:} \\ \textbf{(b) Pfund Series:} \\ \textbf{(c) Pfund Series:} \\ (c) Pfund Se$	(b)			
(R = 1.097 x 10 ⁷ m ⁻¹) From m>n, various spectral series are obtained. (1) Lyman Series: n = 1 and m = 2, 3, 4, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{1^2} - \frac{1}{m^2}\right]$ They lie in ultra violet region. (2) Balmer Series: n = 2 and m = 3, 4, 5, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{2^2} - \frac{1}{m^2}\right]$ They lie in visible region. (3) Paschen Series: n = 3 and m = 4, 5, 6, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{3^2} - \frac{1}{m^2}\right]$ They lie in infra-red region. (4) Brackett Series: n = 4 and m = 5, 6, 7, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{4^2} - \frac{1}{m^2}\right]$ They lie in middle infra-red region. (5) Pfund Series: n = 5 and m = 6, 7, 8, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{4^2} - \frac{1}{m^2}\right]$ 1				
From m>n, various spectral series are obtained. (1) Lyman Series: n = 1 and m = 2, 3, 4, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{1^2} - \frac{1}{m^2} \right]$ They lie in ultra violet region. (2) Balmer Series: n = 2 and m = 3, 4, 5, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{2^2} - \frac{1}{m^2} \right]$ They lie in visible region. (3) Paschen Series: n = 3 and m = 4, 5, 6, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{m^2} \right]$ They lie in infra-red region. (4) Brackett Series: n = 4 and m = 5, 6, 7, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ They lie in middle infra-red region. (5) Pfund Series: n = 5 and m = 6, 7, 8, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ 1				
(1) Lyman Series: n = 1 and m = 2, 3, 4, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{1^2} - \frac{1}{m^2} \right]$ They lie in ultra violet region. (2) Balmer Series: n = 2 and m = 3, 4, 5, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{2^2} - \frac{1}{m^2} \right]$ They lie in visible region. (3) Paschen Series: n = 3 and m = 4, 5, 6, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{m^2} \right]$ They lie in infra-red region. (4) Brackett Series: n = 4 and m = 5, 6, 7, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ They lie in middle infra-red region. (5) Pfund Series: n = 5 and m = 6, 7, 8, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ 1				
n = 1 and m = 2, 3, 4, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{1^2} - \frac{1}{m^2}\right]$ They lie in ultra violet region. (2) Balmer Series: n = 2 and m = 3, 4, 5, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{2^2} - \frac{1}{m^2}\right]$ They lie in visible region. (3) Paschen Series: n = 3 and m = 4, 5, 6, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{3^2} - \frac{1}{m^2}\right]$ They lie in infra-red region. (4) Brackett Series: n = 4 and m = 5, 6, 7, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{4^2} - \frac{1}{m^2}\right]$ They lie in middle infra-red region. (5) Pfund Series: n = 5 and m = 6, 7, 8, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{4^2} - \frac{1}{m^2}\right]$		From m>n, various spectral series are obtained.		
Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{1^2} - \frac{1}{m^2} \right]$ They lie in ultra violet region. (2) Balmer Series: n = 2 and $m = 3, 4, 5,Hence the wave number, \bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{2^2} - \frac{1}{m^2} \right]They lie in visible region.(3) Paschen Series:n = 3$ and $m = 4, 5, 6,Hence the wave number, \bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{m^2} \right]They lie in infra-red region.(4) Brackett Series:n = 4$ and $m = 5, 6, 7,Hence the wave number, \bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]They lie in middle infra-red region.(5) Pfund Series:n = 5$ and $m = 6, 7, 8,Hence the wave number, \bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]1$		(1) Lyman Series:		
They lie in ultra violet region. (2) Balmer Series: n = 2 and $m = 3, 4, 5,Hence the wave number, \bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{2^2} - \frac{1}{m^2}\right]They lie in visible region.(3) Paschen Series:n = 3$ and $m = 4, 5, 6,Hence the wave number, \bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{3^2} - \frac{1}{m^2}\right]They lie in infra-red region.(4) Brackett Series:n = 4$ and $m = 5, 6, 7,Hence the wave number, \bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{4^2} - \frac{1}{m^2}\right]They lie in middle infra-red region.(5) Pfund Series:n = 5$ and $m = 6, 7, 8,Hence the wave number, \bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{4^2} - \frac{1}{m^2}\right]1$		n = 1 and m = 2, 3, 4,		
(2) Balmer Series: $n = 2 \text{ and } m = 3, 4, 5, \dots$ Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{2^2} - \frac{1}{m^2} \right]$ They lie in visible region. (3) Paschen Series: $n = 3 \text{ and } m = 4, 5, 6, \dots$ Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{m^2} \right]$ They lie in infra-red region. (4) Brackett Series: $n = 4 \text{ and } m = 5, 6, 7, \dots$ Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ They lie in middle infra-red region. (5) Pfund Series: $n = 5 \text{ and } m = 6, 7, 8, \dots$ Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ 1		Hence the wave number, $\bar{v} = \frac{1}{4} = R \left[\frac{1}{1^2} - \frac{1}{m^2} \right]$	1	
n = 2 and m = 3, 4, 5, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{2^2} - \frac{1}{m^2} \right]$ They lie in visible region. (3) Paschen Series: n = 3 and m = 4, 5, 6, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{m^2} \right]$ They lie in infra-red region. (4) Brackett Series: n = 4 and m = 5, 6, 7, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ They lie in middle infra-red region. (5) Pfund Series: n = 5 and m = 6, 7, 8, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ 1		They lie in ultra violet region.		
n = 2 and m = 3, 4, 5, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{2^2} - \frac{1}{m^2} \right]$ They lie in visible region. (3) Paschen Series: n = 3 and m = 4, 5, 6, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{m^2} \right]$ They lie in infra-red region. (4) Brackett Series: n = 4 and m = 5, 6, 7, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ They lie in middle infra-red region. (5) Pfund Series: n = 5 and m = 6, 7, 8, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ 1		A Company of the second s		
Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{2^2} - \frac{1}{m^2} \right]$ They lie in visible region. (3) Paschen Series: $n = 3$ and $m = 4, 5, 6, \dots$. Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{m^2} \right]$ They lie in infra-red region. (4) Brackett Series: $n = 4$ and $m = 5, 6, 7, \dots$. Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ They lie in middle infra-red region. (5) Pfund Series: $n = 5$ and $m = 6, 7, 8, \dots$. Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$				
They lie in visible region. (3) Paschen Series: $n = 3$ and $m = 4, 5, 6, \dots$. Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{3^2} - \frac{1}{m^2}\right]$ They lie in infra-red region. (4) Brackett Series: $n = 4$ and $m = 5, 6, 7, \dots$. Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{4^2} - \frac{1}{m^2}\right]$ They lie in middle infra-red region. (5) Pfund Series: $n = 5$ and $m = 6, 7, 8, \dots$. Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{4^2} - \frac{1}{m^2}\right]$ 1				
They lie in visible region. (3) Paschen Series: $n = 3$ and $m = 4, 5, 6, \dots$. Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{3^2} - \frac{1}{m^2}\right]$ They lie in infra-red region. (4) Brackett Series: $n = 4$ and $m = 5, 6, 7, \dots$. Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{4^2} - \frac{1}{m^2}\right]$ They lie in middle infra-red region. (5) Pfund Series: $n = 5$ and $m = 6, 7, 8, \dots$. Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{4^2} - \frac{1}{m^2}\right]$ 1		Hence the wave number, $\bar{\nu} = \frac{1}{\lambda} = R \left[\frac{1}{2^2} - \frac{1}{m^2} \right]$	1	5
$n = 3 \text{ and } m = 4, 5, 6, \dots$ Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{m^2} \right]$ They lie in infra-red region. (4) Brackett Series: $n = 4 \text{ and } m = 5, 6, 7, \dots$ Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ They lie in middle infra-red region. (5) Pfund Series: $n = 5 \text{ and } m = 6, 7, 8, \dots$ Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ 1		They lie in visible region.	-	
n = 3 and m = 4, 5, 6, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{m^2} \right]$ They lie in infra-red region. (4) Brackett Series: n = 4 and m = 5, 6, 7, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ They lie in middle infra-red region. (5) Pfund Series: n = 5 and m = 6, 7, 8, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ 1		(2) Deschar Carica		
Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{m^2} \right]$ They lie in infra-red region. (4) Brackett Series: n = 4 and $m = 5, 6, 7,Hence the wave number, \bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]They lie in middle infra-red region.(5) Pfund Series:n = 5$ and $m = 6, 7, 8,Hence the wave number, \bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]1$			4	
They lie in infra-red region. (4) Brackett Series: n = 4 and $m = 5, 6, 7,Hence the wave number, \bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{4^2} - \frac{1}{m^2}\right]They lie in middle infra-red region.(5) Pfund Series:n = 5$ and $m = 6, 7, 8,Hence the wave number, \bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{4^2} - \frac{1}{m^2}\right]$			T	
(4) Brackett Series: n = 4 and $m = 5, 6, 7,Hence the wave number, \bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{4^2} - \frac{1}{m^2}\right]They lie in middle infra-red region.(5) Pfund Series:n = 5$ and $m = 6, 7, 8,Hence the wave number, \bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{4^2} - \frac{1}{m^2}\right]$				
n = 4 and m = 5, 6, 7, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ They lie in middle infra-red region. (5) Pfund Series: n = 5 and m = 6, 7, 8, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$		They lie in intra-red region.		
n = 4 and m = 5, 6, 7, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ They lie in middle infra-red region. (5) Pfund Series: n = 5 and m = 6, 7, 8, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$		(4) Brackett Series:		
Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$ They lie in middle infra-red region. (5) Pfund Series: n = 5 and $m = 6, 7, 8,Hence the wave number, \bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$				
They lie in middle infra-red region. (5) Pfund Series: n = 5 and $m = 6, 7, 8,Hence the wave number, \bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{4^2} - \frac{1}{m^2}\right]$		Hence the wave number, $\bar{v} = \frac{1}{1} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$	1	
n = 5 and m = 6, 7, 8, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R\left[\frac{1}{4^2} - \frac{1}{m^2}\right]$				
n = 5 and m = 6, 7, 8, Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$				
Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{m^2} \right]$				
			1	
They lie in far infra-red region.		Hence the wave number, $\bar{v} = \frac{1}{\lambda} = R \left \frac{1}{4^2} - \frac{1}{m^2} \right $		

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

Kindly send me your answer keys to us - padasalai.net@gmail.com

13

38 (a)	Frequency definition states that it is the number of complete cycles of waves passing a point in unit time. The SI unit of frequency is Hertz(Hz).	1	
	 Advantages of FM : Large decrease in noise. This leads to an increase in signal-noise ratio. The operating range is quite large. The transmission efficiency is very high as all the transmitted power is useful. FM bandwidth covers the entire frequency range which humans can hear. Due to this, 	2	5
	 FM radio has better quality compared to AM radio. Limitations of FM : FM requires a much wider channel. FM transmitters and receivers are more complex and costly. In FM reception, less area is covered compared to AM. 	2	
38 (b)	 Full wave rectifier: The positive and negative half cycles of the AC input signal pass through this circuit and hence it is called the full wave rectifier. It consists of two P-N junction diodes, a center tapped transformer, and a load resistor (R_L). 	1⁄2	
	The centre (C) is usually taken as the ground or zero voltage reference point. Due to the centre tap transformer, the output voltage rectified by each diode is only one half of the total secondary voltage.	1	5
	DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.		

 $\frac{1}{2}$

During positive half cycle of input	During negative half cycle of	
AC	input AC	
Ferminal M is positive, G is at zero	Terminal M is negative, G is at zero	
potential and N is at negative	potential and N is at positive	
potential.	potential.	
Diode D_1 is forward biased.	Diode D_1 is reverse biased.	
Diode D_2 is reverse biased.	Diode D_2 is forward biased.	
D_1 conducts and current flows	D ₂ conducts and current flows	
along the path MD_1AGC	along the path ND ₂ BGC	
The voltage appears across R_L in	The voltage appears across R_L in	
he direction G to C	the same direction G to C	

Hence in a full wave rectifier both positive and negative half cycles of the input signal pass through the circuit in the same direction. The output waveform is shown below.

Though both positive and negative half cycles of ac input are rectified, the output is still pulsating in nature. The efficiency (η) of full wave rectifier is twice that of a **half wave rectifier and is found to be 81.2 %**.

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.