Reg.No.

SECOND REVISION TEST - 2024

Standard X

	MAT	HEMATICS	sertion to the second second second
ime : 3.00 hrs	Als a Copp is for his	Part - I	Marks: 100
I. Choose the cor	rect answer:		.14 x 1 = 14
1. A = {a, b, p}, B =	$\{2, 3\}, C = \{p, q, r\}$, s} then n[(AUC) x B]	is
a) 8	b) 20	0) 12	d) 16
2. If $g = \{(1,1), (2,3)\}$, (3,5), (4,7)} is a	function given by g(x)	= $\alpha x + \beta$ then the values of α
and ß are			
a) (-1,2)	b) (2,-1)	c) (-1,-2)	d) (1,2)
3. If the HCF of 65 a	and 117 is express	sible in the form of 65m	- 117, then the value of m is
a) 4	b) 2	c) 1	d) 3
4. The solution of (2	$(2x - 1)^2 = 9$ is equ		
a) -1	b) 2	QY1,2	d) none of these
5. In square matrix	$A = [a_{ij}]_{nxn}, if i < j$	and a _{ij} = 0 then its calle	ed
a) zero matrix		b) upper triange	ular matrix
c) lower triangu	lar matrix	d) identity matr	ix
6. If ΔABC is an iso	sceles triangle w	ith ∠C = 90° and AC =	5 cm, then AB is
a) 2.5 cm	b) 5 cm	c) 10 cm	d) 5√2 cm
7. The area of trian	gle formed by the	points (-5,0), (0,-5) a	nd (5,0) is
a) 0 sq.units		b) 25 sq.units	of a court by an engine to a self-
c) 5 sq.units		d) none of thes	e. and the transfer of the same of the sam
8. Find the number	of straight lines t	hat have slope 'l' and	pass through the point (3,0)
a) 1	b) 2	c) 4	d) countless
9. If $sin\theta = cos\theta$, the	nen 2tan²θ + sin²θ	- 1 is equal to	
a) $\frac{-3}{2}$	10 B	c) $\frac{2}{3}$	$d) -\frac{2}{3}$
			the same level as its foot. At
a second point	b' metres above the pole (in metres)	he first, the depression	of the foot of the pole is 60°.
a) /2 h	ь .	, Ь	ь

X Maths 11. If the surface area of a cylinder is 264 m² and the volume is 924 m³, the ratio of its

diameter to its height is .

b) 7:3

c) 6:7

12. A shuttle cock used for playing badminton has the shape of the combination of

a) a cylinder and a sphere

b) a hemisphere and a cone

c) a sphere and a cone

d) frustum of a cone and a hemisphere

13. Which of the following is correct?

a) P(A) > 0

(b) $0 \le P(A) \le 1$ c) $P(\phi) = \infty$

14. The range of the data 8, 8, 8, 8, 8 is

c) 8

d) 3

Part - II

II. Answer any 10 questions. (Q.No.28 is compulsory)

 $10 \times 2 = 20$

15. A relation R is given by the set $\{(x,y)/y = x + 3, x \in \{0,1,2,3,4,5\}\}$. Determine its domain and range.

16. If $A = \{-2, -1, 0, 1, 2\}$ and $f: A \rightarrow B$ is an onto function defined by $f(x) = x^2 + x + 1$, then find B.

17. Compute x, such that $10^4 \equiv x \pmod{19}$

18. Find a_8 and a_{15} whose n^{th} term is $a_n = \begin{cases} \frac{n^2-1}{n+3} ; n \text{ is even}, n \in \mathbb{N} \\ \frac{n^2}{2n+1} ; n \text{ is odd}, n \in \mathbb{N} \end{cases}$

19. Determine the nature of roots for the quadratic equation $2x^2 - 2x + 9 = 0$

20. If $A = \begin{bmatrix} 5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1 \end{bmatrix}$, then verify $(A^T)^T = A$

21. The perimeters of two similar triangles ABC and PQR are respectively 36 cm and 24 cm. If PQ = 10 cm, find AB.

22. The line through the points (-2,a) and (9,3) has slope $-\frac{1}{2}$. Find the value of a.

23. Find the equation of a line whose intercepts on the x and y axis are -5 and $\frac{3}{4}$

24. A tower stands vertically on the ground. From a point on the ground, which is 48 m away from the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower.

25. The radius of a sphere increases 25%. Find the percentage increase in its surface area.

- 26. The volumes of a solid right circular cone is 11088 cm3. If its height is 24 cm, then find the radius of the cone.
- 27. The mean of a data is 25.6 and its coefficient of variation is 18.75. Find the standard deviation.
- 28. Gokul and Rahul are friends. What is the probability that both will have (i) different birthdays (ii) the same birthday? (ignoring a leap year)

Part - III

III. Answer any 10 questions. (Q.No.42 is compulsory)

 $10 \times 5 = 50$

- 29. Let $A = \{x \in N / 1 < x < 4\}$, $B = \{x \in W / 0 \le x < 2\}$ and $C = \{x \in N / x < 3\}$. Then verify that $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- 30. A function f: [-5,9] → R is defined as follows:

$$f(x) = \begin{cases} 6x+1 \; ; \; -5 \le x < 2 \\ 5x^2 - 1 \; ; \; 2 \le x < 6 \\ 3x - 4 \; ; \; 6 \le x \le 9 \end{cases}, \text{ find } \frac{2f(-2) - f(6)}{f(4) + f(-2)}$$

31. If S₁, S₂, S₃, S_m are the sums of n terms of m A.P's whose first terms are 1,2,3,.....m and whose common differences are 1,3,5,....(2m-1) respectively, then show that

$$S_1 + S_2 + S_3 + \dots + S_m = \frac{1}{2} mn(mn + 1)$$

- 32. Find the sum of $15^2 + 16^2 + 17^2 + \dots + 28^2$
- 33. Find the values of a and b if the polynomial is perfect square: $4x^4 12x^3 + 37x^2 + bx + a$
- 34. The hypotenuse of a right angled triangle is 25 cm and its perimeter 56 cm. Find the length of the smallest side.
- 35. State and prove Angle Bisector theorem.
- 36. Find the area of the quadrilateral whose vertices are at (-9,0), (-8,6), (-1,-2) and (-6, -3)
- 37. You are downloading a song. The percent y (in decimal form) of mega bytes remaining to get downloaded in x seconds is given by y = -0.1x + 1.
 - i) Find the total MB of the song
 - After how many seconds will 75% of the song gets downloaded?
 - After how many seconds the song will be downloaded completely?
- 38. If $\cot\theta + \tan\theta = x$ and $\sec\theta \cos\theta = y$, then prove that $(x^2y)^{\frac{2}{3}} (xy^2)^{\frac{2}{3}} = 1$

www.TrbTnpsc.com

- 39. If the radii of the circular ends of a frustum which is 45 cm high are 28 cm and 7 cm, find the volume of the frustum.
- 40. Water is flowing at the rate of 15 km per hour through a pipe of diameter 14 cm into a rectangular tank which is 50 m long and 44 m wide. Find the time in which the level of water in the tank will rise by 21 cm.
- 41. A coin is tossed thrice. What is the probability of getting atmost 2 tails or atleast 2 heads?
- 42. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$, find the matrix C, such that 4A 3B + C = 0

Part - IV

IV. Answer all the questions.

2 x 8 = 16

43. a) Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{3}$ of the corresponding sides of the triangle PQR (Scale factor $\frac{7}{3}$ >1)

(OR)

- b) Construct $\triangle PQR$ in which QR = 5 cm, $\angle P = 40^{\circ}$ and the median PG from P to QR is 4.4 cm. Find the length of the altitude from P to QR.
- At Al Nishanth is the winner in a Marathon race of 12 km distance. He ran at the uniform speed of 12 km/hr and reached the destination in 1 hour. He was followed by Aradhana, Jeyanth, Sathya and Swetha with their respective speed of 6 km/hr, 4 km/hr, 3 km/hr and 2 km/hr. And they coverd the distance in 2 hrs, 3 hrs, 4 hrs and 6 hours respectively.

Draw the speed-time graph and use it to find the time taken to Kaushik with his speed of 2:4 km/hr.

of the same was the part of th

A CANAL OF THE REPORT OF THE PARTY OF THE PA

(OR)

b) Draw the graph of $y = 2x^2 - 3x - 5$ and hence solve $2x^2 - 4x - 6 = 0$

Key X maths 2024, 2nd Revision Kancheepuxam Dt Choose: 17.) 10"=(102) = 52 (mod 19) 1) 0)12 2) 6) (2,-1) 104 = 6 (mod 19) 3) 5) 2 ·: x=b 4) (-)-1,2 $18.) \quad a_8 = \frac{8^2 - 1}{8 + 3} = \frac{63}{11}$ 5)c) lower $\frac{Q_{15} = \frac{15^2}{205)+1} = \frac{225}{31}$ Triangular Matrix 19) A = 5-4ac 6)d) 5 V2 cm = (-2)2-4(2)(9)=-68 <0 7) b) 25 squaits i. No real roots. 8.)d) countless $\frac{20}{(A^{T})^{T}} = A = \begin{bmatrix} 5 & 2 & 2 \\ -\sqrt{17} & 0.7 & 5/2 \\ 8 & 3 & 1 \end{bmatrix}$ 9) b) 3/2 0) 6) 6/3 11)a)3:7 $\frac{219}{P9} + \frac{36}{24} = \frac{36}{10} = \frac{36}{24}$ 12.) d) Frustum of cone & hemisphere A = 15 cm 13) b) 0 < P(A) <) 22) $m = \frac{y_2 - y_1}{x_2 - x_1} \Rightarrow \frac{3 - \alpha}{9 + 2} = -\frac{1}{2}$ 14) a) 0 I Answers $a = \frac{17}{2}$ 2 Mark 15) Domain: {0,1,2,3,4,5 Range: {3,4,5,6,7,8 FC-2)= F(1) = 3 · · B= \ 1,3,7\

Kindly Send Me Your Study Materials To Us Email ID: padasalai.net@gmail.com

25) 5.A = 41182 New ~= 5 31.) S, = = (3n+1), S== 2 (3n+1) New 5.A = 25TT-2 Sm = 2 [(2m-1)n+1] % = 56.257. = 2[(n+3n+-+(2m-1)n)+ (1+1+---m+exma)) 26) = Troth = 11088 8=441 = 1/2 [ncm²)+m] 7 = 2 | cm 27) C.V = = x100% = 1 mn [mn+1] 32) (12 -- +282) - (12 + 14) → 18.75 = 5 × 100 => n (n+1) (2n+1) 5=4.8 14×15×29 = 28×29×57 28)1)365-1=364 $P(E) = \frac{364}{365}$ = 7714-1015 = 6699 11) P(E) = 1-P(E) 2x2 4x4-12x3+37x2+bx+a $=1-\frac{364}{365}=\frac{1}{365}$ -12/x3+37x2 -12/x3+37x2 II Answerd: 5 marks 28 x2 + bx+a 4x-6x+7 28 x2 - 42x +49 29.) AX(Bnc) = {2,3}x\{1} $=\frac{2(2,1)}{(3,1)}$ b=-42, Q=49 (AXB)n(Axc) = {(2,0),(2,1),(3,0) (3,1) 31 ((2,1), (2,2), (3,1), (3,2) 34) 1 23 AB+BC+CA = 56 BL C AB+BC = 31 = {(2,1),(3,1)} AB+Bc=Ac2 30.) 2(6(-2)+1) - (3(6)-4) (AB+BC)-2AB.BC=AC (5(4)2-1)+(6(-2)+1) -2AB.Bc = - 336 $\frac{-22-14}{=79+(-11)} = \frac{-36}{68} = \frac{-9}{17}$ AB.BC=168 By Solving $\frac{z^2 - 31x + 168 = 0}{2}$ $\frac{z^2 - 31x + 168 = 0}{2}$ Kindly Send Me Your Study Materials To Us Email ID: padasalai.net@gmail.com

35) ABT V=13T[R+R++2]h (1)astatement AB BD A BD = 1/3 x22 [282+(28x7)+72) x45 LE = LBAEZ LABD = LECD DACE is Isoscoles = 48510 cm3 40.) #= 15000 m, 8= 100 m · ·· AC=CE DABDZAECD AB BD AB BD

CE CD AC CD l=50m, b=44m, h=21 m Reg Time = fbh 1184 36) (-9,0), (-6,-3) (-1,-2), (-8,6) = .50×44× 2/00 $\frac{-12\left\{-9-6-1-8-9\right\}}{2\left\{0-3-260\right\}}$ 23 × 7 × 7 × 15000 = 2 hrs, = 2 { 33+35} = 34 5g ming PCAUB) = P(A)+P(B)-P(Ans) (37.) i) 1 MB Y=-0.1(0)+1 - 7 1/8 - 1/8 i) 7.5 sec iii) 10 Sec 42) 4A-3B+C=0 38) cot 8 + tan 0 = x (148) +(-6) -9 + C = 0Sec0-0050= / (x2y)3-(xy2)3=1 $C = \begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix}$ $= \frac{1}{5in 0 \cos \theta}$, $\gamma = \frac{5in^2 0}{\cos 50}$ 5:n2cos2 X Sin2 3 5:ncos x Sin2 5:ncos cos2

Kindly Send Me Your Study Materials To Us Email ID: padasalai.net@gmail.com