#### A Valuable material from SS PRITHVI's

Class 11



2023-24



# A COLLECTION OF

# COMPULSORY QUESTIONS

## **SUBJECT:**



CLICK TO JOIN US TO GET FREE MATERIALS





www.Trb Tnpsc.com

#### **Getting in:**

- It gives me great pride and pleasure in bringing to you, this wonderful booklet.
- The compulsory questions are collected from almost all the available previous years' question papers, which will give an idea about to study the topics which will help them to tackle these compulsory questions.

- SS PRITHVI, FOUNDER- PRIT~EDUCATION.

| 1 | Eliminate $\theta$ from a $\cos \theta = b$ and $c \sin \theta = d$ , where a, b, c, d are constants.                |
|---|----------------------------------------------------------------------------------------------------------------------|
| 2 | Solve 2x²+x-15 ≤ 0.                                                                                                  |
| 3 | Find the number of subsets of A If A = $\{x: x = 4n+1, 2 \le n \le 5, n \in \mathbb{N}\}$                            |
| 4 | Show that the relation $xy = -2$ is a function for a suitable domain. Find the domain and the range of the function. |
| 5 | If $P(A)$ denotes the power set of A, then find $n(P(P(P(\phi))))$                                                   |
| 6 | Write $f(x) = x^2 + 5x + 4$ in completed square form.                                                                |

www.Padasalai.Net

www.Trb Tnpsc.com

| If n (A) = 10 and n (A $\cap$ B) = 3, find $n((A \cap B) \cap A)$ Find the range: $\frac{1}{2\cos x - 1}$ .  Let f and g be the two functions from R to R defined by f (x) = 3x - 4 and |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Find the range : $\frac{1}{2\cos x-1}$                                                                                                                                                  |   |
|                                                                                                                                                                                         |   |
| $g(x) = x^2 + 3$ . Find gof and fog.                                                                                                                                                    | i |
| If $n(A \cap B) = 3$ and $n(AUB) = 10$ , then find $n(P(A \Delta B))$                                                                                                                   |   |
| Prove $\log \frac{a^2}{bc} + \log \frac{b^2}{ca} + \log \frac{c^2}{ab} = 0$                                                                                                             |   |
| Find the number of solutions of                                                                                                                                                         |   |
| Find the value of sin 690°.                                                                                                                                                             |   |
| Find all values of x that satisfies the inequality $\frac{2x+3}{(x+2)(x+4)} < 0$                                                                                                        |   |
| Find the domain of 1 1 - 2 sin x.                                                                                                                                                       |   |
| 16  If $x = \sqrt{2} + \sqrt{3}$ find $\frac{x^2 + 1}{x^2 - 2}$ .                                                                                                                       |   |
|                                                                                                                                                                                         |   |

www.Padasalai.Net

www.Trb Tnosc.com

|    | www.Padasalai.Net www.Trb Tnpsc.com                                                                        |
|----|------------------------------------------------------------------------------------------------------------|
| 17 | Compute $\log_9 27 - \log_{27} 9$ .                                                                        |
| 18 | Let f and g be two functions from R to R denfined by $f(x) = 3x - 4$ and $g(x) = x^2 + 3$ . find gof, fog. |
| 19 | Solve: $\frac{x+1}{x+3} < 3$ .                                                                             |
| 20 | If $A = 30^{\circ}$ then find the value of $2\sin^2 A + \cos^2 A$ .                                        |
|    | QUARTERLY                                                                                                  |
| 1  | Compute 9 <sup>7</sup> .                                                                                   |
| 2  | Find the last two digits of the number 3 <sup>600</sup> .                                                  |
| 3  | Find the rank of the word "SCHOOL".                                                                        |
| 4  | If $f(x) = y = \frac{ax - b}{cx - a}$ , then prove that $f(y) = x$ .                                       |
| 5  | Find the value of $\frac{1}{\log_x(yz)+1} + \frac{1}{\log_y(zx)+1} + \frac{1}{\log_z(xy)+1}$ .             |
| 6  | Find the value of n if $\frac{1}{8!} + \frac{1}{9!} = \frac{n}{10!}$                                       |
| ł  |                                                                                                            |

www.Padasalai.Net

www.Trb Tnpsc.com

| 7  | Prove that the equation to the straight lines through the origin, each of which makes an angle $\alpha$ with          |
|----|-----------------------------------------------------------------------------------------------------------------------|
|    | the straight line $y = x$ is $x^2 - 2xy$ sec $\alpha + y^2 = 0$ .                                                     |
| 8  | Resolve into partial fractions: $\frac{3x+1}{(x-2)(x+1)}$ .                                                           |
| 9  | Find the value of sin 20, when sin $\theta = \frac{12}{13}$ , 0 lies in the first quadrant.                           |
| 10 | Find the locus of a point P moves such that its distances from two fixed points A(1, 0) and B(5, 0) are always equal. |
| 11 | Find the equations of a parallel line and perpendicular line passing through the point (1, 2) to the line 3x+4y = 7   |
| 12 | Solve :  5x - 12  < -2                                                                                                |
| 13 | Find the number of subsets of A if A = {x:=4n+1, 2≤n≤5, n∈N}                                                          |
| 14 | If $\frac{1}{7!} + \frac{1}{9!} = \frac{A}{10!}$ , find A.                                                            |
| 15 | If in two circles, arcs of the same length subtend angles 60° and 75° at the centre. Find the ratio of their radii.   |
| 16 | Express the equation $\sqrt{3} \times -y + 4 = 0$ in the slope - intercept form.                                      |
| 17 | Prove that cot (A * B) = $\frac{\cot A \cot B - 1}{\cot A + \cot B}$                                                  |
|    |                                                                                                                       |

www.Padasalai.Net

www.Trb Tnpsc.com

|            | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18         | Find the general solution of $\sin \theta = \frac{-\sqrt{3}}{2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 19         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | The slope of one of the lines $ax^2 + 2hxy + by^2 = 0$ is three times the other. Show                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | that 3h2 = 4ab. P(P) 1 108h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 20         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | In how many ways the letters of the word PENCIL be arranged so that N is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | always next to E?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Prove that $cos(A+B) cos(A-B) = cos^2 B - sin^2 A$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Find the equation of the straight lines passing through (8, 3) and having                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | intercepts whose sum is 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | intercepts whose sum is 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 23         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23         | Denve that and the Division of |
|            | Prove that $cos(A+B) cos(A-B) = cos^2A - sin^2B = cos^2B - sin^2A$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Find the value of tan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Described at 1 (a. 1.43)1(a. 1.43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | I. Prove that $n! + (n + 1)! = n! (n + 2)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 26         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Find the equation of the straight line passing through the points (1,1) and (5,8).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>-</b> 1 | Muito the identities of sec20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | Write the identities of cos2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Find seven numbers A1;A2; :::;A7 so that the sequence 4;A1;A2; :::;A7; 7 is in arithmetic progression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | and also 4 numbers G1;G2;G3;G4 so that the sequence 12;G1;G2;G3;G4; 38 is in geometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | progression.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

www.Padasalai.Net

www.Trb Tnpsc.com

| 29 | FIND THE DISTINCT PERMUTATIONS OF THE WORD "MISSISSIPPI".                                                                                                                                                                                                            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30 | Find the value of cos15°.                                                                                                                                                                                                                                            |
|    | II-MID TERM                                                                                                                                                                                                                                                          |
| 1  | If A and B are square matrices of order 3 such that  A  = -1,<br> B  = 3 find the value of  3AB                                                                                                                                                                      |
| 2  | Find $(\overrightarrow{a}+3\overrightarrow{b}) \cdot (2\overrightarrow{a}-\overrightarrow{b})$ if $\overrightarrow{a}=\overrightarrow{i}+\overrightarrow{j}+2\overrightarrow{k}$ and $\overrightarrow{b}=3\overrightarrow{i}+2\overrightarrow{j}-\overrightarrow{k}$ |
| 3  | Find the area of the triangle whose vertices are $(-2, -3)$ , $(3, 2)$ , $(-1, -8)$ .                                                                                                                                                                                |
| 4  | For any two vectors $\vec{a}$ and $\vec{b}$ prove that $ \vec{a} \times \vec{b} ^2 + (\vec{a} \cdot \vec{b})^2 =  \vec{a} ^2  \vec{b} ^2$                                                                                                                            |
| 5  | Find the angle between the vectors $5\hat{i}+3\hat{j}+4\hat{k}$ and $6\hat{i}+8\hat{j}+\hat{k}$ .                                                                                                                                                                    |
| 6  | Prove that $\lim_{x\to a} \frac{x^n - a^n}{x - a} = na^{n-1}$ .                                                                                                                                                                                                      |
| 7  | If f and g are continuous functions with $f(3) = 5$ and $\lim_{x \to 3} [2f(x) - g(x)] = 4$ find $g(3)$ . (b)                                                                                                                                                        |
| 8  | Show that $\begin{bmatrix} x+2a & y+2b & z+2c \\ x & y & z \\ a & b & c \end{bmatrix} = 0$                                                                                                                                                                           |

www.Padasalai.Net

www.Trb Tnpsc.com

| 9  | Find the angle between the Vectors $5\hat{i}+3\hat{j}+4\hat{k}$ and $6\hat{i}-8\hat{j}-\hat{k}$                                                                                                                                                                                                                                                    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | For what value of $\theta$ in $[0, 2\pi]$ such that matrix $\begin{vmatrix} 2\sin\theta - 1 & \sin\theta & \cos\theta \\ \sin(\theta + \pi) & 2\cos\theta - \sqrt{3} & \tan\theta \\ \cos(\theta - \pi) & \tan(\pi - \theta) & 0 \end{vmatrix}$ is Skew symmetric.                                                                                 |
| 11 | For any two vector $\vec{a}$ and $\vec{b}$ , Prove that i) $ \vec{a} + \vec{b}  \le  \vec{a}  +  \vec{b} $ and ii) $ \vec{a} \cdot \vec{b}  \le  \vec{a}   \vec{b} $                                                                                                                                                                               |
| 12 | Evaluate $\lim_{x\to 2^-} x$ and $\lim_{x\to 2^-} x \to 2^-$                                                                                                                                                                                                                                                                                       |
| 13 | Evaluate 2014 2017 0 2020 2023 1 . 2023 2026 0                                                                                                                                                                                                                                                                                                     |
| 14 | For any vector $\vec{r}$ prove that $\vec{r} = (\hat{r} \cdot \hat{i})\hat{i} + (\hat{r} \cdot \hat{j})\hat{j} + (\hat{r} \cdot \hat{k})\hat{k}$ . [MOST REPEATED]                                                                                                                                                                                 |
| 15 | $\begin{vmatrix} \vec{a} \\ \vec{a} \end{vmatrix} = 5$ , $\begin{vmatrix} \vec{b} \\ \vec{c} \end{vmatrix} = 6$ , $\begin{vmatrix} \vec{c} \\ \vec{c} \end{vmatrix} = 7$ and $\begin{vmatrix} \vec{a} \\ \vec{a} + \vec{b} + \vec{c} \end{vmatrix} = 0$ then find the value of $\begin{vmatrix} \vec{a} \\ \vec{a} \\ \vec{c} \end{vmatrix} = 0$ . |
| 16 | Evaluate: $\lim_{x \to 0} \frac{3 \cdot -1}{\sqrt{1+x^2-1}}$                                                                                                                                                                                                                                                                                       |
| 17 | If $\vec{a}$ , $\vec{b}$ and $\vec{c}$ are three unit vectors satisfying $\vec{a} - \sqrt{3}\vec{b} + \vec{c} = \vec{0}$ then find the angle between $\vec{a}$ and $\vec{c}$ .                                                                                                                                                                     |
| 18 | For any two vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ prove that $ \overrightarrow{a} \times \overrightarrow{b} ^2 + (\overrightarrow{a} \cdot \overrightarrow{b})^2 =  \overrightarrow{a} ^2  \overrightarrow{b} ^2$                                                                                                                  |

3

5

6

7

8

| 19 | Find the area of the triangle whose vertices are A(3, -1, 2) |
|----|--------------------------------------------------------------|
|    | B(1, -1, -3) and C(4, -3, 1)                                 |

# **HALF-YEARLY**

|      | *****     |          |                   | -     |
|------|-----------|----------|-------------------|-------|
| Find | f'(2) and | f (4) If | $f(\mathbf{r}) =$ | r - 3 |

Solve:  $\sqrt{3}\sin x + \cos x = 2$ 

Differentiate:  $y = x \log x w.r.t x$ 

A die is rolled. If it shows an odd number, find the probability of getting 5.

Integrate with respect to  $x: (1+x^2)^{-1}$ 

If  $y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ , then prove that  $\frac{dy}{dx} = y$ .

Given that P(A)=0.52 , P(B)=0.43 and P(A $\cap$  B)=0.24 , find P(A $\cap$  B) .

An integer is chosen at random from the first ten positive integers. Find the Probability that it is i) an even number ii ) multiple of three .

If  $y = \sqrt{\sin \sqrt{x}}$  find  $\frac{dy}{dx}$ .

www.Padasalai.Net

www.Trb Tnpsc.com

| Prove that $((A \cup B' \cup C) \cap (A \cap B' \cap C')) \cup ((A \cup B \cup C') \cap (B' \cap C')) = B' \cap C'$ .  Integrate the following functions with respect to $x : \frac{1}{\sqrt{x+3}-\sqrt{x-4}}$ If A and B are mutually exclusive events then $P(A) = \frac{3}{8}$ , $P(B) = \frac{1}{8}$ , then find $P(A \cup B)$ . |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                      |
| If A and B are mutually exclusive events then $P(A) = \frac{3}{8}$ , $P(B) = \frac{1}{8}$ , then find $P(\overline{A} \cup \overline{B})$ .                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                      |
| A'die is rolled. If it shows an even number, then find the probability of getting '6'.                                                                                                                                                                                                                                               |
| Let f and g be the two functions from R to R defined by $f(x) = 3x - 4$ and $g(x) = x^2 + 3$ . Find gof and fog.                                                                                                                                                                                                                     |
| Prove that the points whose position vectors $2\vec{i} + 4\vec{j} + 3\vec{k}$ . $4\vec{i} + \vec{j} + 9\vec{k}$ and $10\vec{i} - \vec{j} + 6\vec{k}$ from a right angled triangle.                                                                                                                                                   |
| The length of the perpendicular drawn from the origin to a line is 12 and makes an angle 30° with positive direction of the x-axis. Find the equation of the line.                                                                                                                                                                   |
| . If the roots of the equation $(q-r)x^2+(r-p)x+p-q=0$ are equal, then show that p,q and rare in AP.                                                                                                                                                                                                                                 |
| If A and B are independent then prove that $\tilde{A}$ and $\tilde{B}$ are also independent.                                                                                                                                                                                                                                         |
| . In a $\triangle$ ABC, if a = 12 cm, b = 8 cm and C = 30°, then show that its area is 24 sq.cm.                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                      |

www.Padasalai.Net

www.Trb Tnpsc.com

| 21 | Freelingto f. /4 -74.  |
|----|------------------------|
|    | . Evaluate j v4 – x-ax |

Find the nearest point on the line 3x + 4y = 12 from the origin.

Find the matrix A such that  $\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix} A^{T} = \begin{bmatrix} -1 & -8 & -10 \\ 1 & 2 & -5 \\ 9 & 22 & 15 \end{bmatrix}.$ 

Prove that  $\sqrt{5}$  is an irrational number.

Define Condition of perpendicular lines.

Calculate  $\lim_{x\to 4} \frac{16-x^2}{++x}$ 

Prove that  $\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}.$ 

Test the differentiability of the function f(x) = |x - 2| at x = 2.

Define the Inclusion-Exclusion principle.

Show that  $nC_r + nC_{r-1} = (n+1) C_r$ 

31

32

Find the distance between the parallel lines 3x-4y+5=0 and 6x-8y-15=0.

Differentiate: x<sup>x</sup>=y<sup>x</sup>

www.Padasalai.Net

www.Trb Tnpsc.com

| 33 | Do the limits of following function $\frac{x \mid x \mid}{Sin \mid x \mid}$ exist as $x \to 0$ ? State reasons for your answer.                                                                                                                                    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34 | Evaluate $\int \frac{dx}{x^2 + 2x + 10}$                                                                                                                                                                                                                           |
| 35 | Find the complete set of values of a, for which the quadratic $x^2-ax+a+2=0$ has equal roots.                                                                                                                                                                      |
| 36 | Rewrite $\sqrt{3}x + y + 4 = 0$ into normal form.                                                                                                                                                                                                                  |
| 37 | Evaluate $\int a^x e^x dx$                                                                                                                                                                                                                                         |
| 38 | Find the derivations of $x = a(\cos t + t \sin t)$ , $y = a(\sin t - t \cos t)$                                                                                                                                                                                    |
| 39 | Evaluate: $\int \sqrt{4-x^2} dx$                                                                                                                                                                                                                                   |
| 40 | ) If ABCD is a quadrilateral and E and F are the mid points of AC and BD respectively then prove that $\overline{AB} + \overline{AD} + \overline{CB} + \overline{CD} = 4\overline{EF}$                                                                             |
| 41 | . Compute $\lim_{x\to 1} \frac{\sqrt{x}-1}{x-1}$ .                                                                                                                                                                                                                 |
| 42 | A problem in Mathematics is given to three students whose chances of solving it are $\frac{1}{3}$ , $\frac{1}{4}$ , and $\frac{1}{5}$ (i) What is the probability that the problem is solved? (ii) What is the probability that exactly one of them will solve it? |

www.Padasalai.Net

www.Trb Tnpsc.com

# **REVISION - EXAMS**

Solve:  $Sin^4x=Sin^2x$  for which the solutions lie in the internal  $0 \le 0 \le 360^\circ$ 

2

1

Evaluate:  $\lim_{x\to 0} \frac{\sin x \left[1-\cos x\right]}{x^3}$ .

3

 $\int \frac{1}{\cos^2 x} = ?$ 

4

Evaluate:  $\int (x-3) \sqrt{x+2} dx$ 

5

Find the length of an arc of the circle of radius 5cm subtending a central angle measuring 15°.

6

If  $(n+2) C_7$ :  $(n-1) P_4 = 13:24$  find n.

7

Examine the differentiability of  $f(x) = x^{1/3}$  at x = 0

8

Integrate the following with respect to x i)  $x^2 cos x$  ii)  $sin^2 5x$ 

9

Integrate  $\frac{e^x - e^{-x}}{e^x + e^{-x}}$  with respect to x.

10

Supposes a fair die is rolled. Find the probability of getting i) an even number ii) multiple of three.

11

Evaluate:  $\int \frac{\log x}{(1 + \log x)^2} dx.$ 

www.Padasalai.Net

www.Trb Tnpsc.com

| 12 |                                                                                                                                                                                                                                       |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|    | If two coins are tossed simultaneously, then find the probability of getting  i) one head and one tail ii) at most two tails                                                                                                          |  |  |
| 13 | If A and B are two independent events such that P(A) = 0.4 and P(A \cup B) = 0.9. Find P(B)                                                                                                                                           |  |  |
| 14 | Find the probability of getting the number 9, when a usual die is rolled.                                                                                                                                                             |  |  |
| 15 | Find the family of straight lines (i) parallel to (ii) perpendicular to $4x-3y+24=0$                                                                                                                                                  |  |  |
| 16 | 30) If for two events A and B, $P(A) = \frac{3}{4}$ , $P(B) = \frac{2}{5}$ and $A \cup B = S$ (sample space), find the conditional probability $P(A/B)$ .                                                                             |  |  |
| 17 | Find the integrals of the following: $\frac{1}{(x+1)^2-15}$                                                                                                                                                                           |  |  |
| 18 | A die is rolled. If it shows an odd number, then find the probability of getting 5.                                                                                                                                                   |  |  |
| 19 | Show that $\begin{vmatrix} 0 & c & b \end{vmatrix}^2 = \begin{vmatrix} b^2 + c^2 & ab & ac \\ c & 0 & a \\ b & a & 0 \end{vmatrix} = \begin{vmatrix} b^2 + c^2 & ab & ac \\ ab & c^2 + a^2 & bc \\ ac & bc & a^2 + b^2 \end{vmatrix}$ |  |  |
| 20 | Integrate with respect to x: $\frac{\sin^{-1} x}{\sqrt{1-x^2}}$                                                                                                                                                                       |  |  |
| 21 | State and prove addition theorem on probability.                                                                                                                                                                                      |  |  |
| 22 | A railroad curve is to be laid out on a circle, what radius should be used if the track is to change direction by 25° in a distance of 40 metres?                                                                                     |  |  |

www.Padasalai.Net

www.Trb Tnpsc.com

| 23                                                                                                                              | Find the value of r, if $5P_r = 6P_{r-1}$                                                                                                                                                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 24                                                                                                                              |                                                                                                                                                                                                  |  |  |
| Find the equation of the line passing through the point $(5, 2)$ and perpendicular to the line joining $(2, 3)$ and $(3, -1)$ . |                                                                                                                                                                                                  |  |  |
| 25                                                                                                                              | Justify the trueness of the statement : " An element of a set can never be a subset of itself."                                                                                                  |  |  |
| 26                                                                                                                              | The formula for converting from Fahrenheit to celsius temperature is $y = +\frac{5x}{9} - \frac{160}{9}$ Find the inverse of this function and determine whether the inverse is also a function. |  |  |
| 27                                                                                                                              | Differentiate: y = tan (cos x)                                                                                                                                                                   |  |  |
| 28                                                                                                                              | Evaluate: $\lim_{x \to 0} \frac{\sqrt{1 + x^2} - 1}{x}$                                                                                                                                          |  |  |
| 29                                                                                                                              | Find the area of the parallehagram whose adjacent sides are $\vec{a}=3\vec{i}-2\vec{j}+\vec{k}$ and $\vec{b}=\vec{i}-2\vec{j}+3\vec{k}$                                                          |  |  |
| 30                                                                                                                              | Find the equation of a perpendicular line passing through the point (1,2) to the like $3x + 4y = 7$                                                                                              |  |  |
| 31                                                                                                                              | A mobile phone has a passcode of 6 distinct digits. What is the maximum number of attempts one makes to retrieve the passcode?                                                                   |  |  |
| 32                                                                                                                              | Prove that $\log_{a^2} a \log_{b^2} b \log_{c^2} c = \frac{1}{8}$                                                                                                                                |  |  |

www.Padasalai.Net

www.Trb Tnpsc.com

|    | www.Fauasaiai.Net                                                                                                                                                                        | www.1rd 1npsc.com                                                                                                           |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
| 33 |                                                                                                                                                                                          |                                                                                                                             |  |
|    | If D is the midpoint of the side BC of a triangle ABC, prove that $\overline{AB} + \overline{AC} = 2\overline{AD}$                                                                       |                                                                                                                             |  |
| 34 | Find $\frac{dy}{dx}$ if $x^4 + x^2y^3 - y^5 = 2x + 1$ .                                                                                                                                  |                                                                                                                             |  |
| 35 | If the letter of the word 'GOOGLE' are permuted in all pos<br>arranged in the dictionary order, find the rank of the word                                                                | sible ways and the strings this formed are                                                                                  |  |
| 36 | Find the distance of the line $4x - y = 0$ from the point $(4, 1)$ measured along the straight line making an angle of $135^{\circ}$ with the positive direction of the $x$ - axis.      |                                                                                                                             |  |
| 37 | Show that $(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$                                                                                                   |                                                                                                                             |  |
| 38 | If $\begin{vmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{vmatrix} = 3$ then find all solutions of $\theta$ . Here $0 \le \theta \le 2\pi$ |                                                                                                                             |  |
| 39 | If $f(t) = 4$ sect + tant then find $g'(t)$ .                                                                                                                                            |                                                                                                                             |  |
| 40 | Evaluate: $\lim_{n\to\infty} \left[6^n + 5^n\right]^{1/n}$                                                                                                                               |                                                                                                                             |  |
| 41 | Find the matrix A which satisfies the matrix rela                                                                                                                                        | tion $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}$ . |  |
|    |                                                                                                                                                                                          |                                                                                                                             |  |

www.Padasalai.Net

www.Trb Tnpsc.com

Determine 3B + 4C - D if B, C and D are given by

$$B = \begin{bmatrix} 2 & 3 & 0 \\ 1 & -1 & 5 \end{bmatrix}, C = \begin{bmatrix} -1 & -2 & 3 \\ -1 & 0 & 2 \end{bmatrix}, D = \begin{bmatrix} 0 & 4 & -1 \\ 5 & 6 & -5 \end{bmatrix}$$

43

If 
$$y = a^{\left(\sin^{-1}x\right)^2}$$
, find  $\frac{dy}{dx}$ 

44

If 
$$f(x) = \frac{4x+3}{6x-4}$$
,  $x \neq \frac{2}{3}$ , show that (fof)  $f(x) = x$ , what is the inverse of  $f(x) = \frac{4x+3}{6x-4}$ ,  $f(x) = \frac{4x+3}{6x-4}$ .

45

If 
$$y = \left(x + \sqrt{1 + x^2}\right)^n$$
, then prove that  $\left(1 + x^2\right)\frac{d^2y}{dx^2} + x\frac{dy}{dx} = n^2y$ 

46

If 
$$\Delta = \begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ 2x-3 & 3x-4 & 4x-5 \\ 3x-5 & 5x-8 & 10x-17 \end{vmatrix} = Ax^3 + Bx^2 + Cx + D$$
, then find B + C

# PUBLING EXAMINICOMPULSORY TO THE STORY

Prove that  $\log_4 2 - \log_8 2 + \log_{16} 2 - \dots = 1 - \log_e 2$ .

In a  $\triangle ABC$ , if  $\tan \frac{A}{2} = \frac{5}{6}$  and  $\tan \frac{C}{2} = \frac{2}{5}$ , then show that a,b,c are in A.P.

If 
$$A = \begin{bmatrix} 4 & 2 \\ -1 & x \end{bmatrix}$$
 and  $(A - 2I)(A - 3I) = O$ , find the value of x.

Evaluate: 
$$\lim_{x\to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x}$$
.

Compute: 9<sup>7</sup>

Find the last two digits of the number: 3<sup>600</sup>

If 
$$f(x) = y = \frac{ax - b}{cx - a}$$
, then prove that  $f(y) = x$ .

Find the value of 
$$\frac{1}{\log_x(yz)+1} + \frac{1}{\log_y(zx)+1} + \frac{1}{\log_z(xy)+1}$$
.

Find f'(2) and f'(4) if f(x) = |x-3|.

Solve:  $\sqrt{3}\sin x + \cos x = 2$ .

Find f'(x), if  $f(x) = \sin|x|$ , by removing the modulus sign.

www.Trb Tnpsc.com

Verify the continuity at the point x = 0 for the function  $f(x) = \begin{cases} \frac{\sin 3x}{x} + 1 & \text{if } x \neq 0 \\ 2 & \text{if } x = 0 \end{cases}$ 

Is it correct to say  $A \times A = \{(a, a) : a \in A\}$ ? Justify your answer.

Construct a suitable domain X such that  $f: X \to \mathbb{N}$  defined by f(n) = n + 3 to be one to one and onto.

Find dy/dx if  $x^2+y^2=1$ .

Evaluate: 
$$\int \left[ \frac{12}{(4x-5)^3} + \frac{6}{3x+2} + 16 e^{4x+3} \right] dx.$$

Differentiate  $x^x$  with respect to x.

If 
$$a\sin^2\theta + b\cos^2\theta = c$$
, show that  $\tan^2\theta = \frac{c-b}{a-c}$ .

Evaluate: 
$$\lim_{x\to 1} \frac{(x+x^2+x^3+...+x^n)-n}{x-1}$$

If 
$$y = \tan^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$
 find y'.

If 
$$\overset{\rightarrow}{a} = \overset{\wedge}{i} + 2\overset{\wedge}{j} + 3\overset{\wedge}{k}$$
,  $\overset{\rightarrow}{b} = -3\overset{\wedge}{i} + 4\overset{\wedge}{j} - 5\overset{\wedge}{k}$  then find the value of  $\overset{\rightarrow}{a} \overset{\rightarrow}{b}$ .

Differentiate  $y = \tan^2 4x$  with respect to x.

Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining (2, 3) and (3, -1).

www.Trb Tnpsc.com

A committee of 7 has to be formed from 9 men and 4 women. In how many ways can this be done when the committee consists exactly 3 women?

Integrate  $(x-11)^7$  with respect to x.

A die is rolled. If it shows an even number, then find the probability of getting 6.

Integrate  $\cos 3x$  with respect to x.

Find the distinct permutation of the letters of the word MATHEMATICS.

Evaluate: 
$$\lim_{n\to\infty} \left[6^n + 5^n\right]^{\frac{1}{n}}$$

If  ${}^{n}C_{r-1} = 36$ ,  ${}^{n}C_{r} = 84$  and  ${}^{n}C_{r+1} = 126$  then find the value of r.

If  $y = e^{\sin x}$ , find dy/dx.

Find the value of tan 165°.

Find the value of: cosec (-1410°).

Solve  $2x^2+x-15 \le 0$ .

Find the number of subsets of A if A =  $\{x: x = 4n+1, 2 \le n \le 5, n \in \mathbb{N}\}$ .

Show that the relation xy = -2 is a function for a suitable domain. Find the domain and the range of the function.

If  $\mathscr{P}(A)$  denotes the power set of A, then find  $n(\mathscr{P}(\mathscr{P}(\mathscr{P}(\emptyset))))$ .

Write  $f(x) = x^2 + 5x + 4$  in completed square form.

www.Trb Tnpsc.com

Given that P(A)=0.52 , P(B)=0.43 and P(A $\cap$  B)=0.24 , find P(A $\cap$  B) .

An integer is chosen at random from the first ten positive integers. Find the Probability that it is i) an even number ii ) multiple of three .

If 
$$y = \sqrt{\sin \sqrt{x}}$$
 find  $\frac{dy}{dx}$ .

Find the general solution of tan4x = cot 2x.

Prove that  $((A \cup B' \cup C) \cap (A \cap B' \cap C')) \cup ((A \cup B \cup C') \cap (B' \cap C')) = B' \cap C'$ .

Integrate the following functions with respect to  $x : \frac{1}{\sqrt{x+3}-\sqrt{x-4}}$ 

A single card is drawn from a pack of 52 cards. What is the probability that the card is an Ace are King.

(Playing cards based sums deleted acc. To the 2023-24 academic years' portion.)

If A and B are mutually exclusive events then  $P(A) = \frac{3}{8}$ ,  $P(B) = \frac{1}{8}$ , then find  $P(\overline{A} \cup \overline{B})$ .

consider the function  $f(x) = \sqrt{x} \cdot x > 0$ . Does  $x \to 0$  f(x) exist?

Prove that the points whose position vectors  $2\vec{i} + 4\vec{j} + 3\vec{k}$ ,  $4\vec{i} + \vec{j} + 9\vec{k}$  and  $10\vec{i} - \vec{j} + 6\vec{k}$  from a right angled triangle.

Find the distance between the parallel lines 3x-4y+5=0 and 6x-8y-15=0.

Differentiate:  $x^y = y^x$ 

WITH REGARDS,
SS PRITHVI,
kindly Send meybrus (CANSWEL CON the remail id - padasalai.net@gmail.com