Type - A

Chemistry One Mark Test

Choose the most suitable answer from the given four alternatives and write the option code and the corresponding answer. $1 \times 100 = 100$

	acid solutions of pH 1,2 and 3	are mixed in a vessel. V	What will be
the H ⁺ ion concentration in) 0 111	1) 0.1
a)10 ⁻⁶	b) 3.7×10^{-2}	c) 0.111	d) none of these
2. Duralumin is an alloy of		\ A13.6	1) C 14
a) Al,Cu,Mn,Mg		c) Al,Mn	d)Cu,Mn
3. Ethyne $+ H_2O = \frac{HgSO_4}{}$	$\xrightarrow{\text{H}_2 SO_4}$?		
a) Propanol	b) Ethanol	c)Ethanal	d) Propanal
4. The crystal with a meta a) NaCl	l deficiency defect is b)ZnO	c)FeO	d) KCl
•	nt among the following is	C)1 CO	d) KCI
	fond's process b) Tit	anium is refined by	Van Arkel's process
•	- · · · · · · · · · · · · · · · · · · ·	difficulty 15 Terrified by	dif raiker's process
c) Zinc blende is concent		11 11 11 1	
	I, the metal is leached with dilut	te sodium chloride solu	tion
6. is used for produ	•		
a)PH ₃	b) PCl ₅	c)PCl ₃	d) H_3PO_3
7. Cell equation : $A + 2B^{-}$ reactions find E^{0} for B^{+}	$\rightarrow A^{2+} + 2B$; $A^{2+} + 2e^{-} \rightarrow A$ E + $e^{-} \rightarrow B$	$E^0 = +0.34 \text{ V} \text{ and } \log \text{ K} =$	= 15.6 at 300K for cell
a) - 0.54	b) 1.26	c) 0.80	d) -10.94
8. Complete hydrolysis of	cellulose gives		
a) L-Glucose	b) D-Glucose	c) D-Ribose	d) D-Fructose
9. The actinoid elements v	which show the highest oxidatio	n state of +7 are	
a)U, Fm, Th	b)Np, Pu ,Am	c) U, Th, Md	d) Es, No, Lr
10. is used as insu	lation for cable, making toys;		
a)Nylon – 6	b) Teflon	c) Orlon	d)polythene
11. Crystal field stabilizatio	n energy for high spin d ⁵ octah	nedral complex is	
a) $-0.6\Delta_0$.	b)2(P - Δ_0)	c) 0	$d)2(P + \Delta_0)$
12. What is the activation of to $400K$? (R = 8.314 JK ⁻¹ m	energy for a reaction if its rate d $no\Gamma^{1}$)	loubles when the temper	rature is raised from 200K
a) 234.65 kJ mo Γ^{1} K ⁻¹		c) 434.65 kJ mol ⁻¹ K ⁻¹	d) $334.65 \text{ J mol}^{-1} \text{K}^{-1}$
13 used as p	acking materials for food items	•	
a) Au	b) Zn Hocl x	c) Fe	d)Al
14. In the reaction sequence	e, Ethene $\xrightarrow{\text{Hoch}} A \xrightarrow{\text{A}}$ ethan $-1,2$	-diol. A and X respecti	velyare
a) Chloroethane and NaOH	I	b) ethanol and H ₂ SO ₂	ļ
c)ethanol and H ₂ O		d)2 - chloroethan -1-	ol and NaHCO ₃
15. Which one of the follow	ving nitro compounds does not	react with nitrous acid	
a) (CH ₃) ₃ C NO ₂		b) (CH ₃) ₂ CH ₂ -CH ₂	NO_2
c) CH_3 – CH_2 – CH_2 – NO_2		d) CH ₃ –C– CH NO ₂	
		O CH ₃	
	voids is equal to	_	• •
a)2n	b) n	c) $2n^2$	d) 2n ³
17. On hydrolysis, PCl ₃ gi	ves		
a)POCl ₂	b) PH ₃	c) H ₂ PO ₄	$d)H_2PO_2$

```
18. The molar conductivity of a 0.5 mol dm<sup>-3</sup> solution of AgNO<sub>3</sub> with electrolytic conductivity
of 5.76 \times 10^{-3} \text{ S cm}^{-1}at 298 K is
                                      b)2.88 S cm<sup>2</sup>mol<sup>-1</sup>
a)11.52 S cm<sup>2</sup>mol<sup>-1</sup>
                                                                             c) 0.086 S cm<sup>2</sup>mol<sup>-1</sup>
                                                                                                          d) 28.8 \text{ S cm}^2 \text{mol}^{-1}
                                   PCl5
                                                                        H_2SO_4/H_2O-298K
19. In the reaction Ethanol—
                                                                                             \rightarrow Z. The 'Z' is
                                                                             c) ethylbisulphite
                                      b) ethoxyethane
                                                                                                          d)ethane
20. General electronic outer configuration of Group 14 elements is
a) ns<sup>2</sup>np<sup>1</sup>
                                      b) ns^2np^3
                                                                             c) ns^2np^2
                                                                                                          d) ns^2np^4
21. Fac-mer isomerism is shown by
a)[Co(en)_3]^{3+}
                                      b)[Co(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>]<sup>+</sup>
                                                                             c)[Co(NH<sub>3</sub>)<sub>5</sub>Cl]SO<sub>4</sub> d)[Co(NH<sub>3</sub>)<sub>3</sub>Cl<sub>3</sub>]
22. The coagulation values in millimoles per litre of the electrolytes used for the coagulation of
    As<sub>2</sub>S<sub>3</sub> are given below
    (I) (NaCl)=52
                                      (II) ((BaCl_2)=0.69
                                                                             (III) (MgSO_4)=0.22
The correct order of their coagulating power is
                                      b) I > II > III
a) III > II > I
                                                                             c) I > III > II
                                                                                                          d) II > III>I
23. When Glycerol is oxidized by Fenton's reagent is produced.
a) Tartronic acid
                                      b) Glyceric acid
                                                                             c)Glycerose
                                                                                                          d)Meso oxalic acid
24. The solubility of BaSO<sub>4</sub> in water is 2.42 \times 10^{-3} gL<sup>-1</sup> at 298K. The value of its solubility product (Ksp) will
be (Given molar mass of BaSO_4 = 233g \text{ mol}^{-1})
a) 1.08 \times 10^{-14} \text{mol}^2 \text{L}^{-2} b) 1.08 \times 10^{-12} mol^2 \text{L}^{-2}
                                                                   c) 1.08 \times 10^{-10} \text{ mol}^2 \text{L}^{-2}
                                                                                                          d) 1.08 \times 10^{-8} \text{ mol}^2 \text{L}^{-2}
25. Hair cream is
a) gel
                                      b) emulsion
                                                                             c) solid sol
                                                                                                          d) sol.
26. Identify oxidation number of Ni in [Ni(CO)<sub>4</sub>]
                                                                                                          d) 3
a)2
                                      b) 0
                                                                             c) 4
27. In a reversible reaction, the enthalpy change and the activation energy in the forward direction are
    respectively-x kJ mol<sup>-1</sup> andy kJ mol<sup>-1</sup>. Therefore, the energy of activation in the backward direction is
a)(x + y)x10^3 J \text{ mol}^{-1}
                                      b)(y + x)J \text{ mol}^{-1}
                                                                             c)(x - y)kJ mol^{-1}
                                                                                                          d)(y - x)kJ mol^{-1}
28. The basicity of pyrophosphorous acid (H_4P_2O_5) is
a) 4
                                      b)3
29. Which of the following represents the correct order of acidity in the given compounds
a) FCH<sub>2</sub>COOH> CH<sub>3</sub>COOH> BrCH<sub>2</sub>COOH> CICH<sub>2</sub>COOH
b) CH<sub>3</sub>COOH> ClCH<sub>2</sub>COOH> FCH<sub>2</sub>COOH> Br-CH<sub>2</sub>COOH
c) FCH<sub>2</sub>COOH> CICH<sub>2</sub>COOH> BrCH<sub>2</sub>COOH> CH<sub>3</sub>COOH
d) CICH<sub>2</sub>COOH>CH<sub>3</sub>COOH> BrCH<sub>2</sub>COOH>ICH<sub>2</sub>COOH
30. In Glucose Anomers differ only in the configuration of ___
                                                                                  ___ carbon.
                                      b) C-2
                                                                             c) C-4
                                                                                                          d) C-1
31. The magnetic moment of Mn<sup>2+</sup> ion is
                                                                                                          d) 3.90BM
a) 5.92BM
                                      b) 2.80BM
                                                                             c) 8.95BM
32. For a first order reaction A \longrightarrow Bthe rate constant is x min-1. If the initial concentration of A is 0.01M,
the concentration of A after one hour is given by the expression.
                                                                             c) (1 \times 10^{-2}) e^{-60x}
                                      b) 1 \times 10^{-2} (1 - e^{-60x})
a) 0.01 e^{-x}
                                                                                                          d) none of these
33. Among the d-block elements which on exhibit highest oxidation state.
a) Zn
                                      b)Ru
                                                                                                          d)Cu
34. pH of a saturated solution of Ca(OH)<sub>2</sub> is 9. The Solubility product (Ksp) of Ca(OH)<sub>2</sub>
                                      b)0.5 \times 10^{-15}
                                                                             c) 0.125 \times 10^{-15}
                                                                                                          d) 0.5 \times 10^{-10}
35. Drugs that bind to the receptor site and inhibit its natural function are called
a) molecular targets
                                                b) agonists
                                                                             c) enzymes
                                                                                                          d) antagonists
36. Which of the following is more basic:
                                      b) 1<sup>0</sup> amine
                                                                             c) 2^0 amine
a) 3<sup>0</sup> amine
37. Conductivity of a saturated solution of a sparingly soluble salt AB (1:1 electrolyte) at 298K is
1.85 \times 10^{-5} \text{S m}^{-1}. Solubility product of the salt AB at 298 \text{K} (\Lambda^0_{\text{m}})<sub>AB</sub> = 14 \times 10^{-3} \text{ Sm}^2 \text{ mol}^{-1}.
a) 5.7 \times 10^{-12}
                                      b)1.74 \times 10^{-12}
                                                                             c) 7.5 \times 10^{-12}
```

a) Ionic product = Ksp

b) Ionic product < Ksp

c) Ionic product > Ksp

d) Ionic product \geq Ksp

54. In H₂ - O₂ fuel cell the reaction occurs at cathode is

a) $2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(g)}$

b) $H^+_{(aq)} + OH^-_{(aq)} \longrightarrow H_2O_{(l)}$

 $c)O_{2(g)} + 2H_2O_{(l)} + 4e^- \longrightarrow 4OH_{(aq)}$

d) $H^+ + e^- \longrightarrow \frac{1}{2}H_2$

55. easily liquefiable gas is

a) Ar

b) Ne

c) Kr

d) He

56. Which of the following p	air is correct for square planer	complex (coordination	number and
hybridization)			
a) $4 \& dsp^2$	b) 3 & sp ²	c) $4 \& sp^3$	d) 2 & sp
57. Collodion is a 4% solution	n of which one of the followin	g compounds in alcoho	ol – ethermixture?
a) Nitroglycerine58. If the solubility product of	b) Cellulose acetate of lead iodide is 3.2×10^{-8} , its s	c) Nitrocellulose solubility will be	d) Glycoldinitrate
a) 4×10^{-4} M	b) 2×10^{-3} M	c) 1.6×10^{-5} M	d) 1.8×10^{-5} M
59. Nylon is an example of			
a) polythene	b) polyamide	c) polyester	d) poly saccharide
60. used as a fuel for	or cars.		
a) Chloropicrin	b) Nitro ethane	c) Nitro benzene	d) Nitro methane
61. The yellow colour in NaC			
a) refraction of light from Na	i ⁺ ion	b) reflection of light f	rom Clion on the surface
c)excitation of electrons in F	centers	d) all of the above	
62. Which one of the following	ng reaction represents calcinati	ons?	
$a)2Zn + O_2 \rightarrow 2ZnO$		b)MgCO ₃ \rightarrow MgO + C	$2O_2$
$c)2ZnS + 3O_2 \rightarrow 2ZnO + 2SO$	O_2	d)Both (a) and (c)	
63. Colour of U^{3+} ion is :			
a) Yellow	b) Green	c) Blue	d) Red
64. The most effective electronal NaCl	olyte for the coagulation of As b) Ba(NO ₃) ₂	S_2S_3 is c) $K_3[Fe(CN)_6]$	d) Al ₂ (SO ₄) ₃
65. HO– CH ₂ –CH ₂ – OH on	heating with periodic acid give		
a) methanal	b) Glyoxal	c) methanoic acid	d) CO ₂
66. Which of the following re	eagent can be used to convert	nitrobenzene to aniline	
a) ZnHg / NaOH	b) Sn / HCl	c) LiAlH ₄	d) All of these
67. Potassium has a bcc stru	cture with nearest neighbor dis	stance 4.52 Ao.its atom	nic weight is $39 \text{ g mo}\Gamma^1$. its
density will be			
a) 390 kg m ⁻³	b) 2142 kg m ⁻³	c) 452 kg m ⁻³	d) 915 kg m ⁻³
68. In a protein, various amin	o acids liked together by		
a) Peptide bond69. Formula of tris(ethane-1,2	b) Dative bond 2-diamine) iron(II) phosphate	c) α - Glycosidic bond	d d) β - Glycosidic bond
a)[Fe(H ₂ N-CH ₂ -CH ₂ -NH ₂) ₃ c)[Fe(H ₂ N-CH ₂ -CH ₂ -NH ₂) ₃ 70. Vitamin C is known as	$]_3(PO_4)_2$	b)[Fe(H ₂ N-CH ₂ -CH ₂ d)[Fe(CH ₃ -CH(NH ₂)	,
a) Riboflavin	b) Thiamine	c) Ascorbic acid	d) Pyridoxine
71. The vacant space in bcc l		c) 125001010 wow	<i>a)</i> 1 <i>j</i> 1 <i>a</i> 0 1 <i>a</i>
a) 48%	b) 23%	c) 26%	d) 32%
72. Isopropylbenzene on air o a)C ₆ H ₅ -OH	oxidation in the presence of dil b) C_6H_5 -CO-CH ₃	ute acid gives c) C ₆ H ₅ -CO-C ₆ H ₅	d) C ₆ H ₅ –COOH
73. Which of the following n	netal does not acts as Sacrificia	1 anode for Iron (Fe):	
a) Li	b) Mg	c) Pb	d) Zn
<i>'</i>	doubles when the concentrati	on of the reactant is de	oubles if it is a first order
reaction. Reason: rate constant also			
a) Both assertion and reason are true and reason is the correct explanation of assertion.			
b) Both assertion and reason are true but reason is not the correct explanation of assertion.			
c) Assertion is true but reason is false. d) Both assertion and reason are false			
	ason is taise.	a) Dom assembli alla	reason are laise

75. How many moles of I_2 are liberated when 1 mole of po	tassium dichromate rea	act with	
potassium iodide?			
a) 1 b)3	c) 2	d) 4	
76. Formalin is a aqueous solution of Formaldehyde.			
a) 30 % b) 40 %	c) 20 %	d) 10 %	
77. Insulin, a hormone chemically is			
a) Protein b) Steroid	c) Fat d) Car	bohydrates	
78. Permanganate ion changes to in acidic media a) MnO ₄ ²⁻ b) Mn ³⁺	ım		
a) MnO_4^{2-} b) Mn^{3+}	c) Mn ²⁺	d) MnO ₂	
79. The polymer used in making blankets (artificial wool)	is		
a) polystyrene b) polyester	c) PAN	d) polythene	
80. Which of the following method used to refining for me	tal based on melting po	oint.	
a) Zone refining b) Liquation	c) Electric refining	d)Distillation	
81. Which will make basic buffer?	,	,	
a) 100 mL of 0.1M HCl+200 mL of 0.1M NH ₄ OH			
b) 100 mL of 0.1M CH ₃ COOH+100 mL of 0.1M NH ₄ OH			
c) 50 mL of 0.1M NaOH+25mL of 0.1M CH ₃ COOH			
d) 100 mL of 0.1M HCl+100 mL of 0.1M NaOH			
82. A current strength of 3.86 A was passed through molten	n Calcium oxide for 41	Iminutes and 40 seconds.	
The mass of Calcium in grams deposited at the cathode	is		
(atomic ass of Cais $40g / mol$ and $1F = 96500C$).			
a) 4 b) 8	c) 2	d) 6	
83. Among the following produce cross linked silicones by	hydrolysis		
a) SiCl ₄ b) R ₂ SiCl ₂	c) RSiCl ₃	d) R ₃ SiCl	
84. $C_6H_5NO_2 \xrightarrow{Fe/HCl} A \xrightarrow{NaNO_2/HCl/273K}$	H ₂ O / 283K		
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °			
a)C ₆ H ₅ - CH ₂ - OH b)C ₆ H ₅ - OH	$c)C_6H_5$ - CHO	$d)C_6H_5-NH_2$	
85. Which one of the following is a bio-degradable polyme		1/ DUDY	
a) HDPE b) PVC	c) Nylon 6	d) PHBV	
86. Acetone reacts with Grignard reagent forms:	TD_1.1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_	1/ 3 6 4 4	
a) Primary alcohol b) Secondary alcohol	c) Tertiary alcohol	d) Methanol	
87. Which of the metal is extracted by Hall-Heroult proces		1) 7	
a) Ni b) Al	c) Cu	d) Zn	
88. Which one of the following will not undergo Hofmann		1) CH COMICH	
a) C ₆ H ₅ CONH ₂ b) CH ₃ CH ₂ CONH ₂	c) CH ₃ CONH ₂	d)CH ₃ CONHCH ₃	
89. $(CH_3)_3 - C - CH(OH) - CH_3 \xrightarrow{con H_2 SO_4} X$ (major produ	uct)		
a) (CH_3) $CCH = CH_2$	b) $CH_2 = C(CH_3) - C$	$H_2-CH_2-CH_3$	
c) $CH_2 = C(CH_3)CH_2 - CH_2 - CH_3$	d) $(CH_3)_2C = C (CH_3)$		
90. If activation energy increases, the rate of reaction will be	be		
a) Decreases b) Increases	c) No change d) Firs	t increases then decreases	
91. Oxidation state of carbon in its hydrides	,		
a) - 4 b) +4	c) +3	d) +2	
92. Among the following the achiral amino acid is	,	,	
a) 2-ethylalanine b) 2-methylglycine	c) Tryptophan	d) 2-hydroxymethylserine	
93. Hybrdisation of AX ₅ type of Interhalogen Compound is			
a) sp^3d^2 b) sp^3d	c) sp^3	d) sp ³ d ³	
94. Assertion: Molar conductance of a solution increases v	, 1	, 1	
Reason: For a strong electrolyte inter ionic forces of attraction decreases with dilution.			
<u> </u>			
a)if both assertion and reason are true and reason is the cor	-		
b) if both assertion and reason are true but reason is not the	-		
c) assertion is true but reason is false	d) both assertion and	reason are false	

95. i)
$$O_3$$
 NH_3 $CH_2 = CH_2$ ii) Zn / H_2O NH_3

- a) Formaldelyde
- b) di acetone ammonia
- c) hexamethylene tetraamine
- d) oxime

- **96.** Cheese is an example of
- a) solid in solid
- b) solid in liquid
- c) liquid in liquid
- d) liquid in solid

a) acetylchloride

- $(A) \xrightarrow{H_3 O^+} (B) \xrightarrow{PCl_5} (C)$
- product (C)
- b) chloro acetic acid

c) α- chlorocyanoethanoic acid

- d) none of these
- 98. Ammonium salt of benzoic acid is heated strongly with P2O5 and the product so formed is reduced and then treated with NaNO₂/HCl at low temperature. The final compound formed is
- a) Benzene diazonium chloride

b) Phenol

c) Benzyl alcohol

- d) Nitrosobenzene
- 99. In aqueous solution of amino acids mostly exists in,
- a) NH₂-CH(R)-COOH

b) NH₂-CH(R)-COO

- c) H_3N^+ -CH(R)-COO
- d)H₃N⁺-CH(R)-COOH Photo chemical reaction between H₂ and Cl₂ is an example of
- a) First order

100.

- b) Zero order
- c) Pseudo first order
- d) Second order

SPECIAL TEST – 2023 SIVAGANGAI DT Chemistry One Mark Test

Type - B

Choose the most suitable answer from the given four alternatives and write the option code and the corresponding answer. $1 \times 100 = 100$

1. Identify oxidation nu	mber of Ni in [Ni(CO) ₄]		
a)2	b) 0	c) 4	d) 3
2. In a reversible reac	tion, the enthalpy change	and the activation energy in	n the forward direction are
respectively-x kJ mo	Γ^{-1} andy kJ mo Γ^{-1} . Therefore,	the energy of activation in the	ne backward direction is
$a)(x + y)x10^3 J \text{ mol}^{-1}$	$b)(y + x)J mol^{-1}$	c) $(x - y)kJ mol^{-1}$	$d)(y - x)kJ mol^{-1}$
3. The basicity of pyror	phosphorous acid (H ₄ P ₂ O ₅)) is	
a) 4	b)3	c) 2	d) 5
4. Which of the following	ng represents the correct or	der of acidity in the given co	mpounds
a) FCH ₂ COOH> CH ₃ CO	OOH> BrCH ₂ COOH>ClCH	₂ COOH	
, -	OOH> FCH ₂ COOH> Br-C	-	
*	COOH> BrCH ₂ COOH> CH		
· ·	OOH> BrCH ₂ COOH>ICH ₂		
	differ only in the configurat		
a) C-5	b) C-2	c) C-4	d) C-1
6. The magnetic momen	nt of Mn^{2+} ion is		
a) 5.92BM	b) 2.80BM	c) 8.95BM	d) 3.90BM
		at is $x \min -1$. If the initial co	oncentration of A is 0.01M,
	ter one hour isgiven by the	expression.	
a) $0.01 e^{-x}$	b) $1 \times 10^{-2} (1 - e^{-60x})$	c) $(1\times10^{-2})e^{-60x}$	d) none of these
•	elements which on exhibit h		
a) Zn	b)Ru	c) Au	d)Cu
	ution of $Ca(OH)_2$ is 9. The	Solubility product (Ksp) of C	$Ca(OH)_2$
a) 0.5×10^{-15}	b) 0.5×10^{-15}	c) 0.125×10^{-15}	d) 0.5×10^{-10}
•	-	s natural function are called	
a) molecular targets	b) agonists	c) enzymes	d) antagonists
11. Which of the following		_	
a) 3 ⁰ amine	b) 1 ⁰ amine	c) 2^0 amine	d) NH ₃
12. Conductivity of a sat	urated solution of a sparingl	y soluble salt AB (1:1 electro	olyte) at 298K is
	ity product of the salt AB a	at 298K $(\Lambda^0_{\rm m})_{\rm AB} = 14 \times 10^{-3} \rm S$	$\mathrm{Sm}^2 \; \mathrm{mol}^{-1}$.
	b)1.74 $\times 10^{-12}$	c) 7.5×10^{-12}	d) 1.32×10^{-12}
13. In the decomposition	of Hydrogen peroxide	act as a negative ca	talyst.
a) Ethanol	b) Pt	c) H ₂ S	d) glycerol
14 is used as pres	servative for pickles.		
a) methanol	b) ethanol	c) methanoic acid	d) ethanoic acid
15. Which among the fol	lowing is not a borane?		
a) B_3H_6	$b)B_2H_6$	$c)B_4H_{10}$	d) none of these
16. A complex in which	the oxidation number of the	e metal is zero is	
a) $K_4[Fe(CN)_6]$	$b)[Fe(CO)_5]$	c) $[Fe(CN)_3(NH_3)_3]$	d) both (b) and (c)
17. Graphite and diamond	d are		
a) Covalent and molecula	r crystals	b) ionic and covalent	crystals
c) both molecular crystals		d) both covalent crysta	als
	m diagram, which of the fo	llowing metals can be used t	
alumina?	-	-	
a) Mg	b) Cu	c) Fe	d) Zn

19. Phenyl methanal is reacted with concentrated NaOH to metallic sodium to liberate hydrogen X and Y are	give two products X a	nd Y. Xreacts with	
a) phenyl methanol and sodium benzoate	b) Sodium benzoate a	and phenyl methanol	
c) sodiumbenzoate and phenol	d) none of these	, , , , , , , , , , , , , , , , , , ,	
20. For the reaction, $2NH_3 \longrightarrow N_2 + 3H_2$, if $\frac{-d[NH_3]}{dt} = k_1$	$[NH_3], \frac{+d[N_2]}{dt} = k_2[NH_3]$	$\int_{0}^{\infty} \frac{dH_2}{dt} = k_3[NH_3] \text{ then the}$	
relation between K_1 , K_2 and K_3 is	a)1.5W 2W W	4) OV V OV	
a) $K_1 = K_2 = K_3$ b) $K_1 = 3K_2 = 2K_3$ 21. Among the following which is Conjugate base of H_2C		a) $2K_1 = K_2 = 3K_3$	
a) CO_2 b) CO_3^{2-}	c) H ₃ CO ₃ ⁺	d) HCO ₃	
22. Among the following, which is the strongest oxidizing	,	<i>ay</i> 3	
a) F ₂ b) Cl ₂	c) Br ₂	d) l ₂	
23. Coordination number of ZnS is:			
a) 3 b) 6	c) 4	d) 8	
24. Non stick cook wares generally have a coating of a po-	lymer, whose monomer	is	
a) ethane b) prop-2-enenitrile	c)Teflon	d) chloroethene	
25. The formation of cyanohydrin from acetone is an exam	•		
a) nucleophilic substitution	b) Nucleophilic additi		
c) electrophilic addition	d) electrophilic substi	tution	
26. Formalin is a aqueous solution of Formaldehyde.			
a) 30 % b) 40 %	c) 20 %	d) 10 %	
27. Insulin, a hormone chemically is			
a) Protein b) Steroid		bohydrates	
28. Permanganate ion changes to in acidic media a) MnO ₄ ²⁻ b) Mn ³⁺	um		
		d) MnO ₂	
29. The polymer used in making blankets (artificial wool)		A)	
a) polystyrene b) polyester	c) PAN	d) polythene	
30. Which of the following method used to refining for me			
a) Zone refining b) Liquation	c) Electric refining	d)Distillation	
31. Which will make basic buffer?			
a)100 mL of 0.1M HCl+200 mL of 0.1M NH ₄ OH b) 100 mL of 0.1M CH ₃ COOH+100 mL of 0.1M NH ₄ OH			
c)50 mL of 0.1M NaOH+25mL of 0.1M CH ₃ COOH			
d) 100 mL of 0.1M HCl+100 mL of 0.1M NaOH			
32. A current strength of 3.86 A was passed through molten Calcium oxide for 41 minutes and 40 seconds.			
The mass of Calcium in grams deposited at the cathode	e is		
(atomic ass of Cais $40g / \text{mol}$ and $1F = 96500C$).	-) 2	1) (
a) 4 b) 8 33. Among the following produce cross linked silicones by	c) 2 v hydrolye is	d) 6	
a) SiCl ₄ b) R ₂ SiCl ₂	c) RSiCl ₃	d) R ₃ SiCl	
	, -	,	
$34. C_6H_5NO_2 \xrightarrow{Fe/HCl} A \xrightarrow{NaNO_2/HCl/273K}$	$B \xrightarrow{\text{C'C'}} C'C'$	is	
a) C_6H_5 - CH_2 - OH b) C_6H_5 - OH	$c)C_6H_5$ - CHO	$d)C_6H_5-NH_2$	
35. Which one of the following is a bio-degradable polymer.			
a) HDPE b) PVC	c) Nylon 6	d) PHBV	
36. Acetone reacts with Grignard reagent forms:	-) T	J\ M - d 1	
a) Primary alcohol b) Secondary alcohol	c) Tertiary alcohol	d) Methanol	
37. Which of the metal is extracted by Hall-Heroult process?			
a) Nib) Al38. Which one of the following will not undergo Hofmann	c) Cu bromamide reaction	d) Zn	
a) C ₆ H ₅ CONH ₂ b) CH ₃ CH ₂ CONH ₂	c) CH ₃ CONH ₂	d)CH ₃ CONHCH ₃	

```
\xrightarrow{con \, H_2 \, SO_4} X \text{ (major product)}
39. (CH_3)_3 - C - CH(OH) - CH_3
a) (CH_3) CCH = CH_2
                                                                 b) CH_2 = C(CH_3) - CH_2 - CH_2 - CH_3
c) CH_2 = C(CH_3)CH_2 - CH_2 - CH_3
                                                                 d) (CH_3)_2C = C (CH_3)_2
40. If activation energy increases, the rate of reaction will be
a) Decreases
                                b) Increases
                                                                 c) No change d) First increases then decreases
41. Oxidation state of carbon in its hydrides
a) -4
                                b) +4
                                                                 c) +3
                                                                                          d) + 2
42. Among the following the achiral amino acid is
                                                                 c) Tryptophan
a) 2-ethylalanine
                                b) 2-methylglycine
                                                                                          d) 2-hydroxymethylserine
43. Hybrdisation of AX<sub>5</sub> type of Interhalogen Compound is
                                                                                                  d) sp^3d^3
a) sp^3d^2
                                         b) sp<sup>3</sup>d
                                                                         c) sp^3
44. Assertion: Molar conductance of a solution increases with increases in dilution
Reason: For a strong electrolyte inter ionic forces of attraction decreases with dilution.
a)if both assertion and reason are true and reason is the correct explanation of assertion.
b) if both assertion and reason are true but reason is not the correct explanation of assertion.
c) assertion is true but reason is false
                                                                 d) both assertion and reason are false
                                                         NH_3
45.
                            i) O<sub>3</sub>
                                                                  → Y, 'Y' is
CH_2 = CH_2
                           ii) Zn / H<sub>2</sub>O
a) Formaldelyde
                        b) di acetone ammonia
                                                         c) hexamethylene tetraamine
                                                                                                  d) oxime
46. Cheese is an example of
                                b) solid in liquid
                                                                                          d) liquid in solid
a) solid in solid
                                                         c) liquid in liquid
                           H_{3}O^{+}
                  \rightarrow (A) \xrightarrow{\circ} (B) \xrightarrow{\circ} (C)
                                                         product (C) is
a)acetylchloride
                                                         b) chloro acetic acid
c) α- chlorocyanoethanoic acid
                                                         d) none of these
48. Ammonium salt of benzoic acid is heated strongly with P<sub>2</sub>O<sub>5</sub> and the product so formed is reduced and
    then treated with NaNO2/HCl at low temperature. The final compound formed is
a) Benzene diazonium chloride
                                                         b) Phenol
c) Benzyl alcohol
                                                         d) Nitrosobenzene
49. In aqueous solution of amino acids mostly exists in,
a) NH<sub>2</sub>-CH(R)-COOH
                                                         b) NH<sub>2</sub>-CH(R)-COO
c) H_3N^+-CH(R)-COO
                                                         d)H<sub>3</sub>N<sup>+</sup>-CH(R)-COOH
50. Photo chemical reaction between H<sub>2</sub> and Cl<sub>2</sub> is an example of
                                                         c) Pseudo first order
a) First order
                                b) Zero order
                                                                                          d) Second order
51. Equal volumes of three acid solutions of pH 1,2 and 3 are mixed in a vessel. What will be
the H<sup>+</sup> ion concentration in the mixture?
a)10^{-6}
                                                                 c) 0.111
                                                                                          d) none of these
52. Duralumin is an alloy of
a) Al,Cu,Mn,Mg
                                b) Cu,Al,Mg
                                                                 c) Al,Mn
                                                                                          d)Cu,Mn
                     HgSO_4 / H_2 SO_4
53. Ethyne + H_2O
a) Propanol
                                b) Ethanol
                                                                 c)Ethanal
                                                                                          d) Propanal
54. The crystal with a metal deficiency defect is
a) NaCl
                                b)ZnO
                                                                 c)FeO
                                                                                          d) KCl
55. The incorrect statement among the following is
a) Nickel is refined by Mond's process
                                                         b) Titanium is refined by Van Arkel's process
c) Zinc blende is concentrated by froth floatation
d) In the metallurgy of gold, the metal is leached with dilute sodium chloride solution
56. _____ is used for producing smoke screen.
a)PH<sub>3</sub>
                                b) PCl<sub>5</sub>
                                                                 c)PCl3
                                                                                          d) H<sub>3</sub>PO<sub>3</sub>
```

```
57. Cell equation : A + 2B\rightarrowA<sup>2+</sup> + 2B; A<sup>2+</sup> + 2e\rightarrowA E<sup>0</sup> = +0.34 V and log K = 15.6 at 300K for cell
    reactions find E^0 for B^+ + e^- \rightarrow B
a)-0.54
                                       b) 1.26
                                                                              c) 0.80
                                                                                                            d) - 10.94
58. Complete hydrolysis of cellulose gives
a) L-Glucose
                                       b) D-Glucose
                                                                              c) D-Ribose
                                                                                                            d) D-Fructose
59. The actinoid elements which show the highest oxidation state of +7 are
a)U. Fm. Th
                                       b)Np, Pu,Am
                                                                              c) U, Th, Md
                                                                                                            d) Es, No, Lr
60. _____ is used as insulation for cable, making toys;
                                                                              c) Orlon
a)Nylon - 6
                                       b) Teflon
                                                                                                            d) polythene
61. Crystal field stabilization energy for high spin d<sup>5</sup> octahedral complex is
                                       b) 2(P - \Delta_0)
                                                                                                            d) 2(P + \Delta_0)
62. What is the activation energy for a reaction if its rate doubles when the temperature is raised from 200K
to 400K? (R = 8.314 \text{ JK}^{-1}\text{mol}^{-1})
a) 234.65 kJ mo\Gamma^{1}K<sup>-1</sup>
                                      b) 434.65 J moΓ<sup>1</sup>
                                                                              c) 434.65 \text{ kJ mo}\Gamma^{1}\text{K}^{-1} d) 334.65 \text{ J mo}\Gamma^{1}\text{K}^{-1}
63. _____ used as packing materials for food items.
    a) Au
                                                 b) Zn
                                                                                        c) Fe
                                                                                                                      d) Al
64. In the reaction sequence, Ethene \xrightarrow{\text{HOCl}} X \xrightarrow{\text{X}} ethan -1,2-diol. A and X respectively are
                                              HOCl
                                                                              b) ethanol and H<sub>2</sub>SO<sub>4</sub>
a) Chloroethane and NaOH
c) ethanol and H<sub>2</sub>O
                                                                              d)2 - chloroethan -1-ol and NaHCO<sub>3</sub>
65. Which one of the following nitro compounds does not react with nitrous acid
                                                                              b) (CH<sub>3</sub>)<sub>2</sub> CH<sub>2</sub>-CH<sub>2</sub> NO<sub>2</sub>
a) (CH<sub>3</sub>)<sub>3</sub> C NO<sub>2</sub>
c) CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>-NO<sub>2</sub>
                                                                              d) CH<sub>3</sub>-C- CH NO<sub>2</sub>
                                                                                        O CH<sub>3</sub>
66. Number of Octahedral voids is equal to
                                                                           When the number of close packed spheres be 'n'
                                                                              c) 2n<sup>2</sup>
                                                                                                            d) 2n<sup>3</sup>
a)2n
                                       b) n
67. On hydrolysis, PCl₃gives
a) POCl<sub>3</sub>
                                       b) PH<sub>3</sub>
                                                                              c) H<sub>3</sub>PO<sub>4</sub>
                                                                                                            d) H<sub>3</sub>PO<sub>3</sub>
68. The molar conductivity of a 0.5 mol dm<sup>-3</sup> solution of AgNO<sub>3</sub> with electrolytic conductivity
of 5.76 \times 10^{-3} S cm<sup>-1</sup> at 298 K is
a)11.52 S cm<sup>2</sup>mol<sup>-1</sup>
                                                                              c) 0.086 \text{ S cm}^2 \text{mol}^{-1}
                                                                                                            d) 28.8 S cm<sup>2</sup>mol<sup>-1</sup>
                                       b)2.88 S cm<sup>2</sup>mol
                                                      alc.KOH
                                                                         H_2SO_4/H_2O-298K
69. In the reaction Ethanol-
                                                                                                →Z. The 'Z' is
                                       b) ethoxyethane
                                                                              c) ethylbisulphite
a) ethanol
                                                                                                            d)ethane
70. General electronic outer configuration of Group 14 elements is
                                       b) ns^2np^3
                                                                              c) ns^2np^2
                                                                                                            d) ns^2np^4
a) ns^2np^1
71. Fac-mer isomerism is shown by
a)[Co(en)_3]^{3+}
                                       b)[Co(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>]<sup>+</sup>
                                                                              c)[Co(NH_3)_5Cl]SO_4 d)[Co(NH_3)_3Cl_3]
72. The coagulation values in millimoles per litre of the electrolytes used for the coagulation of
    As<sub>2</sub>S<sub>3</sub> are given below
    (I) (NaCl)=52
                                       (II) ((BaCl_2)=0.69
                                                                              (III) (MgSO_4)=0.22
The correct order of their coagulating power is
a) III > II > I
                                       b) I > II > III
                                                                              c) I > III > II
                                                                                                           d) II > III > I
73. When Glycerol is oxidized by Fenton's reagent is produced.
a) Tartronic acid
                                       b) Glyceric acid
                                                                              c)Glycerose
                                                                                                           d)Meso oxalic acid
74. The solubility of BaSO<sub>4</sub> in water is 2.42 \times 10^{-3} \text{gL}^{-1} at 298K. The value of its solubility product (Ksp) will
be (Given molar mass of BaSO<sub>4</sub> =233g mol<sup>-1</sup>)
a) 1.08 \times 10^{-14} \text{mol}^2 \text{L}^{-2} b) 1.08 \times 10^{-12} \text{ mol}^2 \text{L}^{-2}
                                                                    c)1.08 \times 10^{-10} mol<sup>2</sup>L<sup>-2</sup>
                                                                                                           d) 1.08 \times 10^{-8} \text{ mol}^2 \text{L}^{-2}
75. Hair cream is
a) gel
                                       b) emulsion
                                                                              c) solid sol
                                                                                                            d) sol.
```

76. The basic structural un	nit of silicates is		
$a)(SiO_3)^{2-}$	b)(SiO ₄) ⁴⁻	c) (SiO)	$d)(SiO_4)^{2-}$
77. Assertion: Coagulation	power of Al3+ is more than Na	+	
Reason: greater the valency	of the flocculating ion added,	greater is its power to	causeprecipitation
a) if both assertion and reason	on are true and reason is the co	rrect explanation of ass	sertion.
	on are true but reason is not the	-	
c) assertion is true but reason	n is false	d) both assertion and	reason are false
78. Which of following cond	dition is suitable for super satur	rated solution with pre-	cipitation occur.
a) Ionic product = Ksp		b) Ionic product < Ksp	
c) Ionic product > Ksp		d) Ionic product $\geq K$	sp
79. In H_2 - O_2 fuel cell the re	eaction occurs at cathode is		
a) $2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O$	<u> </u>	b) $H^{+}_{(aq)} + OH^{-}_{(aq)}$	\rightarrow H ₂ O _(l)
$c)O_{2(g)} + 2H_2O_{(l)} + 4e^{-} \longrightarrow$	$4OH_{(aq)}$	d) $H^+ + e^- \longrightarrow \frac{1}{2}H_2$	
80. easily liquefiable gas i	S		
a) Ar	b) Ne	c) Kr	d) He
81. Which of the following	pair is correct for square planer	complex (coordination	n number and
hybridization)			
a) $4 \& dsp^2$	b) $3 \& sp^2$	c) $4 \& sp^3$	d) 2 & sp
82. Collodion is a 4% solution	on of which one of the followin	g compounds in alcoh	ol – ethermixture?
a) Nitroglycerine	b) Cellulose acetate	c) Nitrocellulose	d) Glycoldinitrate
83. If the solubility product	of lead iodide is 3.2×10^{-8} , its		N 4 0 40-52 5
a) $4 \times 10^{-4} M$	b) 2×10^{-3} M	c) 1.6×10^{-5} M	d) $1.8 \times 10^{-5} M$
84. Nylon is an example of	15 1 11		1\ 1 1 11
a) polythene 85 used as a fuel f	b) polyamide	c) polyester	d) poly saccharide
a) Chloropicrin	b) Nitro ethane	c) Nitro benzene	d) Nitro methane
86. The yellow colour in Na		c) I lito belizene	d) Nido mediane
a) refraction of light from N	•	h) reflection of light	from Clion on the surface
c)excitation of electrons in I		d) all of the above	nom chon on the surface
,	ing reaction represents calcinat	*	
a) $2Zn + O_2 \rightarrow 2ZnO$	ing reaction represents earthan	b)MgCO ₃ →MgO + 0	ΓO_{α}
·		, 0 -	$\mathcal{L}O_2$
c)2ZnS + 3O ₂ \rightarrow 2ZnO + 2S 88. Colour of U ³⁺ ion is:	O_2	d)Both (a) and (c)	
	12.6	\ D 1	1\ D _ 1
a) Yellow	b) Green	c) Blue	d) Red
a) NaCl	rolyte for the coagulation of A b) Ba(NO ₃) ₂	S_2S_3 is c) K_3 [Fe(CN) ₆]	d) Al ₂ (SO ₄) ₃
90. HO– CH ₂ –CH ₂ – OH or	n heating with periodic acid give	es	
a)methana1	b) Glyoxal	c) methanoic acid	d) CO ₂
91. Which of the following	reagent can be used to convert	nitrobenzene to aniline	
a) ZnHg / NaOH	b) Sn / HCl	c) LiAlH ₄	d) All of these
92. Potassium has a bcc str	ructure with nearest neighbor di	stance 4.52 Ao.its atom	nic weight is $39 \text{ g mo}\Gamma^1$. its
density will be			
a) 390 kg m ⁻³	b) 2142 kg m ⁻³	c) 452 kg m^{-3}	d) 915 kg m ⁻³
93. In a protein, various amino acids liked together by			
a) Peptide bond	b) Dative bond	c) α - Glycosidic bon	d d) β - Glycosidic bond
94. Formula of tris(ethane-1,	2-diamine)iron(II)phosphate	-	
a)[Fe($H_2N-CH_2-CH_2-NH_2$) ₃] ₃ (PO ₄) ₂ b)[Fe($H_2N-CH_2-CH_2-NH_2$) ₃]PO ₄			$_{2}-NH_{2})_{3}]PO_{4}$

d) $[Fe(CH_3 - CH(NH_2)_2)_3](PO_4)_3$

c) $[Fe(H_2N-CH_2-CH_2-NH_2)_3](PO_4)_2$

c) 2

b) 3

a) 1