www.Padasalai.Net		www.TrbTnpsc.com			
TVL12F	Common Half Yearly Examin	Distinatio	rict on - Decembe	r 2023 COCCL	
Time All	lowed: 3.00 Hours PHYSI	di	12	Maximum Marks: 70	
	Part	- I		1	
Note:	(i) Answer all the questions. (ii) Choose the best answer and w	rite	the option co	15 x 1 = 15 de and corresponding	
1. The	answer. materials used in Robotics are				
a) c) 2. The	aluminium and silver copper and gold cut-off wavelength of x-rays from	b) d) an	silver and go steel and alur x-ray tube o	ld ninium f accelerating potential	
20,	0000		0	-1) 67 A	
a)	0.62 A b) 1.24 A	c)	0.58 A	a) 62 A	
3. In a res acr	a series resonant RLC circuit, the vector of the second series resonant frequency ω is 250 rad/s. If ross L is	olta f the	ge across 100 e value of C i	is $4\mu f$, then the voltage	
a)	600 V b) 4000 V	C)	400 V	0) 1 V	
 4. The a) c) 5. A construction of a con	ground wave propagation sky wave propagation dipole of dipole moment (E) aligned ork done in rotating the dipole in the zero b) pE the amplitude of the magnetic field i d for a electromagnetic waves is 100 Vm ⁻¹ b) 300 Vm ⁻¹ ars twinkle due to, reflection b) total internal re- the number of turns in a moving coi voltage sensitivity is doubled and both voltage and current are doub voltage sensitivity remain unchan- ne heat energy produced in a resi- rough it for 5 minutes. 75 J b) 75 kJ	b) d) d) f in e dir c) s 3 (c) effect l ga curr oled nair istai c	space wave satellite com the direction rection opposi -pE x 10 ⁻⁶ T, then 600 Vm ⁻¹ tion c) re- lvanometer is rent sensitivit n unchanged and current since of 10 Ω) 25 J	propagation imunication of the electric field, the ite to the field is d) 2 pE amplitude of the electric d) 900 Vm ⁻¹ fraction d) polarization doubled, y remain unchanged sensitivity is doubled when 5 A current flows d) 25 kJ	2
10. Th a) c)	ne momentum of the electron havin 3.3 x 10^{24} kg m s ⁻¹ 3.3 x 10^{-24} kg m s ⁻¹ a Wheatstone bridge P = 100Ω , Q =	g w b d = 10) 6.6 x 10^{24}) 6.6 x 10^{-24}) 00 Ω and R =	kg m s ⁻¹ ⁴ kg m s ⁻¹ 40 Ω . If the galvanomete	٢
TT: 11	a million of a	onic	stance S is		

11. shows zero deflection, the value of resistance S is c) 300 Ω d) 400 Ω b) 200 Ω a) 100 Ω

12. The ratio between the first three orbits of hydrogen atom is a) 1:2:3 b) 2:4:6 c) 1:4:9 d) 1:3:5 13. in LCR series a.c. circuit, the phase difference between current and voltage is

30°. The reactance of the circuit is 17.32 Ω . The value of resistance is d) 1.732 Ω b) 10 Ω · c) 17.32 Ω

14. A radioactive element has N_0 number of nuclei at t = 0. The number of nuclei

remaining after half of a half-life (that is, at time $t = \frac{1}{2}T_{1_2}$)

b) $\frac{N_o}{\sqrt{2}}$ c) $\frac{N_o}{4}$ d) $\frac{N_o}{8}$ a) $\frac{N_0}{2}$

www.Padasalai.Net

www.TrbTnpsc.com

11L12P

2

15. Eye defect astigmatism can be corrected by using c) cylindrical lens d) bifocal lens b) concave lens a) convex lens

Part - II

Note: (i) Answer any six of the following questions. (ii) Question Number 20 is compulsory.

16. Define "Electrostatic potential".

- 17. State Kirchhoff's voltage rule.
- 18. What is magnetic susceptibility?
- 19. State lenz's law.
- 20. The self-inductance of an air-core solenoid is 4.8 mH. If its core is replaced by iron core, then its self-inductance becomes 1.8 H. Find out the relative permeability of iron.
- 21. Why does sky appear blue?
- 22. Find the polarising angles for glass of refractive index 1.5.
- 23. How will you define threshold frequency?
- 24. Define Impact Parameter.

Part - III

Note: (i) Answer any six of the following questions. (ii) Question Number 32 is compulsory.

- 25. What is the difference between Nano materials and Bulk materials?
- State and prove De morgan's first and second theorem.
- 27. Obtain the law of radioactivity.
- 28. UV light of wavelength 1800 Å is incident on a lithium surface whose threshold

wavelength is 4965 Å. Determine the maximum energy of the electron emitted.

- 29. State and obtain Malu's law.
- Write down any six of the properties of electromagnetic waves.
- Give the properties of dia / para / ferromagnetic materials.
- 32. Calculate the equivalent resistance for the circuit which is connected to 24 V battery and also find the potential difference across each resistors in the circuit.

Obtain Gauss law from Coulomb's law.

Note: Answer all questions.

Describe the Fizeau's method to determine the speed of light. 34. a) (OR)

Part - IV

- Calculate the magnetic field inside the long solenoid using Ampere's circuital law. b)
- Describe briefly Davisson-Germer experiment which demonstrated the wave 35. a) nature of electrons. (OR)
- Calculate the electric field due to a dipole on its axial line. b)
- Draw the circuit diagram of half wave rectifier and explain its working. (OR) 36. a)
 - Explain the construction and working of transformer. b)
- Derive the expression for radius of an electron is the hydrogen atom using 37. a) Bohr atom model. (OR)
 - How the emf of two cells are compared using potentiometer? b)
- Write down Maxwell equations in integral form. 38. a)
 - Discuss about the simple microscope and obtain the equation for magnification b) for near point focusing and normal focusing.

Kindly send me your answer keys to us - padasalai.net@gmail.com

 $5 \times 5 = 25$

(OR)

x 3 = 18

 $6 \times 2 = 12$