

CLASSIFICATION OF BOOK BACK 1 MARK QUESTIONS BASED ON TYPE

ANGLE ORIENTED QUESTIONS
Increases – Decreases Related Question
GENERAL QUESTIONS
FORMULA ORIENTED QUESTIONS
Problem Oriented One Mark Questions
TWISTED QUESTIONS

	www.Padasalai Net PHYSICS VOLUME - 1& II		
"AN	IGLE" ORIENTED QUESTIONS :-		
1.	Electric Dipole is placed parallel to the uniform field, then torque		
	is		
	a) zero b) maximum		
	c) minimum d) either of these		
2.	Electric dipole is placed perpendicular to the uniform field then		
	torque is		
	a) zero b) max		
	c) min d) None of these		
	(Note: In uniform field force exerted on the dipole is zero.		
	In Non uniform field, force exerted on the dipole is Non-zero).)	
3.	The angular difference between the direction of torque and the		
	plane which contains electric field and dipole moment is		
	a) zero b) $\frac{n}{2}$ c) π d) 2π		
4.	The potential energy of electric dipole in electric field which is		
	anti parallel to the field is		
	a) $U = -PE$ b) $U = 0$ c) $U = +PEd$) both (a) and (b)		
5.	The angle between the direction of work done on the test charge		
	and the field of charge +q is		
	a) 0 b) 90° c) 180° d) 360°		
5.	To an infinite long straight charged wire, flux at the plane caps		
	(Gaussian surface)cylinder is zero because area vector is		
	a) parallel to E b) perpendicular to E		
_	c) opposite to E d) along E		
1.	The angle between the current and the magnetic field induced		
	around the current carrying conductor		
-	a) 0° b) 90° c) 180° d) 360°		
8.	A charge –q is moving parallel the magnetic field, then force on		
	the charge is		
2	a) +Bqv b) –Bqv c) zero d) maximum		
9.	The angular difference between the magnetic Lorentz force and \overline{D}		
	plane containing B and V, is		
	a) 90° b) 180° c) 360° d) 270°		
0.	Work done on the charge q, by the magnetic Lorentz force is zero	C	
	because		
	a) Force is always perpendicular to v b) Force is Parallel to v	V	
	c) F and v acting in same plane d) Force is zero		
		1	

	www.	Padasalai.Net. v	www.Trb Tnpsc.com	of 2.
11.	The velocity of the charged particle in cyclotron is increased by			on is increased by
	a) magnetic fi	eld	b) e	electric field
	c) both electri	c and magnetic	field d) r	none of these
12.	A current car	rying conductor	is placed perper	ndicular to magnetic
	field, the mag	h) sere	S	
13	a) BIL The direction	of force on a cu	c) inininum	a) BIL COSO
15.	magnetic field is			
	a) perpendicu	lar to the plane	containing $\overline{\mathbf{U}}$ an	$d\overline{B}$
	b) parallel to t	the plane contai	ning $\overline{\mathbf{N}}$ and $\overline{\mathbf{R}}$	
	c) parallel to			. 0
	d) parallel to	<u>,</u>		
14	The current c	arrving rectang	lar coil is paral	lel to the magnetic
1.1.	field. then tor	aue exerted is		
	a) zero	b) nBIAcosθ	c) nBIA	d) –nBIA
15.	In moving coi	l galvanometer, t	the angle betwee	en the normal of
	rectangular coil and field is always			
	a) 90°	b) 0°	c) 180°	d) 270°
16.	6. The direction of magnetic moment, due to a current loop is			
a) parallel to the plane of the loop				
	b) along the p	he plane of the l	000	
	d) Both (a) and (b)			
17.	When a coil is	s placed parallel	to the magnetic	field, then induced
	emf is		0	,
	a) maximum	b) minimum	c) zero	d) none of these
18.	When the coil	is placed parall	el to the magnet	tic field, then the
	flux linkage is			
10	a) maximum	b) minimum	c) zero	d) none of these
19.	Angle between	1 area and area :	rector is	d) Ωπ
00	a) U	$\frac{1}{2}$	$C \int n$	$u_{j} 2n$
20.	then emf indu	of the conductor	is parallel to th	le magnetic neid,
				d) dø
~ ~	aj INBA	D) INBAW	cj zero	$d \int \frac{dt}{dt}$
21.	Mutual Induc	tion is small, wh	h) normandiate	wound
	a) parallel	ame avis	d) None of the	1a1 Se
	cj along the S	anne anis		SC

kindly send me your key answer to our email id - Padasalai.net@gmail.com of 2.

22.	Thin lam mated holes dr illed, metal plate swings parallel to the magnetic field. Eddy produced in the plate is		
	a) minimum b) :	maximum	
	c) zero d) ·	varies from :	zero to maximum
23.	. In transformer the phase differenc	e between a	pplied emf and
	induced emf is		
	a) 0° b) 180° c) 9	90°	d) 45°
24.	. In RLC circuit, Inductive reactance	e advances o	capacitive reactance
	by		
	a) $\frac{\pi}{2}$ b) π c) 2	2π	d) 💋
25.	. In RLC circuit at resonance condit	tion, phase a	angle Ø is
	a) $\frac{\pi}{2}$ b) π c) 2	2π	d) 0
26.	. The magnitude of current flowing	through RL(C circuit is
	a) same b)	maximum tl	hrough Inductor
	c) advances V_c by 180° d)	lags V_L by 1	80°
27.	. In earth's magnetic field, emf indu	ced on the v	vings of air craft is
	due to		
	a) horizontal component of earth		
	b) vertical component of earth		
	c) Both (a) and (b)	2	
	d) None of these		
28.	The angle between \overline{E} and \overline{B} , in an	n em wave is	8
	a) 0 b) $\frac{\pi}{2}$ c) π	ſ	d) 2π
29.	. The direction of propagation of em	waves is	
	a) parallel to both \overline{E} and \overline{B}		
	b) along the direction of \overline{E}		
	c) perpendicular to both \overline{E} and \overline{B}		
	d) perpendicular to $\overline{\mathbf{B}}$ alone		
30.	The angle of incidence of plane wa	ve front is 3	0°, then the angle
	between the incident wave front ar	nd reflecting	surface is
	a) 60° b) 90° c) 3	30°	d) 45°
31.	The angle between the direction of	propagation	n and the wave
	front is	1 1 0	
	a) 0° b) 45° c) 9	90°	d) 180°
32.	. If a light passing from rarer mediu	m to denser	medium then
	a) i < r b) i = r c) r	r = 90°	d) i> r
33.	. When light passing from denser to	rarer mediı	ım, then
	a) i < r b) i = r c) r	r = 90°	d) i> r
	, , , -,		,

kindly send me your key answer to our email id - Padasalai.net@gmail.com of 2.

34.	At the critical ^P	adaşılai Net angle	wr Tetraction o	f 2.
	a) r> 90°	b) r = 90°	c) i = r	d) i = 90°
35.	In transverse v	vibration, the di	rection of vibrati	on is
	a) parallel to th	ne direction of w	vave propagation	l
	b) perpendicul	ar to the direction	on of wave	
	c) depend on the	he medium		
	d) either (a) or	(b)		
36.	A light ray inci	dent on a thin f	ilm, the angle of	Trefraction $r = 0;$
	when			
	a) i = 90°	b) i = 45°	c) i = 0°	d) i = 60°
37.	In Newton's rir	ng experiment, t	he phase differe	nce between the
	two rays which	n are reflected by	y a denser and r	arer medium
	a) $\frac{\pi}{2}$	b) π	c) 2 π	d) 0
38.	By increasing	the number of g	rating element,	the order of
	diffraction can	be		
	a) increased		b) decreased	
	c) remains the	same	d) does not dep	pend on N
39.	At the polarizin	ng angle, the an	gle between the	incident ray and
	refracted ray is	8	C'U	
	a) 2 ip	b) ip	c) 90°	d) 2 i _p + 90°
40.	The plane of po	olarization and t	the plane of vibr	ations are to
	each other			
	a) parallel	b) p	erpendicular	
	c) the same	0.0	d) either (a) or	(b)
41.	The polarizing	angle for glass i	is 57.5°. The an	gle between the
	incident ray ar	nd the reflecting	surface is	
	a) 57.5°	b) 115°	c) 32.5°	d) 90°
42.	In calcite cryst	al no double ref	raction takes pl	ace, only when
	ordinary and e	xtra ordinary ra	y travels	
	a) perpendicul	ar to each other	b) with same v	elocity
	c) along optic a	axis	d) both (b) and	. (C)
43.	In a T.G, for a	constant curren	it, the deflection	is 30°. The plane
	of the coil is ro	otated through 1	80°, for the sam	e current deflection
	will be			
	a) 30°	b) 60°	c) 90°	d) 0°
44.	The phase diffe	erence between	the two points o	n a given wave
	front is			
	a) 0°	b) 90°	c) 60°	d) 180°

45.	The angle between the tay and the wave from of 2.		
	a) 0° b) 90° c)	180°	d) 360°
46.	In longitudinal wave, the angle be and the direction of wave is	tween the vib	ration of particles
	a) 0° b) 90° c) :	270°	d) 360°
47.	Induced dipole moment in a dielection is at an angle of	ctric to the ap	plied electric field,
	a) 0° b) 90° c)	180°	d) 270°
48.	Refractive index of a medium is in of critical angle, when light passes medium. Then	versely propo s from denser	rtional to the sine medium to rarer
	a) i < c b) $r < 90^{\circ}$ c) :	i = c	d) i> r
49.	In the presence of external field (E electric field (E _i) is	Σ ₀) in a dielect	ric, the induced
	a) along the direction of external fi	ield (E ₀)	b) opposite to E_0
	c) perpendicular to E_0		d) either (b) or (c)
50.	The phase difference between inpu	ut current and	d output current
	of a transformer is		
	a) 0° b) 30° c)	180°	d) 90°
51.	The direction of eddy to the magne	etic field is	
	a) parallel to B b)	perpendicula	r to B
	c) does not depend on B d)	either (a) or (b)
52.	Average power consumedby an RL	C circuit is n	naximum, when \emptyset =
	a) 180° b) 90° c)	0° .	d) 60°
53.	The force on an charged oil drop is	s maximum, v	when it moves
	a) parallel to B b) paral	llel to E	<i>1</i> 4 \
	c) perpendicular to B d)	both (a) and	(b)
54.	In ∝-particle scattering experimen	t, the angle b	etween incident
	particle and scattered particle in b	backward dire	ection is
	a) 0° b) 180° c)	90°	d)
55.	In an atom the angle between elec and linear velocity of electron is	tro statatic fc	ore of attraction
	a) 0° b) 180° c)9	90°	d) 360°
56.	In Bragg spectrometer as θ increas	ses, the order	of spectrum also
	increases but intensity decreases.	Here θ is	
	a) angle of diffraction		
	b) angle of polarisation		
	c) angle between incident ray and	lattice plane	
	d) angle between incident ray and	reflected ray	
			5

57. If a charged particle effers in a region of electric and magnetic fields which are perpendicular to each other, then force on it at the balanced state is

a) zero b) minimum c) maximum d) either (b) or (c)

- 58. When the angle of incidence for an em wave is large, than the skip distance becomes
 - a) lesser b) zero
 - c) larger d) depends on the location of transmitter

b) $\frac{\pi}{2}$

59. The phase difference between the motion geostationary satellite and the earth is

a) 0

c) 3^{*π*}/2

d) $\frac{\pi}{4}$

6

'Increases – Decreases' Related Questions

1. By doubling the distance, the force between two point charge decreases by a) 2 times b) 4 times d) does not charge c) 8 times In a dielectric medium, force between the two point charge 2. (dielectric const $\varepsilon_r = 6$) a) decreases by 6 times b) increases by 12 times c) increases by 3 times d) has no change In a medium of dielectric const ε_r , the number of lines of force 3. originated from a positive charge +q is a) increases by ε_r times b) increases by ε_0 c) decreases by ε_r times d) does not depend on medium Against the direction of electric field, potential difference between 4. two points b) decreases a) increases d) may increase or decrease c) zero 5. If the magnitude of charges increases by 2 times, then force between them a) increases by 2 times b) increases by 8 times c) increases by 4 times d) decrease by 4 times The work is done on a charge (q_0) against the electric field of q, 6. then potential energy between them is a) decreases b) no change c) increases d) may increase (or) decrease Torque (τ) exerted on a dipole, placed an angle with electric field, 7. can be increased by a) increasing electric field b) placing at an angle 90°

	c) decreasing Electric held www.d) Too the (a) can of (b)
8.	Electric potential at a point due to a charge (+q) increases by
	a) decreasing distance
	b) increasing distance
	c) when placed in dielectric medium
-	d) decreasing the magnitude of charge
9.	By doubling the charge on a hollow sphere, the capacitance of
	sphere becomes
	a) halved b) doubled
10	Conscitence of a charged conductor
10.	a) increases by increasing charge
	a) increases by decreasing potential
	c) remains the same d) both (a) and (b)
11	In a parallel plate capacitor, positive potential of X plate is
11.	a) decreased by negative potential of V plate
	b) increased by negative potential of v plate
	c) does not charge
	d) either (a) or (b)
12	By increasing the distance of separation twice, then new
	capacitance will be
	a) doubled b) no change
	c) halved d) does not depend on distance
13.	By increasing the radius of spherical Gaussian surface, the flux
	due to the charge +q
	a) increases b) decreases
	c) may increases or decreases d) remains the same
14.	The capacitance of the parallel plate capacitor can be increased by
	a) increasingarea b) Introducing dielectric slab
	c) decreasing the distance of separationd) all the above
15.	In 'n' capacitors of equal capacitances(C) are connected in series,
	the effective capacitance is
	a) increases by n times b) decreases by n times
16	c) either (a) or (b) d) equal to c The velocity of free electrons in a metal increases, due to
10.	a) increase of potential difference b) increase of resistance
	a) increase of potential difference b) increase of resistance
17	The resistance offered by the conductor can be decreased by
17.	a) decreasing current b) decreasing voltage
	c) increasing cross sectional area d) remains the same
	7
	kindly send me your key answer to our email id - Padasalai.net@gmail.com of 2.

18.	The specific resistance of a m	aterial carbe changed by		
	a) increasing length area of cross section			
	b) increasing area of cross sec	ction		
	c) decreasing resistance			
	d) remains constant			
19.	For a given constant current t	hrough the wire, the current density		
	can be increased by			
	a) decreasing length			
	b) increasing resistance			
	c) decreasingarea of cross sec	tion		
	d) increasing area of cross sec	ction		
20.	For a given conductor, mobili	ty		
	a) can be increased by increase	sing drift velocity		
	b) can be decreased by increa	sing electric field		
	c) is constant			
	d) both (a) and (b)			
21.	'n' resistors of equal resistanc	e are connected parallel, the effective		
	resistance			
	a) decreases by n ² times	b) decreases by n times		
	c) increases by n times	d) increases by n ² times		
22.	The emf of the given cell is de	creases, due to the		
	increase of external resistance			
	b) decrease of external resistance			
	c) increase of internal resistar	increase of internal resistance		
	d) decreases of internal resist	ance		
23.	When the temperature of cond	fuctor increases, them its \propto value		
	a) increases	b) decreases		
	c) depends on temperature	d) remains the same		
24.	When the temperature of cone	ductor increases, it resistance value		
	a) increases	b) decreases		
	c) remains the same	d) zero		
25.	In a potentiometer, emf of the	cell is directly proportional to the		
	a) current	b) resistance per unit length		
	c) balancing length	d) galvanometer resistance		
26.	For a given constant current,	electric power consumed by a device		
	is			
	a) directly proportional to resi	stance		
	b) inversely proportional to re	sistance		
	c) either (a) or (b)			
	d) does not depends on resista	ance		

1			
27.	For constant Polase. Me hear	ediated from a wire is	
	a) directly proportional to resistance		
	b) inversely proportional to res	istance	
	c) either (a) or (b)		
	d) inversely proportional to tim	e	
28	For a given thermo couple, neu-	tral temperature	
20.	a) increased by increasing A		
	b) increased by decreasing θ_c		
	c) remains the same		
	d) both (a) and (b)		
20	The emfinduced in a thermoni	le is increases by	
49.	a) increasing intensity of source	a le is increases by	
	b) decreasing intensity of source		
	a) pairs of matala Hg Fa	d oithor (a) or (b)	
20	The magnetic field induction d	a) entire (a) or (b)	
30.	conductor does not depends o	n	
	a) distance		
	b) length of current element	NO	
	c) medium at which the condu	stor located	
	d) type of material	cior located	
31	The magnetic induction due to	a current carrying conductor can	
51.	be increased by	a current carrying conductor, can	
	a) introducing in a medium of j	permeability (µr)	
	b) decreasing the distance		
	c) increasing the current		
	d) all of these		
32.	The Reduction factor of T.G can	n be increased by	
	a) Increasing current	b) decreasing 'tanθ'	
	c) constant for a given T.G	d) decreasing the radius of T.G	
33.	The magnetic Lorentz force on	a charge does not depends on	
	a) velocity of the charge		
	b) angle between velocity of ch	arge and field	
	c) mass of the charge	d) all of the charge	
34.	In cyclotron, the radius of path	of charge is increased by	
	increasing		
	a) mass of the charge	b) magnetic field applied	
	c) electric field applied (HFO)	d) all of these	
35.	In cyclotron, of the following w	hich increases, during the	
	a) magnetic field	b) charge of particle	
		s, sharpe of particle	
		Q)

	c) time period ^{Padasalai.Net.} w	wajTeeloonty comparticle	
36.	If magnetic field strength on th	ne moving charge increases, then	
	a) velocity increases	b) force increases	
	c) charge increases	d) velocity decreases	
37.	The work done on the moving	charged particle by magnetic	
	lorentzforce ,can be increased	by increasing	
	a) field induction	b) charge of particle	
	c) velocity of particle	d) none of these	
38.	In cyclotron, the frequency of o be varied by varying	charged particle in uniform field o	an
	a) magnetic field	b) charge	
	c) velocity	d) both (a) and (b)	
39.	A current carrying conductor i	s placed along the direction of fie	ld.
	Force on the conductor can be	increased by increasing	
	a) current	b) current element	
	c) field induction	d) none of these	
40.	The force between two long par increases by	rallel, current carrying conductor	S
	a) increasing current		
	b) introducing a medium of μ r	C.O	
	c) decreasing the distance	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	d) all of these		
41.	The net force experienced by a placed parallel to the field is	current carrying rectangular coil	
	a) increased by B	b) increased by A	
	c) always zero	d) both (a) and (b)	
42.	The ratio between current sense galvanometer is	sitivity and voltage sensitivity of	
	a) couple per twist	b) galvanometer constant	
	c) galvanometer resistance	d) conductance of galvanometer	
43.	The ratio between voltage sens	itivity and current sensitivity of	
	galvanometer is		
	a) galvanometer constant		
	b) reduction factor		
	c) conductance of galvanomete	er	
	d) couple per twist		
44.	The voltage sensitivity can be i	ncreases by	
	a) increasing number of turns	b) decreasing couple per twist	
	c) decreasing area of coil	d) increasing current	
45.	The range of ammeter can be i	ncreased by	
	a) decreasing shunt value	b) increasing current (I)	
			10

	c) increasing fadasalai.Net. www.http://www			
46.	The magnetic flux linkage with the surface can be increased by			
	a) increasing field induction			
	b) increasing area of surface			
	c) placing the surface perpendicular to field			
	d) all of these			
47	The self inductance of a coil can be increased			
	a) increasing the induced emf			
	b) decreasing rate of change of current			
	c) increasing area			
	d) increasing the length			
48	The mutual inductance between two coils is increases when			
10.	a) number of turns increases			
	b) placing them perpendicular to each other			
	c) soft iron core is used			
	d) both (a) and (c)			
49.	An emf induced in a coil is maximum when			
	a) rate of change in flux is maximum			
	b) coil is perpendicular to field			
	c) flux is maximum			
	d) all of these			
50.	Ina three phase AC generator			
	a) emf's induced in each coil is different			
	b) number of turns are different			
	c) they are differing in phase			
	d) frequency is different			
51.	In a transformer, secondary current is decreased by			
	a) increasing primary voltage b) decreasing secondary voltage			
	c) increasing secondary voltage d) decreasing primary current			
52.	The phase angle Φ is positive in RLC circuit, when			
	a) $X_L = X_C$ b) $X_L > X_C$ c) $X_C > X_L$ d) $R = 0$			
53.	The power factor ($\cos \Phi$) for a choke coil can be increased by			
	a) increasing the capacitance			
	b) decreasing the inductance			
	c)increasing angular frequency			
	d) all of these			
54.	Of the following, which is constant in a transformersduring step			
	up process.			
	a) power b) frequency c) voltage d) current			

	ma www.Badasalai Not www.	Trb Tonge com of	2
55.	55. The ratio of velocity of x ray and visible light of wavelength 1A		
	5000A° respectively is	1 1	1) C (1
	a) I : 5000 b) 5000 : I c)		d) none of these
56.	When light travels between two m	iedia of refract	tive indices are 1
	and 1.5 respectively, then for ligh	It	
	a) wave length increases		
	b) frequency increases		
	c) velocity increases		
	d) frequency is const		
57.	7. The difference in frequency of sto	kes and anti s	stokes lines is
	a) $\Delta \gamma$ b) $-\Delta \gamma$ c) $2\Delta \gamma$	d) %	X
58.	3. The band width (β) is increased b	у	0
	a) increasing wavelength of light		
	b) increasing the source distance		
	c) decreasing the screen distance	•	
	d) all of these		•
59.	9. When crest of one wave meets, th	e trough of ar	nother wave, then
	intensity at that point		
	a) increases		
	b) decreases	6	
	c) may increase or decrease		
	d) none of these		
60.). The path difference between the t	wo wavelet ar	riving at grating, is
	increases when		
	a) width of the grating element in	creases	
	b) refractive index of grating incre	eases	
	c) wave length of light decreases		
	d) all of these		
61.	. The velocity of cathode rays dependent	nds up on	
	a) gas enclosed in the discharge t	ube	
	b) the metal used as cathode		
	c) potential difference		
	d) thegeometry of discharge tube		
62.	2. In Millikan's oil drop experiment,	at the balance	ed state
	a) $E = B$ b) $v = E/B$ c)	Eq = mg	d) all of these
63.	3. In \propto - particle scattering, the distant	ance of closest	approach depends
	on		11 1
	a) velocity of \propto particle b)) mass of ∝ pa	rticle
	c) charge of nucleus d)) all of these	
64.	According to the Rutherford atom	n model, path	of electron is
		× T	
			10

	a) circularw	w.PadasalaiNetical	www.Trb.Tapsc.o	com of ² d) straight line
65	5. The ratio of angular momentum of electron in second and third			
	orbit is a) $2 \cdot 3$	$h) 3 \cdot 2$	c) $1 \cdot 1$	d) 1 · 2
66	. The ratio of	energy of electro	ons in first and	l second orbit is
	a) 4 : 1	b) 1 : 4	c) 1 : 1	d) 1 : 2
67	. The ratio of	frequency and v	wave number is	S
	a) waveleng	th of light	b) velocity	of light
	c) time perio	od	d) energy o	of light
68	. The wave let	ngth of last line	of lyman serie	S
	a) R	b) R ²	c) $^{1}/_{R}$	d) 0
69	The ratio of	wave number b	etween the last	t lines of Balmer and
	Paschen ser	ies		
	a) 9 : 4	b) 2 : 3	c) 3 : 2	d) 1 : 4
70	. The ratio of	first excitation	potential energ	y and first excitation
	potential for	hydrogen atom	i is	
	a) energy of	electron	b) charge o	of electron
	c) wave leng	th of spectral lif	ne a) irequen	cy of light
			XO	
			U.	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		~ ~		

GEN	ERAL QUESTIONS: Asalai.Net. w	ww.Trb Tnpsc.com of 2.
1.	Velocity of photo electron depe	ends on (for a given photo sensitive
	metal)	
	a) work function of metal	b) intensity incident light
	c) frequency of incident light	d) all of these
2.	The barrier potential for silico	n is
	a) 0.7 V b) 0.7 eV	c) 1.1 V d) 1.1 eV
3.	An aluminum wire has resistanew resistance	nce R on doubling its length, the
	a) increases by 2 times	b) increases by 4 times
	c) decreases by 2 times	d) remain same 🛛 🔪
1.	Principle used in room heater	is
	a) corona discharge	b) electromagnetic induction
	c) Joules law of heating	d) self induction
5.	Comparing to the PN junction diode is	diode, break down voltage for zener
	a) move b) less	c) same d) none of these
5.	Principle used in choke coil	
	a) mutual induction	
	b) Joules law of heating	C
	c) self induction	~
	d) resonance	
7.	Lightly doped collector region	is large in size because, it has to
	a) supply charge carriers	b) accept majority charge
	c) to conduct high current	d) none of these
3.	The electric flux passing inwar	rd due to the charge of 1 coulomb
	a) 1.129 x 10 ¹¹ b) -1.6 x 10 ⁻¹⁹	c) 8.854 x $10^{12}$ d) -1.129 x $10^{11}$
9.	Flux lines due to an isolated e	lectron is
	a) 1.8 x 10 ⁻⁸ b) 1.6 x 10 ⁻¹⁹	c) 8.854 x $10^{12}$ d) 1.129 x $10^{11}$
10.	By doubling the external resis	tance emf of the cell becomes
	a) halved b) doubled	c) no change d) either (a) or (b)
11.	The current 1A, 2A, and 3A flo	owing through the heating coils of
	identical resistances. Then th	e rate of heat lost by them is
	a) 1 : 2 : 3 b) 1 : 8 : 27	c) 1 : 4 : 9 d) 1 : 1 : 1
12.	For a given thermocouple by d junction by 20°C,then	lecreasing the temperature of cold
	a) $\theta_n$ increases by 20°C	
	b) $\theta_i$ decreases by 20°C	
	c) $\theta_n$ decreases by 20°C	
	d) $\theta_i$ increases by 20°C	

13.	The direction of magnetic field a) maxwells right hand cork so b) flemings left hand rule	vauerto solemoia crew rule	fis given by
	c) end rule		
	d) right hand palm rule		
14.	For a transistor action in CB r reverse biased, hence it offers	node, collector-b	base junction is
	a) low resistance	b) zero resistar	nce
	c) high resistance	d) infinite resis	stance
15.	In light emitting diode, emission by	on of photon is d	lue to recombination
	a) electron from conduction ba	and to hole in va	lence band
	b) hole in conduction band to	electron in valar	nce band
	c) either (a) or (b)		
	d) high potential difference	٠.	
16.	Transistor is an		•
	a) voltage operating device	b) current oper	rating device
	c) both (a) and (b)	d) neither (a) a	nd (b)
17.	For a good transistor action, in	nput impedance	must be
	a) zero b) low impedance	c) high	d) equal to o/p
18.	Unit of wave number is	0	<i>.</i>
	a) m b) $m^{-1}$	c) no unit	d) Å
19.	Unit of disintegration constant	tis	
	a) m b) per day	c) day	d) MeV
20.	The angle of refraction, when t normally is	he light inciden	t on thin film
	a) 0 b) $\frac{\pi}{2}$	c) $\frac{\pi}{4}$	d) <i>π</i>
21.	By increasing the number of li order of spectrum	nes per unit len	gth in a grating the
22.	a) increases b) decreases For a voltmeter	c) no change	d) none of these
	a) $Rv < R > G$ b) $Rv < R < G$	c) Rv> R > G	d) G <rv> R</rv>
23.	For an ammeter	,	,
	a) $Ra > S > G$ b) $S > Ra > G$	c) Ra < S < G	d) G > S > Ra
24.	Intensity stokes lines comparin	ng with anti-stol	kes is
	a) greater b) smaller	c) equal	d) either (a) or (b)
25.	Of the following, which couplin	ng is used for the	e amplification of DC
	signals		
	a) capacitor coupling	b) RC coupling	

		v Dodocoloj Not	www.Twh Tanga com	ef 2
	c) transform	er coupling	""d) direct coup	ling
26.	Range of vol	tmeter can be in	creased by	
	a) increasing	g resistance R	b) decreasing	resistance (R)
	c) decreasing	g current I	d) increasing	current I
27.	The range of	ammeter can be	e decided by	
	a) galvanome	eter resistance	b) shunt resis	tance
	c) both (a) ar	nd (b)	d) none of the	se
28.	In RLC circu	it, if the circuit i	s predominantly	capacitive than $ otin definition of the second state of the seco$
	a) positive	b) zero	c) negative	d) $\frac{\pi}{2}$
29.	(A + B) (A + 0	C) =		
	a) A + B	b) A + C	c) A + B + C	d) A + BC
30.	Ín Op-Amp r	ull adjustment	pins are used	
	a) for high ga	ain	b) to give low	impedance
	c) for perfect	balance	d) to give high	impedance
31.	In negative f	eedback, phase s	shift produced by	y feedback network
	a) $\pi$	b) $\pi/2$	c) 0	d) $\frac{2\pi}{2}$
		12		
32.	By increasin	g the acceleratin	g potential,theD	e-brogliewave length
	of electron			
	a) does not d	lepends on poter	ntial (b) decrea	ases
	c) increases		d) remai	ns the same
33.	The ratio of t	frequencies of in	cident ray and re	efracted ray is
	a) 1 : 4	b) 2 : 1	c) 1 : 2	d) 1 : 1
34.	Practically a	n inductor has		
	a) r and $X_L$	b) X _L only	c) $X_L$ and $X_C$	d) R, $X_L$ and $X_C$
35.	In cascade c	onnection, the e	ffective amplifica	tion of two amplifiers
	of amplificat	ion 10 and 20 re	espectively, is	
	a) 20	b) 30	c) 2	d) 200
36.	Unit of absor	rption coefficient	t (when X ray inc	ident of crystal) is
	a) $/_{m^2}$	b) $\frac{1}{m}$	c) per m	d) no unit
07			1 (6	• • • •
37.	The K.E of p	hoto electron de	pends on (for a g	iven material)
	a) angle of in	icidence of light		
	b) work func	tion		
	c) no. of pho	tons incident/ar	ea	
•	d) wave leng	th of light		
38.	"The moving	charged particle	es can be deflecte	ed by electric and
		iu - is the princi		f waa anatan
	a) CRO	oton	d) widioar are	i generator
	a) CRO c) potentiom	eter	d) vidicon can	nera tube

39.	The nuclear radiations can pr	oduce Tonization in an molecules
	a) GM counter	b) X-ray spectrometer
	c) see back effect	d) .LI Thomson experiment
40	Principle used in vidicon came	tube
10.	a) photo conductivity	b) photo sensitivity
	c) current sensitivity	d) ionization
41	At the receiving end the emway	ve is changed in their
	a) frequency	b) modulation strength
	c) energy	d) both (a) and (b)
42.	"The charged particles can be field"- is the principle used in	deflected by electric or magnetic
	a) cathode ray tube	b) Bainbridge mass spectrometer
	c) electron microscope	d) all of these
	FORMULA ORIEN	TED QUESTIONS:-
1.	Electrostatic force of attraction	n between two charges is directly
	proportional to	
	a) permittivity of medium	b) square of distance
	c) product of charge	d) square of charges
2.	The force between the charges	, in a medium $arepsilon_r$ , is
	a) directly proportional to $\varepsilon_r$	b) inversely proportional to $\varepsilon_r$
2	c) does not change	d) none of these
3.	The electric field intensity due	to a point charge is
	a) inversely proportional to $r^2$	b) directly proportional to $q^2$
4	c) inversely proportional to $q^2$	d) directly proportional to $r^2$
4.	Electric field intensity due to a	
	a) inversely proportional to $r^2$	b) directly proportional to $q^2$
-	c) inversely proportional to $q^2$	d) directly proportional to p
5.	Electric potential due to a dipo	ble, on equatorial line is
	a) directly proportional to r	b) inversely proportional to p
6	C) Zero	d) both (a) and (b)
0.	a) magnitude of charge	b) permittivity
	a) location of charge	d) area of Causaian surface
7	Electric field due to on infinite	alta of Gaussian surface
1.	a) directly propertional to 5	b) directly propertional to a
	a) directly proportional to $\varepsilon$	d) none of these
Q	The molecular polorischility is	ance up none of these
0.	a) directly propertional to p	b) inversely propertional to F
	a, directly proportional to p	by inversely proportional to E
		17

	c) directlywww.Padasalai.Net. ~ w	wayTab Tapsa com of 2 dielectric motorial
Q	The capacitance of the paralle	l plate capacitor
	a) directly proportional to s	place capacitor
	b) directly proportional to area	of plate
	c) inversely proportional to dis	tance of plate separation
	d) all of these	sance of plate separation
10	The notential developed in var	de-Graff generator depends on
10.	a) applied potential	b) metal compused
	c) charge stored	d) geometry of the sphere
	e) both (c) and (d)	d) geometry of the sphere
11	The specific resistance of the c	viven material is
11.	a) directly proportional to R	b) directly proportional to A
	c) inversely proportional to $I$	d) constant for that material
12	For the given conductor, the $c$	urrent density can be increased by
12,	a) increasing applied potential	differit defisity can be increased by
	b) decreasing the cross section	area
	c) constant	
	d) both (a) and (b)	
13.	According to ohm's law, the re	sistance is
	a) directly proportional to pote	ential difference
	b) inversely proportional to cu	rrent flowing
	c) both (a) and (b)	
	d) dependent on temperature	
14.	For a given conductor, temper	ature coefficient of resistance is
	a) proportional to decrease in :	resistance b) positive
	c) negative	d) low positive
15.	The electrochemical equivalen	t (z) is,
	a) directly proportional to mas	S
	b) inversely proportional to cu	rrent
	c) inversely proportional to tim	ıe
	d) a constant	
16.	For the given current, the hea	t produced in a conductor is
	a) directly proportional to squa	are of resistance
	b) directly proportional to resis	stance
	c) inversely proportional to res	sistance
	d) inversely proportional to tin	ne
17.	The neutral temperature of give	ven thermocouple is
	a) midpoint of $\theta_c$ and $\theta_i$	b) constant
	c) depends up on $\theta_i$ only	d) both (a) and (b)

18.	The magnetic <b>Padasalai</b> Net du	ae towa straight conductor carrying		
	a) directly proportional to	distance b) inversely proportional to I		
	c) directly proportional to	permeabilityd) all of these		
19.	The magnetic induction du	te to a circular coil is inversely		
	proportional to			
	a) square of radius	b) cube of radius		
	c) radius	d) current		
20.	Reduction factor is			
	a) a constant for a given T	G		
	b) directly proportional to radius of coil			
	c) inversely proportional to	o no. of turns		
	d) all of these			
21.	The work done by field B,	on a moving charge is directly		
	proportional to			
	a) field induction	b) velocity of particle		
00	c) magnitude of charge	d) zero		
22.	The time period of revoluti	on, for a charge particle in cyclotron is		
	alfectly proportional to	b) change of porticle		
	a) mass of particle	d) all of these		
03	The force on a current cor	d) all of these		
23.	depends up on	rying conductor in a magnetic neid		
	a) current element	<b>O</b>		
	b) magnetic field			
	c) angle between the curre	nt element and field		
	d) all of these			
24.	The nature of force betwee	n two long straight parallel conductors		
	is dependent on	5 5 1		
	a) medium (ε)	b) current (I)		
	c) distance (a)	d) direction of current		
25.	The reciprocal galvanomet	er constant is		
	a) current			
	b) voltage sensitivity			
	c) couple per twist			
	d) current sensitivity			
26.	The amount of current flow	wing through ammeter is decided by		
	a) galvanometer current	b) galvanometer resistance		
	c) shunt resistance	d) all of these		
27.	The range of voltmeter is p	proportional to		
	a) G b) I _g	c) R d) S		
		19		

28.	The magnetic Padatale interfection	San Strate Transc.com of 2.		
	a) directly proportional to current			
	b) directly proportional to length			
	c) directly proportional to area	of loop		
	d) both (a) and (c)			
29.	The angular momentum of orb	oiting electron depend on		
	a) Planck's constant	b) circumference of orbit		
	c) principalquantum number	d) velocity of electron		
30.	The magnetic flux linked with field B, is increased by	surface of area (A) held in magnetic		
	a) increasing magnetic field	b) placing the coil parallel to field		
	c) increasing surface area	d) both (a) and (c)		
31.	The ratio of flux produced in a	coil to the current flowing is		
	a) inducedemf	b) mutual inductance		
	c) induced current	d) self inductance		
32.	The mutual Inductance betwee	en two coils is varied by varying		
	a) flux linkage			
	b) current			
	c) number of turns and length	of coil		
	d) none of these	6		
33.	An armature is placed in a uniform magnetic field when rotating			
	the armature, the emf induced	l in thecoil is directly proportional to		
	a) area of coil	b) field induction		
	c) $\sin \theta$	d) all of these		
34.	The efficiency of transformer is	s directly proportional to		
	a) Input power	b) input voltage		
	c) Input current	d) output power		
35.	The power factor of choke coil	inversely proportional to		
	a) square of inductance	b) capacitance		
	c) square resistance	d) inductance		
36.	The velocity of electromagnetic	e waves is depend on		
	a) energy of electric field			
	b) energy of magnetic field			
	c) the medium through which	they pass		
	d) all of these			
37.	In Hentz experiment, the freque proportional to	aency ofem wave emitted is inversely		
	a) the square of light velocity	b) square root of inductance		
	c) square root of capacitance	d) both (b) and (c)		
38.	Energy of photon is			
	-	20		
	kindly send me your key answer to our en	20 nail id - Padasalai.net@gmail.com of 2.		

a) directly proportional to frequency Tapsc.com of 2. b) inversely proportional to wavelength c) constant at all medium d) both (a) and (b) 39. The ratio between velocity of light in air and water medium gives a) refractive index of water b) refractive index of air c) wave length of light in water d) frequency of light in air 40. Interference band width  $\beta$  is a) inversely proportional to screen distance b) directly proportional to source distance c) directly proportional to wave length d) all of these The ratio between radius of 'n'th dark ring in air and liquid is 41. known as a) wave length of light b) frequency of light d) refractive index of air c) refractive index of liquid 42. Number of grating elements in a diffraction grating is a) a reciprocal of width one grating element b) depend on wave length of light c) directly proportional to order of spectrum d) all of these The ratio of charge of electron to the specific charge of electron 43. gives a) velocity of electron b) acceleration on electron c) mass of electron d) both (a) and (b) The energy of electron in an orbit is 44. a) directly proportional to  $-n^2$ b) inversely proportional to  $-n^2$ c) directly proportional to mass d) all of these 45. The wave number is the ratio between a) velocity and frequency b) velocity and wavelength c) frequency and wavelength d) frequency and velocity The De Broglie wavelength of accelerated electron depends on 46. a) mass b) velocity c) accelerating potential d) all of these De-Broglie wavelength of accelerated electron is 47. a) directly proportional to square root of potential



- c) current gain in CB configuration
- d) voltage in CB configuration

#### **Problem Oriented One Mark Questions**

1.	Find the self-inductar	nce of a coil, when	10 A current flows	through it produces the
	magnetic flux 0.8 we	ber		
	a) 8 H	b) 12.5 H	c) 8 x $10^{-2}$ H	d) 800 H
2.	The power loss of a t	ransformer having e	efficiency 60% and	output power 2400 W
	is			
	a) 4000 W	b) 3200 W	c) 800 W	d) 1600 W
3.	The impendence of the	he RLC series circul	it with $R = 15 \Omega$ ; X	$_{\rm L} = 5\Omega$ ; and $\rm X_{\rm C} = 5\Omega$
	at resonance			
	a) 15 Ω	b) 25 Ω	c) 375 Ω	d) 150 Ω
4.	A magnetic field of i	nduction 0.6 T thro	ugh a coil of 200 tu	ins and 0.02 sq.m of
	area of cross section	reduces to 0.2 T in (	0.02 s. Then the em	of induced in it is
	a) 120 V	b) 240 V	c) 80 V	d) 300 V
5.	If the peak value is 5	0 V, then RMS valu	e of voltage will be	
	a) 30 V	b) 70.7 V	c) 35.35 V	d) 7.07 V
6.	The ratio of peak val	ue to rms value is		
	a) 1.732	b) <b>√5</b>	c) 1.414	d) <b>√7</b>
7.	An emf of 12 V is in	duced when the curi	rent in the coil chan	ges at the rate of
	$40 \text{ A} \text{ s}^{-1}$ . The co-eff	icient of self-induct	ion of the coil is	-
	a) 0.3 H	b) 0.003 H	c) 30 H	d) 4.8 H
	-			•

8. In an LCR circuit with impedance of 5  $\Sigma$ , if the reactance is  $3 \Omega$ , the resistance should be a) 2Ω b)  $4\Omega$ c)  $6\Omega$ d) 8  $\Omega$ 9. In a CE transistor amplifier, the gain in the higher cut off frequency is 4, then its mid frequency gain is d)  $4\sqrt{2}$ a)  $2\sqrt{2}$ c)  $4\sqrt{2}$ b) 8 10.In a CE transistor  $\beta = 50$ ;  $I_C = 0.9$  mA then its  $I_B$  value b) 0.2 mA c) 0.1mA a) 18 µA d) 10µA 11. When the negative feedback is applied to an amplifier of gain 80, the gain after feedback fall to 60. Calculate the feedback ratio a) 1/60 b) 1/80 d) 1/240 c) 1/12012. Simple form of Boolean expression A. B + AB + BC + CA is b) (AB) + Ca) (A + B)Cc) A + (BC)d) ABC 13.A CE transistor has the  $\alpha$  value 0.99, then its  $\beta$  value is a) 9.9 b) 90 c) 99 d) 101 14. When feedback is given to an amplifier, its gain is reduced from 40 to 20. Find the feedback ratio a) 0.5 b) 0.05 c) -0.2d) 0.4 15.A transistor has a collector current 10 mA and collector-emitter voltage 12V. Then the output power dissipation is a) 1.2 mW b) 4.14 W c) 120 mW d) 9.4 W 16.A transistor has  $\beta = 100$ . If the collector current is 40 mA, then the emitter current is b) 40.4 mA c) 404 mA a) 44 mA d) 0.4 mA 17.In a transistor when the emitter current is 1 mA, the collector current is nearly equal to c) 1.5 mA a) 9 mA b) 1.1 mA d) 1 mA 18.If mid frequency gain = 50 then gain of amplifier at upper cut off frequency region is a) 70.7 b) 51.4 c) 354 d) 35.4 19.In a positive feedback amplifier, if A = 90 & $\beta$  = 1/100. Then the gain after feedback is a) 900 b) 99 c) 9900 d) 9 20.In CE transistor circuit  $V_{BE} = 300 \text{ mV} \& I_B = 150 \mu \text{A}$ , then the input impedance is a) 20 kΩ b) 2000 Ω c) 500 Ω d)5 k $\Omega$ 21. The output will be b) A d) 1 c) 0 a) A 22. The value of  $(\overline{A} + B) (A + B)$  is d) AB a) AB b) B c) A 23.performs the logic function of 23





a) 0 www.Padasalai.Net.	wwwyTrb Tnpsc.com	of 2d) 3C		
48. What is the de-Broglie wavelength of a	an electron of kinetic	c energy 120 eV?		
a) 11.21 Å b) 24.35 x 10 ⁻⁹ r	n c) $1.121 \ge 10^{-19}$ m	n d) 14.5 nm		
49. Threshold frequency of a metal is 3 x	$10^{14}$ Hz, then the wo	rk function		
a) $4 \ge 10^{-19} \text{ J}$ b) $3 \ge 10^{-19} \text{ J}$	c) 2 x 10 ⁻¹⁹ J	d) 5 x 10 ⁻¹⁹ J		
50. The momentum of the electron having	wavelength 1 Å is			
a) $3.3 \times 10^{24} \text{ kg ms}^{-1}$	b) 6.6 x 10 ²⁴ kg r	$\mathrm{ms}^{-1}$		
c) $3.3 \times 10^{-24} \text{ kg ms}^{-1}$	d) 6.6 x 10 ⁻²⁴ kg	ms ⁻¹		
51. The rest energy of electron in MeV is				
a) 5.0 b) 0.5	c) 0.05	d) 50.0		
52. When photosensitive material of work	function 1.6 eV is in	radiated by photons of		
energy 2.4 Ev. Then the stopping pote	ential is			
a) 2.0 V b) 0.8 V	c) 2.6 V	d) 3.4 V		
53.An $\alpha$ - particle moves with a speed of 5	$5 \ge 10^5 \text{ ms}^{-1}$ at an ang	gle of 30° with respect to		
a magnetic field of induction $10^{-4}$ T. T	Then the force acting	on the particle is		
( $\alpha$ - particle has the positive charge 2e	)			
a) $4 \ge 10^{-15} \text{ N}$ b) $8 \ge 10^{-18} \text{ N}$	c) 16 x 10 ⁻¹⁶ N	d) 4 x 10 ⁻³ N		
54.5 A current flows through two long str	aight parallel wires l	kept at a distance 10 cm		
in air. Then the force acting between t	hem per unit length	is		
a) $4.9 \ge 10^{-15} \text{ N}$ b) $25 \ge 10^{-7} \text{ N}$	c) 5 x $10^{-5}$ N	d) 10 x 10 ⁻⁶ N		
55. The heat energy developed in a conduc	ctor of resistance 10	$\Omega$ when 5A current flow		
through it for a minute is				
a) 15000 J b) 3000 J	c) 120 J	d) 1500 J		
56. The force experienced by a conductor	carrying current of 2	ampere placed parallel		
to a magnetic field of 0.2 T (length = $1$	m) is			
a) 0.4 b)0	c) 4	d) 40		
57. The Galvanometer has a resistance of 40 $\Omega$ and current 5 mA. The shunt to be				
connected to make it an ammeter of ra	nge 2A is			
a) 0.1Ω b) 40 KΩ	c) 39 Ω	d) 0.399 Ω		
58.A galvanometer of resistance 50 ohm i	s hunted with a wire	e of 10 ohm. The current		
through the galvanometer when the cu	rrent in the circuit in	the circuit is 12 A is		
a) 3 A b) 2 A	c) 5 A	d) 6 A		
59.By passing a current through the coil of	of TG., if the magnet	ic field at the centre		
becomes equal in magnitude to that of	horizontal compone	nt of earth's magnetic		
field, then the deflection is				
a) 90° b) 0°	c) 45°	d) 60°		
60.A solenoid has a mean diameter of 0.0	5 m and length 2 m.	It has four layers of		
1000 turns each. What is flux density	at its centre, when a	current of 2.5 A flows		
through it				
a) $3.24 \times 10^{-2}$ T b) $6.28 \times 10^{-5}$ T	c) 6.28 x 10 ⁻⁴ T	d) $3.24 \times 10^{-5} \text{ T}$		
61. The number of pair of ions produced in	$n \ 1 \ mg \ of \ air \ by \ a \ rac{1}{2}$	diation of about 1 mR		
a) $1.6 \times 10^{\circ}$ b) $1.6 \times 10^{\circ}$	c) 0.8 x 10 ⁻	d) $1.2 \times 10^{12}$		
62. The time taken to decay $93.75\%$ of a rate of $1.161\%$	adioactive element is	s 96 second. Find its		
halt-life period.		1) 10 0		
a) 48 s b) 72 s	c) 24 s	d) 12 S		

kindly send me your key answer to our email id - Padasalai.net@gmail.com of 2.

63. The disintegration constant  $\chi$  of a radioactive element is 0.00231 per day then its mean life is a) 300days b) 231 days c) 531.4 days d) 432.9 days 64.15/16 part of a radioactive element decays in 20 days. Its Half-life period is a) 15 days b) 10 days c) 20 days d) 5 days 65.7/8 part of the radioactive substance decays in 45 days. Then the half life period of the substance is a) 45 days b) 25.7 days c) 30 days d) 15 days 66. The diameter of nucleus with mass number 16 is 6 F. What would be the radius of a nucleus of mass number 128? b) 6 F c) 3 F d) 24 F a) 12 F 67. If 0.53 Å is the radius of first orbit of hydrogen atom them the radius of 3 rd orbit is b) 2.12 Å c) 6.6 Å a) 1.59 Å d) 4.77 Å 68. The second excitation potential energy required to excite the atom from the ground state of hydrogen atom is a) 13.6 eV c) 12.09 eV • d) 3.4 eV b) 10.2 eV 69. The energy acquired by an electron in 5th energy level in a hydrogen atom is b) -0.54 eV c) 6840 Å a) -13.6 eV d) -2.72 eV 70.In hydrogen atom, the radius of 2nd orbit is 2.12 Å, then the radius of fourth orbit is a) 0.53 Å b) 4.24 Å c) 8.48 Å d) 1.06 Å 71. How much should be the voltage applied in Coolidge tube so that the electrons emitted from the cathode may give an x - ray of wavelength 2 Å after striking the target a) 1240 kV c) 6200 V b) 12400 V d) 62 kV 72. Find the minimum wavelength of X - ray produced by an X - ray tube at 20 kV a) 6.2 Å b) 0.62 Å c) 6.2 nm d) 0.62 nm 73. The short wavelength limit of Lyman series is b) 1215 Å a) 911.6 Å c) 5.64 Å d) 911.6 nm 74. The minimum wavelength of P fund series is b) 22852 Å c) 228520 Å a) 2285 Å d) 2.28 Å 75. The glancing angle of monochromatic X-ray of wavelength 1 Å is 30°. We get constructive interference of  $2^{nd}$  order for this angle. The lattice space is c)  $2 \times 10^{-10}$  cm a)  $2 \times 10^{-10} \text{ m}$ b) 2 x 10⁻⁹ m d)  $2 \times 10^{-19}$  cm 76. The charge on an oil drop is  $12.82 \times 10^{-19}$  C, then the number of elementary charges are b) 2 a) 6 c) 7 d) 8 77.If R is Rydberg's constant, when an electron jumps from the third orbit to the second orbit of a hydrogen atom, the wavelength of the emitted radiation is a) 36/5R b) 5R/36 c) 6/R d) R/6 78. Two 2  $\Omega$  resistances are connected in parallel and in series. What is ratio of their effective resistance. a) 2 : 1 b) 1 : 2 c) 1:4 d) 4 : 1 79.In a carbon resistor it consists of yellow, yellow and black rings at one end and silver ring at the other

a) $44000 \pm 10\%$ $\Omega^{\text{www}}$ $\Xi^{\text{rp}} \pm 10\%$ $\Omega^{\text{www}}$ $\Xi^{\text{rp}} \pm 10\%$ $\Omega^{\text{rp}}$	
80. The power consumed by an electric fan of 100W working at 220 V dail	y 5
hour for a month of 30 days is	
a) 1.5 kWh b) 15000 kWh c) 15 kWh d) 30 kWh	
81. The ratio of effective resistance when resistances 5 $\Omega$ & 3 $\Omega$ are connected	l in
series and parallel is	
a) 64:15 b) 15:64 c) 5:3 Ω d) 9:25	
82. The temperature at which the normal conductor changes to su	per
conductor is called	I -
a) curie temperature b) critical temperature	
c) neutral temperature d) inversion temperature	
83. The effective resistance between 'A' and 'B' in the given circuit is	
6Ω 4Ω	
A° B	
$6 \Omega$ $4 \Omega$	
a) 5.0 b) 10.0 c) 12.0 d) 8.0	
84 What is the minimum number of bulbs each marked 60 W 40 V that can w	vork
safely. When connected in series with a 240 V mains supply	OIK
a) 2 b) 4 c) 6 d) 8	
85. The balancing lengths of two cells are 250 cm and 750 cm respectively, i	n a
potentiometer experiment. If the emf of the first cell is 2 V, the emf of the second	nd
a) 6 V b) 4 V c) 2/3 V d) 3/2 V	
86.In most of the television systems, the frame repetition rate is	
a) 25 per second b) 50 per second c) 100 per second d) 30 per second	
87.In the interlated scanning is eliminated	
a) Flicker effect b) Varrying intensity effect	
c) I winkling effect d) Noise	
a) 625 b) $212.5$ c) $250$ d) $500$	
89 In modulation the signal wave are loaded over	
a) microwaves b) radio waves c) ultrasonic wavesd) infrasonic	
90. Transmission antenna converts electric signal in to wave.	
a) electromagnetic b) magnetic c) IR d) micro	
91. The frequency shift of a wave is $0.03 \text{ MH}_{z}$ . The carrier swing is	
a) $0.08 \text{ KH}_{Z}$ b) $60 \text{KH}_{Z}$ c) $0.06 \text{ MH}_{Z}$ d) $0.06 \text{ KH}_{Z}$	
92. The energy of a wave is directly proportional to its	
a) amplitude b) frequency c) velocity d) wavelength	
93. When a current 8A is flowing a conductor of cross section $10^{-0}$ m ² , the value of	
drift velocity of free electron is (n = 10 ²⁰ electr. /vol.)	
a) $5 \times 10^{\circ} \text{ m/s}$ b) $5 \times 10^{\circ} \text{ m/s}$ c) $.5 \times 10^{\circ}$ d) $5 \times 10^{\circ} \text{ Vm}^2$	
94. The resistance of a conductor is 1052. If it is elongated to two times the original	
rengui. The new resistance is a > 1000 $b > 400$ $a > 200$ $d > 50$	
a) 10052 b) 4052 c) 2052 a) 552	•

kindly send me your key answer to our email id - Padasalai.net@gmail.com of 2.



	www.Padasalai.Net.	www.Trb Tnpsc.	com of 2.
a) 3µF	b) <b>30</b> μF σ	c) 13µF	d) 7µF
107. In a the temperatur	ermocouple, the temperate is 300°C. The temperate	ture of the cold j ture of inversion i	unction is 70°C, the neutras
a) 520°C	b) 540°C	c) 500°C	d) 530°C
108. The cap a dielectric $C^2 N^{-1} m^2$	bacitance of a parallel plate c is filled between the plate	te capacitor increa ates. Then permit	ses from 5 μF to 50 μF whe tivity of the dielectric
a) 8.854 z	x 10 ⁻¹¹ b) 8.854 x 10 ⁻¹¹	⁻¹² c) 12	d) 10
109. If the ra	adius of a nucleus is 2.6 x	$10^{-15}$ m, then its m	ass number will be
a) 2	b) 4	c) 8	d) 16
110. Potentia	al energy of two equal bu	t opposite point ch	narges of magnitude 2 uC
placed 1m	apart in air is	· · · · · · · · · · · · · · · · · · ·	
a)2 J	b) -0.036 J	c)4 J	d) 0.036 J
111. In LCR	series a.c. circuit, the pha	ase difference bety	veen current and voltage is
$30^\circ$ . The r	reactance of the circuit is	17.32 $\Omega$ . The value	e of resistance is
a)30 Ω	b) 10 Ω	c) 17.32 Ω	d) 1.732 Ω
	TWISTED BO	OK BACK OUESTI	ONS
	C	HAPTER I	
1. A ebonite	rod acquires a charge of	$-80 \times 10^{-12}$ C. The	number of electrons it has
gained or 1	ost	XU	
a) 50 x 10	<b>(gained)</b> b) $5 \ge 10^7$ (lc	ost) c) $2 \times 10^{-8}$ (le	d ost) $d$ -8 x 10 ⁻¹² (lost)
ujova IV			
2. The electro	ostatic force between two	point charges kept	at a distance d apart, in a
2. The electro medium er	ostatic force between two $f = 9$ , is 3 N. The force be	point charges kept etween them at the	t at a distance d apart, in a same separation in vacuum
2. The electro medium er is	ostatic force between two = 9, is 3 N. The force be	point charges kept etween them at the	at a distance d apart, in a same separation in vacuum
<ol> <li>2. The electromedium er is</li> <li>a) 20 N</li> <li>3. Electric point</li> </ol>	ostatic force between two f = 9, is 3 N. The force be b) 0.5 N	point charges kept etween them at the c) 1.8 N	at a distance d apart, in a same separation in vacuum d) 27 N
<ol> <li>2. The electromedium er is a) 20 N</li> <li>3. Electric po at a distance</li> </ol>	ostatic force between two r = 9, is 3 N. The force be b) 0.5 N otential is 400 V at a distance of	point charges kept etween them at the c) 1.8 N ance of 2m from a	at a distance d apart, in a e same separation in vacuum <b>d) 27 N</b> point charge. It will be 100
<ol> <li>2. The electromedium er is         <ul> <li>a) 20 N</li> <li>3. Electric po at a distance</li> <li>a) 50 cm</li> </ul> </li> </ol>	f = 9, is 3 N. The force between two b) 0.5 N tential is 400 V at a distance of b) 4 cm	point charges kept etween them at the c) 1.8 N ance of 2m from a c) 4 m	at a distance d apart, in a e same separation in vacuum d) 27 N point charge. It will be 100 d) 8m
<ol> <li>2. The electron medium er is         <ul> <li>a) 20 N</li> <li>3. Electric po at a distance</li> <li>a) 50 cm</li> </ul> </li> <li>4. Two point</li> </ol>	b) 0.5 N f = 9, is 3 N. The force be b) 0.5 N tential is 400 V at a distance of b) 4 cm charges +4q and +q are p	point charges kept etween them at the c) 1.8 N ance of 2m from a c) 4 m blaced 30 cm apart.	at a distance d apart, in a e same separation in vacuum d) 27 N point charge. It will be 100 d) 8m At what point on the line
<ol> <li>2. The electromedium eris</li> <li>a) 20 N</li> <li>3. Electric poat a distance</li> <li>a) 50 cm</li> <li>4. Two point joining the</li> </ol>	b) 0.5 N f = 9, is 3 N. The force be b) 0.5 N ptential is 400 V at a distance of b) 4 cm charges +4q and +q are p m the electric field is zer	point charges kept etween them at the c) 1.8 N ance of 2m from a c) 4 m blaced 30 cm apart. co ?	at a distance d apart, in a e same separation in vacuum d) 27 N point charge. It will be 100 d) 8m At what point on the line
<ol> <li>2. The electron medium are in the electron medium are is an an</li></ol>	b) 0.5 N b) 0.5 N tential is 400 V at a distance of b) 4 cm charges +4q and +q are p m the electric field is zer om the charge q	c) 1.8 N c) 1.8 N c) 4 m blaced 30 cm apart. c) <b>10 cm fro</b>	at a distance d apart, in a same separation in vacuum d) 27 N point charge. It will be 100 d) 8m At what point on the line om the charge q
<ol> <li>2. The electron medium erris</li> <li>a) 20 N</li> <li>3. Electric por at a distance</li> <li>a) 50 cm</li> <li>4. Two point joining the a) 15 cm fr</li> <li>c) 20 cm fr</li> </ol>	b) 0.5 N b = 9, is 3 N. The force be b) 0.5 N otential is 400 V at a distance of b) 4 cm charges +4q and +q are p m the electric field is zer rom the charge q com the charge q	point charges kept etween them at the c) 1.8 N ance of 2m from a c) 4 m blaced 30 cm apart. co ? b) <b>10 cm fro</b> d) 5 cm from	at a distance d apart, in a e same separation in vacuum d) 27 N point charge. It will be 100 d) 8m At what point on the line om the charge q n the charge q
<ol> <li>2. The electromedium eris</li> <li>a) 20 N</li> <li>3. Electric poat a distance</li> <li>a) 50 cm</li> <li>4. Two point joining the</li> <li>a) 15 cm fr</li> <li>c) 20 cm fr</li> <li>5. A dipole i</li> </ol>	b) 0.5 N f = 9, is 3 N. The force between two b) 0.5 N otential is 400 V at a distance of b) 4 cm charges +4q and +q are p m the electric field is zer com the charge q com the charge q s placed in a non-uniform	c) 1.8 N c) 1.8 N ance of 2m from a c) 4 m blaced 30 cm apart. c) 5 cm from n electric field to th	at a distance d apart, in a e same separation in vacuum d) 27 N point charge. It will be 100 d) 8m At what point on the line om the charge q in the charge q in the charge q in the charge q in the charge q
<ol> <li>2. The electron medium arrives is an an</li></ol>	b) 0.5 N = 9, is 3 N. The force be b) 0.5 N otential is 400 V at a distance of b) 4 cm charges +4q and +q are p or the electric field is zer rom the charge q s placed in a non-uniform et force	c) 1.8 N c) 1.8 N ance of 2m from a c) 4 m blaced 30 cm apart. c) 5 cm from d) 5 cm from h electric field to th b) only a tor	<ul> <li>at a distance d apart, in a e same separation in vacuum</li> <li>d) 27 N</li> <li>point charge. It will be 100</li> <li>d) 8m</li> <li>At what point on the line</li> <li>om the charge q</li> <li>at the charge q</li> </ul>
<ol> <li>2. The electron medium array is a) 20 N</li> <li>3. Electric poor at a distance a) 50 cm</li> <li>4. Two point joining the a) 15 cm fr c) 20 cm fr</li> <li>5. A dipole i a) only a ne c) both a fr</li> </ol>	b) 0.5 N f = 9, is 3 N. The force be b) 0.5 N otential is 400 V at a distance c of b) 4 cm charges +4q and +q are p m the electric field is zer rom the charge q rom the charge q s placed in a non-uniform et force <b>net force and torque</b>	<pre>point charges kept etween them at the c) 1.8 N ance of 2m from a c) 4 m blaced 30 cm apart. co ? b) 10 cm from d) 5 cm from n electric field to th b) only a ton d) neither a</pre>	at a distance d apart, in a e same separation in vacuum d) 27 N point charge. It will be 100 d) 8m At what point on the line om the charge q in the charge q i
<ol> <li>2. The electron medium array is a) 20 N</li> <li>3. Electric poor at a distance a) 50 cm</li> <li>4. Two point joining the a) 15 cm fr c) 20 cm fr</li> <li>5. A dipole i a) only a ne c) both a fr</li> <li>6. If a point 1</li> </ol>	b) 0.5 N b) 0.5 N tential is 400 V at a distance of b) 4 cm charges +4q and +q are p m the electric field is zer com the charge q s placed in a non-uniform et force <b>net force and torque</b> lies at a distance x from	<pre>point charges kept etween them at the c) 1.8 N ance of 2m from a c) 4 m blaced 30 cm apart. c) 5 cm from d) 5 cm from n electric field to th b) only a ton d) neither a the midpoint of th</pre>	<ul> <li>at a distance d apart, in a</li> <li>e same separation in vacuum</li> <li>d) 27 N</li> <li>point charge. It will be 100</li> <li>d) 8m</li> <li>At what point on the line</li> <li>om the charge q</li> <li>a the charge q</li> <li>b the charge q</li> <li>a the charge q</li> <li>b the charge q</li> <li>b the charge q</li> <li>c field. It experiences, rque</li> <li>net force nor a torque</li> <li>a dipole, the electric field</li> </ul>
<ol> <li>2. The electron medium array is a) 20 N</li> <li>3. Electric poor at a distance a) 50 cm</li> <li>4. Two point joining the a) 15 cm fr c) 20 cm fr</li> <li>5. A dipole i a) only a ne c) both a fr</li> <li>6. If a point i this point i</li> </ol>	b) 0.5 N b) 0.5 N tential is 400 V at a distance of b) 4 cm charges +4q and +q are p m the electric field is zer rom the charge q s placed in a non-uniform et force <b>net force and torque</b> lies at a distance x from s proportional to	<ul> <li>point charges kept</li> <li>c) 1.8 N</li> <li>ance of 2m from a</li> <li>c) 4 m</li> <li>b) 10 cm from</li> <li>d) 5 cm from</li> <li>n electric field to th</li> <li>b) only a tor</li> <li>d) neither a</li> <li>the midpoint of th</li> </ul>	at a distance d apart, in a e same separation in vacuum d) 27 N point charge. It will be 100 d) 8m At what point on the line om the charge q a the charge d a the charge d
2. The electron medium are is a) 20 N 3. Electric po at a distance a) 50 cm 4. Two point joining the a) 15 cm fr c) 20 cm fr 5. A dipole i a) only a ne c) both a fr dipole i a) fr dipole i a) only a ne c) both a fr dipole i dipole i di di dipole i dipole i dipole i dipo	b) 0.5 N b) 0.5 N tential is 400 V at a distance of b) 4 cm charges +4q and +q are p em the electric field is zer com the charge q rom the charge q s placed in a non-uniform et force <b>net force and torque</b> lies at a distance x from s proportional to <b>b</b> ) $\frac{1}{r^3}$	point charges kept etween them at the c) 1.8 N ance of 2m from a c) 4 m blaced 30 cm apart. c) 7 b) 10 cm from d) 5 cm from n electric field to th b) only a ton d) neither a the midpoint of th c) $\frac{1}{x^4}$	t at a distance d apart, in a e same separation in vacuum d) 27 N point charge. It will be 100 d) 8m At what point on the line om the charge q a the charge d a the the charge d a the charge d a the charge d a the th
2. The electromedium arrival is a) 20 N 3. Electric portion at a distance a) 50 cm 4. Two pointing the a) 15 cm frices are also a constructed by the field of	b) 0.5 N b) 0.5 N tential is 400 V at a distance of b) 4 cm charges +4q and +q are p or the electric field is zer com the charge q rom the charge q s placed in a non-uniform et force <b>net force and torque</b> lies at a distance x from s proportional to b) $\frac{1}{x^3}$ ges +q, -q, +q and - q resp	point charges kept etween them at the c) 1.8 N ance of 2m from a y c) 4 m blaced 30 cm apart. c) 7 <b>b) 10 cm fro</b> d) 5 cm from n electric field to th b) only a tor d) neither a the midpoint of th $c)\frac{1}{x^4}$ pectively are place	t at a distance d apart, in a e same separation in vacuur d) 27 N point charge. It will be 100 d) 8m At what point on the line om the charge q in the charge d in the charge q in the charge

a) $\frac{1}{4\pi\epsilon_0} \frac{q}{a}$ b) $\frac{1}{4\pi\epsilon_0} \frac{q}{a}$ c) $\frac{1}{4\pi\epsilon_0} \frac{q}{a}$	www.dTrb Tnpsc.com of 2. d) zero
8. Electric potential Energy (U) of a dipole	in a field is
a) $q_1q_2 / 4\pi\epsilon_0 r^2$ b) $q_1q_2 / 4\pi\epsilon_0 r$	c) - pE cos $\theta$ d) pE sin $\theta$
9. The work done in moving 500 $\mu$ C c	charge between two points on different
equipotential surfaces is	
a) zero <b>b) finite positive</b>	c) finite negative d) infinite
10. Which of the following quantities is not a	a scalar?
a) Electric potential energy	b) electric force
c) workdone	d) electric potential
11. The unit of relative permittivity is	2 2
<b>a</b> ) $C^2 N^{-1} m^{-2}$ <b>b</b> ) $N m^2 C^{-2}$	c) no unit d) $NC^{-2} m^{-2}$
12. The number of electric lines of force orig	ginating from a charge of -1 C is
a) $1.129 \times 10^{11}$ b) $1.6 \times 10^{-19}$	c) $6.25 \times 10^{10}$ d) -1.129 x 10 ¹¹
13. The electric field inside the plates of two	o oppositely charged plane sheets of charge
density $\sigma$ is	
a) $\frac{1}{2\epsilon_0}$ b) $\frac{1}{2\epsilon_0}$	$c) \frac{b}{b}$ d) zero
14. The capacitance of a parallel plate capacitation of a parallel plate capacitation of a parallel plate capacitation of a plates. The plates of the plates	acitor increases from 6 $\mu$ f to 60 $\mu$ f when a balactric constant of the dielectric is
a) 65 b) 55	c) 12 d) 10
15 A hollow metal ball carrying an electric	charge produces electric field at points
a) outside the sphere	b) on its surface
c) inside the sphere	d) both (a) and(b)
CHAP	ГЕ <b>R-2</b>
16.A charge of 120 C passes through an ele	ectric lamp in 2 minutes. Then the current
a) 30 A b) 1 A	c) 0.5 A d) 5 A
17. The material through which electric cha	rge can notflow easily is
a) Aluminium <b>b) mica</b>	c) Iron d) copper
18. The current density flowing in a conduct	or is proportional to
a) drift velocity	b) 1/area of cross section
c) 1/no of electrons	d) square of area of cross section
19.A toaster operating at 240 V has a resista	ance of $120\Omega$ . The current is
a) 400 A <b>b) 2 A</b>	c) 480 A d) 240 A
20.If the length of a copper wire has a cer	tain resistance R, then on doubling the
length its resistance	_
a) will be doubled	b) will become 1/4 th
c) will become 4 times	d) will remain the same
21. When two $4\Omega$ resistances are in parallel	l, the effective resistance is
<b>a</b> ) <b>2</b> $\Omega$ <b>b</b> ) 4 $\Omega$	c) 1 $\Omega$ d) 0.5 $\Omega$
22.In the case of semi conductors, as the ten	nperature increases, resistivity
<ul><li>22.In the case of semi conductors, as the terna) decreases</li></ul>	nperature increases, resistivity b) increases
<ul><li>22.In the case of semi conductors, as the ter.</li><li>a) decreases</li><li>c) remains constant</li></ul>	nperature increases, resistivity b) increases d) becomes zero

23. If the resistance of a coll is N2 at  $0^{\circ}$ C and  $\alpha^{b} = 0.004^{\circ}$ , then its resistance at 100°C is

a) $0\Omega$  b) **1.4**  $\Omega$  c) 4  $\Omega$  d) 2.8  $\Omega$ 

24.According to Faraday's law of electrolysis, when a current is passed, the mass of ions deposited at the cathode is dependent of

a) current b) charge c)resistance d) both (a) and(b)

25. When n resistors of equal resistances (R) are connected in parallel, the effective resistance is

a) n/R b) **R/n** c) 1/nR d) nR

## CHAPTER-3

26.Joule's law of heating is

a)  $H = I^2 t / R$  **b) H = V^2 t/R** c) H = VI/t

d)  $H = IR^2$ 

27.Nichrome wire is used as the heating element because it has

- a) low specific resistance
- b) high melting point
- c) high specific resistance
- d) both (a) and(b)

28.Peltier coefficient at a junction of a thermocouple depends on

- a) the current in the thermocouple
- b) the time for which current flows

## c) the temperature of the junction

- d) the charge that passes through the thermocouple
- 29.In a thermocouple, the temperature of the cold junction is 20°C, The temperature of inversion is 540°C, the neutral temperature is
- a) 520°C b) 280°C c) 500°C d) 510°C

30. Which of the following equations represents Biot - Savert law?

a) dB = $\frac{\mu_0}{1 \text{ dl}}$	b) dB = $\frac{\mu_0}{I  dl \sin\theta}$
$\frac{4\pi r^2}{dR} = \frac{\mu_0}{I dI} \times \overline{r}$	$\frac{4\pi}{dR} = \frac{4\pi}{\mu_0} \frac{r^2}{I  dI \times r}$
$U U U = \frac{1}{4\pi} \frac{1}{r^2}$	(1) $uB = \frac{1}{4\pi} \frac{1}{r^3}$

31.Magnetic induction due to an infinitely long straight conductor placed in air or vacuum is

a) 
$$\frac{\mu_0 I}{4\pi a}$$
 b)  $\frac{\mu_0 I}{2\pi a}$  c)  $\frac{\mu I}{4\pi a}$  d)  $\frac{\mu I}{2\pi a}$ 

32. In a tangent galvanometer, for a constant current, the deflection is  $30^{\circ}$ . The plane of the coil is rotated through  $180^{\circ}$ . Now for the same current, the deflection will be **a**)  $30^{\circ}$  **b**)  $60^{\circ}$  **c**)  $90^{\circ}$  **d**)  $0^{\circ}$ 

- 33. The period of revolution of a charged particle inside a cyclotron depends on
  - a) the magnetic induction b) the charge of the particle
  - c) the mass of the particle
- 34. The torque on a rectangular coil placed in a uniform magnetic field is zero, when a) the number of turns is large

d) all of these

<ul> <li>c) the plane of the coil is perpendicular to the field</li> <li>d) the area of the coil is small</li> <li>35. Phosphor - bronze wire is used for suspension in a moving coil galvanomet because it has</li> </ul>	er,
<ul> <li>d) the area of the coil is small</li> <li>35. Phosphor - bronze wire is used for suspension in a moving coil galvanomet because it has</li> </ul>	er,
<ul><li>35. Phosphor - bronze wire is used for suspension in a moving coil galvanomet because it has</li></ul>	er,
because it has	
	,
a) high conductivity b) high resistivity	
c) large couple per unit twist d) small couple per unit twist	
36.Of the following devices, which has large resistance?	
a) moving coil galvanometer b) ammeter of range 0 - 1A	
c) ammeter of range 0 - 10 A d) voltmeter	
37.A galvanometer of resistance G $\Omega$ is connected with resistor of R $\Omega$ . T	he
effective resistance of the combination is R _v . Then, which of the followi	ng
statements is true?	
a) G is greater than R b) R _v is greater than R and G	
c) $R_v$ is less than both G and R d) R is less than both G and $R_v$	
38.An ideal ammeter has	
a) finite resistance less than G but greater than zero	
b) zero resistance	
d) infinite registeries	
CHAPTER-4	
CHAITER-4	
39.Electromagnetic induction is used in	
a) transformer b) room heater c) toaster d) galvanometer	
40.A coil of area of cross section 0.5 $m^2$ with 10 turns is in a plane which is parallel	to
an uniform magnetic field of 0.2 Wb / $m^2$ . The flux through the coil is	
a) 100 Wb b) 10 Wb c) 1 Wb d) zero	
41.Kirchoff's I law is in accordance with the law of	
a) conservation of charges b) conservation of flux	
c) conservation of momentum d) conservation of energy	
42. The mutual - inductance of a pair of coils which are perpendicular is	
a) zero b) infinity c) very large d) very small	
43. The unit Henry can also be written as	
<b>a)</b> Vs A ⁻¹ b) Wb ⁻¹ A c) $\Omega$ S ⁻¹ d) all	
44. An emf of 40 V is induced when the current in the coil changes at the rate of 10	A
S ^{$-$} . The coefficient of self induction of the coil is	
a) $0.3 \text{ H}$ b) $0.003 \text{ H}$ c) $4 \text{ H}$ d) $4.8 \text{ H}$	
45. An AC of peak value of 5A produces the same heating effect as an DC of $a > 50$ A rms surrant $b > 3.53$ A mas surrant $d > 7.07$	
46 Choka coil works on	
a) AC only b) DC only	
c) both AC and DC d) AC more effectively than DC	
47. The part of the AC generator that passes the current from the coil to the extern	nal
circuit is	
a) field magnet b) split rings c) slip rings d) brushes	

kindly send me your key answer to our email id - Padasalai.net@gmail.com of 2.

48.In an AC circuit the applied entry $e = 1$ ( $\omega t_{+}^{\pi}/_{2}$ ) by	ww.Trb Tnpscreom	lags the current $I = I_0 \sin \theta$
a) $\frac{\pi}{2}$ b) $\frac{\pi}{4}$	c) π	0 (b
40 Which of the following can be changed	in a transformer?	<b>u</b> ) 0
49. Which of the following canbe changed		
a) output current	b) output voltag	ge
c) input power	d) both (a) and	l(b)
50. The power loss is more in the transmiss	sion lines when	
a) voltage is less but current is more		
h) both voltage and current are more		
a) solta e is we we had current is less		
c) voltage is more but current is less		
d) both voltage and current are less		
51. Which of the following devices allow c	l.c to pass through	?
a) resistor b) capacitor	c) inductor	d) both (a) and(c)
52. In an ac circuit	,	
a) the average value of current is zer	0	
b) the average value of square, of surrow	nt is zoro	
b) the average value of square of curre	III IS ZEIO	
c) the average power dissipation is zero	)	
d) therms current is $\sqrt{2}$ time of peak cu	rrent	
<u>CHA</u>	<u>PTER-5</u>	
53.In an electromagnetic wave		
a) Energy is equally divided for the e	lectric and magne	etic fields.
h) power is transmitted in a direction p	arallel to both the f	fields
a) power is transmitted along alastric fi		
c) power is transmitted along electric in		
d) power is transmitted along magnetic	e field	
54. Sound waves are		
a) transverse	b) longitudinal	
c) may be longitudinal or transverse	d) neither longit	tudinal nor transverse
55.Refractive index of water is 4/3. Time	taken for light to	pass through a glass plate
of thickness 9 cm is	0	
a) $2 \times 10^{-8}$ s b) $4 \times 10^{-10}$ s	c) 5 x $10^{-8}$ s	d) 5 x $10^{-10}$ s
$\frac{1}{2} \times 10^{-5} \qquad \qquad$	CJJAIU S	u) 5 x 10 s
so.m an electromagnetic wave the angu	har unterence betw	ween the pines containing
fields E and B is		
a) $\frac{\pi}{4}$ b) $\frac{\pi}{2}$	c) π	d) zero
57.Solar spectrum is a		
a) pure line spectrum	b) emission bar	nd spectrum
c) absorption line spectrum	d) absorption ba	and spectrum
58 When a drop of water is replaced by a	ir between the gla	use plate and plano convey
long in Noviton's rings system the ring	an oetween the gla	iss plate and plano convex
The second secon		
a) contracts	b) expands	
c) remains same	d) first expands	s, then contracts
59.A beam of monochromatic light enter	s from water( $\mu$ ) in	n to air. The ratio of the
frequency of the incident and refracted	l waves is	
· ·		3/
kindly send me your key answer to our o	mail id . Padacalai n	et@gmail.com.of 2
many send me your ney answer to our c	and in a anabaialill	

www.Padasalai Net. www.Trb1Tnpsc.com of  $2_{d}$ ) 1 :  $\mu^2$ a) µ : 1 60. If the wavelength of the light is increased by four tmes, then the amount of scattering is a) increased by 16 times b) decreased by 16 times c) increased by 256 times d) decreased by 256 times 61. In Newton's ring experiment the radii of the mth and  $(m + 2)^{th}$  dark rings are respectively  $\sqrt{5}$  mm and  $\sqrt{7}$  mm. What is the value of m? a) 2 b) 5 c) 8 d) 10 62. The path difference between two monochromatic light waves of wavelength 4000Å is  $3 \times 10^{-7}$  m. The phase difference between them is c)  $\frac{3\pi}{2}$ a) π b) 2π d)  $\pi/_{2}$ 63.In Young's experiment, the third bright band for wavelength of light 8000Å coincides with the fourth bright band for another source in the same arrangement. The wave length of the another source is a) 4500Å b) 6000 Å c) 5000 Å ٠. d) 4000 Å 64.A light of wavelength 5000Å is incident normally on a grating 0.005 m wide with 2500 lines. Then the maximum order is a) 3 b) 2 c) 1 d) 4 65.A diffraction pattern is obtained using a beam of blue light. What happens if the blue light is replaced by red light? a) bands disappear b) no change c) diffraction pattern becomes narrower and crowded together d) diffraction pattern becomes broader and farther arpat 66. The refractive index of the glass, at the polarizing angle is c) 1.5 a) 1.732 b) 1.414 d) 1.468 **CHAPTER-6** 67.The canal rays are a) a stream of electrons b) a stream of positive ions c) a stream of uncharged particles d) the same as cathode rays 68.A narrow electron beam passes undeviated through an electric field  $E = 3x10^4$  V/m and an overlapping magnetic field  $B = 2x10^{-3}Wb/m^2$ . The electron motion, electric field and magnetic field are mutually perpendicular. The speed of the electron is b) 10.3 x  $10^7$  ms⁻¹ c) **1.5 x 10^7 ms⁻¹** d) 0.67 x  $10^{-7}$  ms⁻¹ a)  $60 \text{ ms}^{-1}$ 69. According to Bohr's postulates, which of the following quantities can't take discrete values? a) kinetic energy b) potential energy c) angular momentum d) both (a) and(b) 70. The ratio of the diametres of the first three Bohr orbit is, b) 1 : 2 : 3 a) 1 : 1/2 : 1/3 c) 1: 4 : 9 d) 1 : 8 : 27

71. The first excitation potential of the minimum potential required to excite the atom from ground state of hydrogen atom is

a) 13.6 eV b) 10.2 eV c) 3.4 eV

72. According to Bohr atom model, the spectral lines emitted by an atom is,

a) line spectrum

b) continuous spectrum

d) 10.2V

- c) continuous absorption spectrum d) band spectrum 73.Energy levels A, B, C of a certain atom correspond to increasing values of energy
  - (ie., )  $E_A < E_B < E_C$ . If  $\lambda_1$ ,  $\lambda_2$ ,  $\lambda_3$  are the wavelength of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statements is correct.



- a)  $\mathbf{E_3} = \mathbf{E_1} + \mathbf{E_2}$  b)  $\lambda_3 = \frac{\lambda_1 + \lambda_2}{\lambda_1 \lambda_2}$  c)  $\lambda_1 = \lambda_2 + \lambda_3 = 0$  d) $\lambda_3^2 = \lambda_1^2 + \lambda_2^2$
- 74. The circular orbits of electron in the atom were proposed by
- a) J.J.Thomson **b) Bohr** c) Sommerfeld d) de-Broglie 75.Pair production is a
  - a) phenomenon of conversion of kinetic energy into radiation
  - b) conversion of momentum
  - c) conversion of energy into mass
  - d) principle of conservation of charge

76.In an X - ray tube, the frequency of the emitted X - ray beam is increased by

a) increasing the filament current b) decreasing the filament current

c) increasing the target potential d) decreasing the target potential

- 77. The energy of a photon of continuous X ray from a Coolidge tube comes from a) the kinetic energy of the free electrons of the target
  - b) the kinetic energy of fast moving electron
  - c) the kinetic energy of the striking electron
  - d) an atomic transition in the target
- 78.A Coolidge tube operates at 49,600 V. The maximum frequency of X ray radiation emitted from Coolidge tube is
- a) 6 x10¹⁸ Hz
  b) 12 x 10¹⁸ Hz
  c) 6 x 10⁸ Hz
  d) 3 x 10⁸ Hz
  79. In hydrogen atom, which of the following transitions produce a spectral line of maximum frequency
  - a)  $2 \rightarrow 1$  b)  $4 \rightarrow 1$  c)  $6 \rightarrow 5$  d)  $5 \rightarrow 2$
- 80.In hydrogen atom, which of the following transitions produce a spectral line of maximum wavelength
  - a)  $2 \rightarrow 1$  b)  $6 \rightarrow 5$  c)  $4 \rightarrow 3$  d)  $5 \rightarrow 2$
- 81.Before pumping process in laser,

a) number of atoms in the ground state is greater than the number of atoms
in the excited state
b) the number of atoms in the excited state is greater than the number of atoms in
the ground state
c) the number of atoms in the ground state is equal to the number atoms in the excited state

d) no atoms are available in the excited state

82. The Xenon lamp on the ruby rod

a) absorbs red light

b) absorbs green light

c) absorbs blue light

d) emits green light

### $\underline{CHAPTER - 7}$

83.A photon of frequen	rev v is incident on	a metal surface of th	preshold frequency $v_0$ .
The kinetic energy of	of the emitted photo	electron is	
a) h ( $v + v_0$ )	b) hv	c) $hv_0$	d) h ( $v - v_0$ )
84. The work function of	of a photoelectric ma	aterial is 6.6 eV. Th	ne threshold frequency
will be equal to			
a) 8 x 10 ¹⁴ Hz	b) 8 x 10 ¹⁰ Hz	c) 6 x 10 ¹⁵ Hz	d) 4 x 10 ¹⁴ Hz
85.The stopping potent	ial of a metal surfac	e is dependent of	
a) frequency of incid	dent radiation	b) kinetic energy	of electron
c) velocity of the ele	ectrons emitted	d) all of these	
86.At the threshold free	quency, the velocity	of the electrons is	
a) zero	b) maximum	c) minimum	d) infinite
87. The photoelectric ef	fect can be explained	ed on the basis of	
a) corpuscular theory	ry of light	b) wave theory of	² light
c) electromagnetic f	heory of light	d) quantum theor	v of light
88 The wavelength of t	he matter wave is it	idependent of	y of fight
a) mass	b) velocity	c) momentum	d) charge
	o) velocity		
89.If the kinetic energy	of the moving part	icle 1s E, then the d	e Broglie wavelength is
a) $\lambda = \frac{h}{\sqrt{2mE}}$	b) $\lambda = \frac{\sqrt{2mE}}{h}$	c) $\lambda = h\sqrt{2mE}$	d) $\lambda = \frac{h}{E\sqrt{2m}}$
90. The momentum of t	he electron having	wavelength 2Å is	
a) $3.3 \times 10^{24} \text{ kg m s}^{-10}$	1 0	b) $6.6 \times 10^{24}$ kg m	$1  \mathrm{s}^{-1}$
c) $3.3 \times 10^{-24}$ kg m s	-1	d) 6.6 x $10^{-24}$ kg r	$n s^{-1}$
91. According to relativ	ity, the length of a 1	rod in motion	
a)is same as its rest	length		
b) is more than its re	est length		
c) is less than its res	t length		
d) may be more or 1	less than or equal to	o rest length depend	ding on the speed of the
rod	less than or equal to	o rest length depend	uning on the speed of the
97 If 1 kg of a substance	e is fully converted	into energy then the	e energy produced is
a) 9 x $10^{16}$ J	b) 9 x $10^{24}$ J	c) 1J	d) 3 x $10^8$ J
			37
			61

www.Padasalai.Net. www.Trb Tnpsc.com of 2. **CHAPTER-8** 93. The nuclear diameter of  ${}_4\text{Be}^8$  nucleus is a) 1.3 x 10⁻¹⁵ m b) 2.6 x 10⁻¹⁵ m c)  $1.3 \times 10^{-13}$  m d)  $5.2 \times 10^{-15}$  m 94. The nuclei  $_{1}H^{1}$  and  $_{1}H^{2}$  are example of a) isotopes b) isobars c) isotones d) isomers 95. The mass defect of a certain nucleus is found to be 0.01 amu. Its binding energy is c) 27.93 MeV d) 9.31MeV a) 27. 93 eV b) 27.93 KeV 96.Nuclear fission can be explained by a) shell model b) liquid drop model c) quark model d) Bohr atom model 97. The orbiting electrons around the nucleus are attracted by a) gravitational force b) electrostatic force c) nuclear force d) magnetic force 98. The ionization power is minimum for b)  $\alpha$  - particles d)  $\beta$  - particles a) neutrons c) y- rays 99. The half life period of a certain radioactive element with disintegration constant 0.00693 per day is c) 100 days a) 10 days b) 14 days d) 1.4 days 100. The radio- isotope used in medical field is d) Na²⁴ c)  $Na^{23}$ a)  $P^{31}$ b)  $P^{32}$ 101. The average energy released per fission is d) ) 3.2 x 10⁻¹¹ J a) 200eV b) 200 J c) 200 meV 102. The explosion of hydrogen bomb is based on the principle of a) uncontrolled fission reaction b) controlled fission reaction c) controlled chain reeaction d) thermonuclear reaction 103. Brain tumours can be diagnosed by a)  $P^{31}$ b)  $P^{\bar{3}2}$ c) Fe⁵⁹ d)  $I^{131}$ 104. In the nuclear reaction  ${}_{80}\text{Hg}^{198} + X \rightarrow_{79}\text{Au}^{198} + {}_{1}\text{H}^{1}$ , X - stands for b) electron a) proton c) neutron d) deutron 105. In  $\gamma$ - decay a) atomic number decreases by one b) mass number decreases by one c) proton number remains the same d) change in energy level only 106. Isotones have a) same mass number but different atomic number b) same proton number and neutron number c) same proton number but different neutron number d) same neutron number but different proton number 107. The time taken by the radioactive element to reduce to  $1/e^2$  times is b) mean life a) half life c) half life/2 d) twice the mean life 108. The half life period of  $N^{13}$  is 10.1 minute. Its mean life time is c)  $\frac{10.1}{0.6931}$  minutes d) infinity a) 5.05 minutes b) 20.2 minutes

109. Positive rays of the same element prot	uce Same Praces mod Bainbridge mass
a) same mass with different velocity c) different mass with same velocity	<b>b</b> ) <b>same mass with same velocity</b> d) different mass with different velocity
110. The binding energy per nucleon of ${}_{26}F_{1}$	$e^{56}$ nucleus is
a) 8.8 MeV b) 88 MeV	c) 493 MeV d) 41.3 MeV
111. The ratio between the nuclear densities	s of mercury and gold is
a) $1.3 \times 10^{10} : 5.2 \times 10^{10}$	b) 1:3
c) $1.3 \times 10^{13}$ : 1	d) 1:1
<u>CHAP</u>	<u>TER-9</u>
112. The electrons in the atom of an element	nt which does not determine its chemical
and electrical properties are called	
a) valence electrons	b) core electrons
c) excess electrons	d) active electrons
113. In an P - type semiconductor, there are	e
a) immobile negative ions	b) no minority carriers
c) immobile positive ions	d) holes as majority carriers
114. The forward current in a PN junction of	liode is only due to
a) majority carriers b) m	inority carriers
c) acceptor ions	d) donor ions
115. In the reverse bias characteristics curve	e, a diode appears as
a) a high resistance b) a capacitor	c) an OFF switch d) an ON switch
a) colligion (b) ionization	a) dening d) recombination
117 The intensity of light emitted by a LE	C) doping d) recombination
a) its reverse bias	b) the amount of forward current
c) its forward bias	d) type of semiconductor material
118 The emitter base junction of a given tr	ansistor is forward biased and its collector
hase junction is reverse biased. If the	hase current is decreased then its
a) $V_{CE}$ will increase	b) I _c will decrease
c) $I_C$ will increase	d) $V_{CC}$ will increase
119. Proper biasing of a transistor means	
a) heavy loading of emitter current	b) distortion in the output signal
c) excessive heat at collector terminal	d) selecting Q point correctly
120. A tank circuit in an oscillator is	
a) an amplifier with feedback	b) a convertor of dc to ac energy
c) nothing but an amplifier	d) an amplifier without feedback
121. In a Colpitt's oscillator circuit	-
a) capacitive feedback is used	b) tapped coil is used
c) no tuned LC circuit is used	d) no capacitor is used
122. The input impedance of an ideal opera	tional amplifier is infinite, then
a) its input current is zero	
b) its output impedance is zero	
c) its output voltage becomes independ	lent of load resistance
	3



132. The AF channel in a date in the smitter produces a second se

### a) audio signals

- b) high frequency carrier waves
- c) both audio signal and high frequency carrier waves
- d) low frequency carrier waves
- 133. The purpose of dividing each frame into two fields in interlaced scanning is a)to avoid unwanted noises in the signals
  - b) the fact that handling of higher frequencies is easier
  - c) that 50 Hz is the power line frequency in India

### d) does not increase the channel width

- 134. Printed documents to be transmitted by fax are converted into electrical signals by the process of
  - a) reflection
- b) scanning
- c) modulation
- d) light variation

	ANSWER KEY "ANGLE" ORIENTED													
1	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15													
А	В	В	С	С	В	В	С	А	А	В	А	А	С	А
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
С	А	С	В	С	В	С	В	В	D	А	В	С	С	С
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
С	D	А	В	В	С	В	В	D	В	С	D	А	А	В
46	47	48	49	50	51	52	53	54	55	56	57	58	59	
А	А	С	В	С	В	С	В	В	С	С	А	С	А	
				ʻIN	CREAS	SES – I	DECRE	CASES'	RELA	TED				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
В	А	С	А	С	С	D	А	D	С	А	С	D	D	В
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
А	D	D	С	С	В	С	D	А	С	А	В	С	A	D
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45

D	С	С	www C	.Padas D	<b>alai.N</b> B	et. D	D D	v.Trb D	Г <b>прsc.</b> D	com of C	2. C	С	В	А
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
D	С	D	А	С	В	В	В	В	С	D	С	D	В	А
61	62	63	64	65	66	67	68	69	70					
С	С	А	В	А	А	В	С	А	В					

	GENERAL													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	А	А	С	В	С	В	D	А	С	С	D	D	С	А
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
В	С	В	В	А	В	С	С	А	D	А	В	С	D	С
31	32	33	34	35	36	37	38	39	40	41	42			
С	В	D	А	D	С	D	А	А	А	С	D			

	FORMULA ORIENTED													
1	2	3	4	5	6	7	8	9	10	-11	12	13	14	15
С	В	А	D	С	А	В	D	D	С	D	D	D	В	D
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
В	D	С	С	D	D	С	D	D	D	С	С	D	С	D
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
D	С	D	D	D	С	D	D	A	С	С	А	С	В	D
46	47	48	49	50	51	52		U						
D	С	D	В	С	В	В	$\sum$							

	PROBLEM ORIENTED ONE MARK													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	D	А	С	С	С	А	В	С	А	D	А	С	В	С
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
В	D	D	A	В	А	В	В	С	С	D	А	В	А	С
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
А	В	В	В	В	А	В	В	А	D	С	С	В	В	В
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
D	С	С	С	D	D	В	В	С	А	В	А	В	С	В
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
В	С	D	D	D	В	D	С	В	С	С	В	А	В	А
76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
D	А	С	С	С	А	В	А	С	А	А	А	А	В	А

kindly send me your key answer to our email id - Padasalai.net@gmail.com of 2.

91	92	93	<mark>www</mark> 94	.Padas 95	alai.N 96	et. 97	98	v.Trb 99	<mark>Inpsc</mark> . 100	com of 101	2. 102	103	104	105
С	В	D	В	С	В	D	С	D	В	С	А	С	А	В
106	107	108	109	110	111									
Α	D	Α	С	В	Α									

TWISTED BOOK BACK														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
А	D	D	В	С	В	D	С	В	В	А	D	D	D	D
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
В	В	В	В	А	А	А	В	D	В	В	D	С	В	В
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
В	А	D	С	D	D	В	В	А	D	А	А	A	С	В
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
А	D	D	D	А	D	А	А	В	В	B	С	В	С	D
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
В	С	В	D	D	С	В	С	D	С	D	A	А	В	С
76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
С	В	В	В	В	А	D	D	С	D	A	D	D	А	D
91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
В	В	D	А	D	В	В	С	С	D	D	D	D	С	D
106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
D	D	С	В	А	D	В	Α	А	С	А	В	В	D	В
121	122	123	124	125	126	127	128	129	130	131	132	133	134	
А	В	С	С	В	В	A	D	С	А	В	А	D	В	

# WITH REGARDS

# SS PRITHVI,

# PRIT-EDUCATION.