www.Padasalai. Fift Midterm Model Test - 1 (English). 1 rb Tnpsc.com 10th Standard 2019 EM

Maths
Time : 01:30:00 Hrs
Part A

1) $A=\{a, b, p\}, B=\{2,3\}, C=\{p, q, r, s\}$ then $n[(A \cup C) \times B]$ is
(a) 8
(b) 20
(c) 12
(d) 16
2) If there are 1024 relations from a set $A=\{1,2,3,4,5\}$ to a set B, then the number of elements in B is
(a) 3
(b) 2
(c) 4
(d) 8
3) Euclid's division lemma states that for positive integers a and b, there exist unique integers q and r such that $a=b q$ $+r$, where r must satisfy
(a) $1<r<b$
(b) $0<r<b$
(c) $0 \leq r<b$
(d) $0<r \leq b$
4) If the HCF of 65 and 117 is expressible in the form of $65 m-117$, then the value of m is
(a) 4
(b) 2
5) The value of $\left(1^{3}+2^{3}+3^{3}+\ldots 15^{3}\right)-(1+2+3+\ldots+15)$ is
(c) 1
(d) 3
(a) 14400
(b) 14200
(c) 14280
(d) 14520

Part B (Answer any Five Questions)
6) Let $A=\{x \in N \mid 1<x<4\}, B=\{x \in W \mid 0 \leq x<2)$ and $C=\{x \in N \mid x<3\}$ Then verify that
(i) $A \times(B \cup C)=(A \times B) \cup(A \times C)$
(ii) $A \times(B \cap C)=(A \times B) \cap(A \times C)$
7) Given $f(x)=2 x-x^{2}$, find
(i) $f(1)$
(ii) $f(x+1)$
(iii) $f(x)+f(1)$
8) $\operatorname{Let} A=\{1,2,3,4\}$ and $B=\{-1,2,3,4,5,6,7,8,9,10,11,12\}$ Let $R=\{(1,3),(2,6),(3,10),(4,9)\} \subseteq A \times B$ bea relation. Show that R is a function and find its domain, co-domain and the range of R.
9) if $1+2+3+\ldots+n=666$ then find n.
10) If $I^{\text {th }}, n^{\text {th }}$ and nth terms of an A.P are x, y, z respectively, then show that
$(x-y) n+(y+z) \mid+(z-x) m=0$
11) Find the sum of
$15^{2}+16^{2}+17^{2}+. .+28^{2}$
12) Find the sum of
$9^{3}+10^{3}+,,,+21^{3}$
Part C (Answer any Five Questions)
$5 \times 3=15$
13) Let $A=\{1,2,3,4\}$ and $B=\{2,5,8,11,14\}$ be two sets. Let $f: A \rightarrow B$ be a function given by $f(x)=3 x-1$. Represent this function
(i) by arrow diagram
(ii) in a table form
(iii) as a set of ordered pairs
(iv) in a graphical form
14) Let f be a function $f: N \rightarrow N$ be defined by $f(x)=3 x+2 x \in N$
(i) Find the images of $1,2,3$
(ii) Find the pre-images of 29, 53
(ii) Identify the type of function
15) Find the sum of $0.40+0.43+0.46+\ldots .+1$
16) How many terms of the series $1+5+9+\ldots$ must be taken so that their sum is 190 ?
17) Find the sum of all natural numbers between 300 and 600 which are divisible by 7.
18) The sum of first $n, 2 n$ and $3 n$ terms of an A.P are S_{1}, S_{2} and S_{3} respectively prove that $S_{3}=3\left(S_{2}-S_{1}\right)$
19) Find the sum to n terms of the series $5+55+555+\ldots$

Part D (Answer any Four Questions)
20) The function ' t ' which maps temperature in Celsius (C) into temperature in Fahrenheit (F) is defined by $t(C)=F$ where $\mathrm{F}-\frac{9}{5} \mathrm{C}+32$. Find,
(i) $t(0)$
(ii) $\mathrm{t}(28)$
(iii) $\mathrm{t}(-10)$
(iv) the value of C whenn $\mathrm{t}(\mathrm{C})=212$
(v) the temperature when the Celsius value is equal to the Farenheit value.
21) Consider the functions $f(x), g(x)$, $h(x)$ as given below. Show that ($f \circ g$) $0 h=f \circ(g \circ h)$ in each case.
22) A positive integer when divided by 88 gives the remainder 61 . What will be the remainder when the same number is divided by 11 ?
23) In a G.P. the product of three consecutive terms is 27 and the sum of the product of two terms taken at a time is $\frac{57}{2}$. Find the three terms.
24) Rekha has 15 square colour papers of sizes $10 \mathrm{~cm}, 11 \mathrm{~cm}, 12 \mathrm{~cm}, \ldots, 24 \mathrm{~cm}$. How much area can be decorated with these colour papers?

All the Best

