SPECIAL QUESTION PAPER										
CLASS	: XII	: XII			I			MARKS : 70		
SUBJECT	: CHEN	IISTRY				TIME	: 3	3.00HRS		
I. Choose the correct answers.							1	5X 1 =15		
1. Drugs that bind to the receptor site and inhibit its natural function are called										
a) antagoni	sts	b) agonists		c) enzymes		d) molecular ta	arge	ts		
2. The central of	dogma of r	nolecular gene	etics s	states that the	geneti	c information	flow	's from		
a) Amino acids Protein DNA				b) DNA Carbohydrates Proteins						
c) DNA RNA Proteins			d) DNA RNA							
3. The formation	on of cyan	ohydrin from a	aceto	ne is an exam	ple of					
a) nucleophilic substitution				b) electrophilic substitution						
c) electrophilic addition			d) Nucleophilic addition							
4. Which one o	of the follow	wing is an exa	mple	for heteroger	neous c	catalysis?				
(a) Decompo	sition of a	cetaldehyde by	/ I ₂ ca	atalyst						
(b) Decompo	sition of H	C_2O_2 in the pres	sence	of Pt catalys	t					
(c) Acid hydr	olysis of e	ster								
(d) Hydrolysi	is of cane s	sugar with min	eral	acid	•					
5. The pH of a	solution at	25°C containi	ing 0	.10 M sodium	aceta	te and 0.03 M	acet	ic acid is		
(pKa for CH	₃ COOH =	4.57)								
(a) 4.09		(b) 5.09		(c) 6.10		(d) 7.09				
6. The vacant s	pace in be	c lattice unit co	ell is							
(a) 48%		(b) 23%		(c) 32%		(d) 26%				
7. The most co	mmon oxid	dation state of	actin	oids is						
(a) +2		(b) +3		(c) +4		(d) +6				
8. Structure of	XeOF ₄									
a) Square pyramidal			b) pentagonal bipyramidal							
c) T shaped			d) Linear							
9. Noble gases	are chemic	cally inert. Thi	is is c	lue to	•••					
(a) unstable electronic configuration				(b) stable electronic configuration						
(c) only filled p-orbital				(d) only filled 5-orbital						
10. Which one	of the foll	owing ores is	best	concentrated	by frot	h – floatation	metł	nod?		
a) Magnetit	te	b) Hematite		c) Galena		d) Cassiterite				

11. Assertion: pure iron when heated in dry air is converted with a layer of rust.

Reason: Rust has the compositionFe₃O₄

- a) if both assertion and reason are true and reason is the correct explanation of assertion.
- b) if both assertion and reason are true but reason is not the correct explanation of assertion.
- c) assertion is true but reason is false d) both assertion and reason are false.
- 12. The rate constant of a reaction at temperature 200K is 10 times less than the rate constant at 400K. What is the activation energy of the reaction? (R = gas constant)
 - a) 182.4R
- b) 921.2R
- c) 460.6R
- d)230.3R

- 13. When $\Delta S < 0$ and $T\Delta S$ is Negative
 - (a) Absoption is exothermic

(b) Adsoption is exothermic

(c) Adsoption is endothermic

- (d) Adsoption is endothermic
- 14. Which of the following is correct about H bonding in Nucleotide?
 - (a) A -T, G C
- b) G-T, A-C
- (c) A A, T- T
- (d) A G, T C
- 15. Which of the following does not show optical isomerism?
 - (a) $[Co(en)_2Cl_2]^+$

(b) $[Co(NH_3)_3Cl_3]^0$

(c) [Co(en) Cl₂ (NH₃)₂]⁺

(d) $[Co(en)_3]^{3+}$

II. Answer Any six questions. (Question No. 24 is compulsory)

 $(6 \times 2 = 12)$

- 16. Explain refining process of metal by distillation method.
- 17. Complete the following reactions. $SiCl_4 + C_2H_5OH \rightarrow ?$
- 18. What is water gas equilibrium?
- 19. What is the action of Copper with dil.HNO₃ and Con.HNO₃?
- 20. What are primitive and non primitive unit cell?
- 21. Write stephen's reaction.
- 22. Arrange the following in the increasing order of relative reactivity of acid derivatives and mention the reason alone.
- 23. Write Baltz Schimann reaction.
- 24. At a particular temperature , the Kw of a neutral solution was equal to 4×10^{-14} Calcultae the concentration of $[H_3O^+]$ and $[OH^-]$

III. Answer Any six questions. (Question No. 33 is compulsory)

 $(6 \times 3 = 18)$

- 25. State Kohlraush law. And give one example.
- 26. What is linkage isomerism? Explain with an example.

- 27. Explain the oxidation state of 4d series elements.
- 28. Derive Arrhenius equation to calculate activation energy from the rate constant K_1 and K_2 at temperature T_1 and T_2 respectively
- 29. What are active centers?
- 30. How is terylene prepared? Give its uses.
- 31. Explain amines are more basic than amides.
- 32. Write the auto oxidation of diethyl ether.
- 33. Write the structure for the following compound
 - i) 4- Methyl phenyl methanal ii) 4- methyl pent 3-ene iii) 4,6 dimethyl hept 3- ene -2 one

IV. Answer the following questions.

 $(5 \times 5 = 25)$

- 34. a) Describe the structure of diborane. (Or)
 - b) Explain extraction of copper from its Ore.
- 35. a) i) Explain the manufacture of chlorine by Deacon's process
 - ii) Write the molecular formula and structural formula for the following molecules. a) Polythionic acid b) Peroxymono sulphuric acid (Or)
 - b) What is Lanthanide contraction? List the consequences of lanthanide contraction.
- 36. a) Derive an expression for Ostwald's dilution law. (Or)
 - b) i) Define: Crystal lattice ii) Write note on Impurity defect.
- 37. a) i) Derive integrated rate law for a first order reaction A→ product
 - ii) Explain Debye Huckel Onsagar equation. (Or)
 - b) i) Write Trans esterification reaction. ii) What is Pinacol? How its Prepared
- 38. a) i) How will you prepare Propan- 1-ol from Grignard reagent?
 - ii) Write Mechanism of Cannizaro reaction. (Or)
 - b) i) Write note on Vulcanization of Rubber.
 - ii) What are Antioxidants? Give example.

N. Ramchandran. M.Sc., B.Ed

Department Of Chemistry