1. (a) $(A X C) \subset(B X V Y)$ Padasalai.Net
2. (c) $2-4 x$
3. (a) $0,1,8$
4. (d) A is larger than B by 1
5. (d) 1
6. (d) row matrix
7. (b) 70°
8. (a) 120°
9. (b) Parallel to y - axis
10. (c) 2
11. (c) 6 cm
12. (a) $2: 1$
13. (b) 160900
14. (c) $\frac{23}{26}$
15. $A \times B=\{(3,2),(3,4),(5,2),(5,4)\}$

We have $A=\{$ set of all first coordinates of elements of $A \times B\}$.
Therefore, $A=\{3,5\}$
$B=\{$ set of all second coordinates of elements of $A \times B\}$.
Therefore, $B=\{2,4\}$
Thus $A=\{3,5\}$ and $B=\{2,4\}$.
16.

```
Solution:
    f(x)=2x-1
    f(1)=2(1)-1=2-1=1
    f(2)=2(2)-1=4-1=3
    f(3) =2(3)-1=6-1=5
    f(4) =2(4)-1=8-1=7...........etc
    co-domain ={1,2,3,4,5,\ldots...........}
    Range = {1,3,5, 7,\ldots\ldots\ldots\ldots\ldots\ldots\ldots}
    It is one - one because distinct elements of
    first set have distinctimages in 2nd set. It
    is not onto because the co-domain and the
    ramge are mot same.
```

17. Solution:

For any value $n \in N, 2^{n}$ is an even number.
For any value $m \in N, 5^{\mathrm{m}}$ is an odd number.

(end with 5)

So the product $2^{\mathrm{n}} \times 5^{\mathrm{m}}$ ends in " 0 " (zero)
So there are no values to find n and m.
18.

19.

$$
\begin{align*}
& \sum_{n=1}^{10} n^{2}=1^{\text {www.Padasalai.Net }}+2^{2}+3^{2}+\ldots+10^{\text {www.Trb Tnpsc.com }} \\
&=\frac{10(11)(2 x) 7}{62} \\
&=\frac{770}{2} \\
&=385 \longrightarrow 2^{2} \longrightarrow 1 \\
& 2^{2}+4^{2}+6^{2}+\ldots+20^{2}=2^{2}+1^{2}+2^{2}+2^{2} 3^{2}+\ldots+2^{2} 10^{2} \\
& 1=2^{2}\left(1^{2}+2^{2}+3^{2}+\cdots+10^{2}\right) \\
&=2^{2}(385)[\because \text { using (1) }] \\
&=4(385) \\
&=1540
\end{align*}
$$

20.

Given that, $\Delta=0$.

$$
\begin{aligned}
b^{2}-4 a c & =0 \\
\Rightarrow(3 k)^{2}-4(9)(4) & =0 \\
\Rightarrow 9 k^{2}-9(16) & =0 \\
\Rightarrow 9\left(k^{2}-16\right) & =0 \\
k^{2}-16 & =0 \\
k^{2} & =16 \\
k & =\sqrt{16} \\
k & = \pm 4 \\
k & = \pm 4
\end{aligned}
$$

21.

Solution :

$$
-\mathrm{A}=\left[\begin{array}{cc}
\sqrt{7} & 3 \\
\sqrt{5} & -2 \\
-\sqrt{3} & 5
\end{array}\right] \therefore-\mathrm{A}^{\mathrm{T}}=\left[\begin{array}{ccc}
-\sqrt{7} & \sqrt{5} & -\sqrt{3} \\
3 & -2 & 5
\end{array}\right]
$$

kindly send me your key Answers to our email id - padasalai.net@gmail.com
22.

i) $\begin{aligned} & \frac{A B}{A C}=\frac{5}{10}=\frac{1}{2}-1-(1) \\ & \frac{B D}{D C}=\frac{1.5}{3.5}=\frac{3}{7}-1-(2) \\ & \text { Fram (1) \& (2) } \frac{A B}{A C} \neq \frac{B D}{D C}\end{aligned}$
\therefore AD is mot a bisector of 1 .
23. $(14,10)$ and $(14,-6)$

The Slope $=\frac{-6-10}{14-14}=\frac{-16}{0}=\infty$
The slope is undefined.
24.

$$
\begin{aligned}
& \sqrt{\frac{1+\sin \theta}{1-\sin \theta}}=\sec \theta+\tan \theta \\
& \begin{aligned}
\text { LHS } & =\sqrt{\frac{1+\sin \theta}{1-\sin \theta} \times \frac{1+\sin \theta}{1+\sin \theta}} \\
& =\sqrt{\frac{(1+\sin \theta)^{2}}{1-\sin ^{2} \theta}} \\
& =\sqrt{\frac{(1+\sin \theta)^{2}}{\cos ^{2} \theta}}=\frac{1+\sin \theta}{\cos \theta} \\
& =\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta} \\
& =\operatorname{Sec} \theta+\tan \theta=\text { RHS. }
\end{aligned}
\end{aligned}
$$

25. Let r be the radius of the sphere.

Given that, surface area of sphere $=154 \mathrm{~m}^{2}$
$4 \pi r^{2}=154$

$$
4 \times \frac{22}{7} \times r^{2}=154
$$

$$
\text { gives } \quad r^{2}=154 \times \frac{1}{4} \times \frac{7}{22}
$$

hence,

$$
r^{2}=\frac{49}{4} \text { we get } r=\frac{7}{2}
$$

Therefore, diameter is 7 m
26. Let r be the radius of the hemisphere.

Given that, base area $=\pi r^{2}=1386$ sq. m
T.S.A. $=3 \pi r^{2}$ sq.m
$=3 \times 1386=4158$
Therefore, T.S.A. of the hemispherical solid is $4158 \mathrm{~m}^{2}$
27. $L=125, S=63$

Range $=\mathrm{L}-\mathrm{S}=125-63=62$.
Coefficient of Range $=\frac{\mathrm{L}-\mathrm{S}}{\mathrm{L}+\mathrm{S}}=\frac{62}{188}=0.33$
kindly send me your key Answers to our email id - padasalai.net@gmail.com
28.
$R={ }_{5}^{\text {www.Padasalai.Net }} \mathbf{c m}=3 \mathrm{~cm}, \quad h=9$ www.Trb Tnpsc.com
Volume of Hollow ystinder $=\pi\left(R^{2}-r^{2}\right) \mathrm{h}$ w. units

$$
\begin{aligned}
& =\frac{22}{7} \times\left(5^{2}-3^{2}\right) \times 9 \mathrm{~cm}^{3} \\
& =\frac{22}{7} \times(25-9) \times 9 \mathrm{~cm}^{3} \\
& =\frac{22}{7} \times 14 \times 9 \mathrm{~cm}^{3} \\
& =\frac{3168}{7} \mathrm{~cm}^{3} \\
& =452.571 \mathrm{~cm}^{3} \\
& =452.57 \mathrm{~cm}^{3}
\end{aligned}
$$

29. Let $\mathrm{A}=\{1,2,3,4,5,6,7\}$

$$
B=\{2,3,5,7\}
$$

i) $(A \cap B) \times C=(A \times C) \cap(B \times C)$
L.H.S $(A \cap B) \times C$

$$
\begin{aligned}
\mathrm{A} \cap \mathrm{~B} & =\{1,2,3,4,5,6,7\} \cap\{2,3,5,7\} \\
& =\{2,3,5,7\} \\
\mathrm{A} \cap \mathrm{~B} \times \mathrm{C} & =\{2,3,5,7\} \times\{2\} \\
& =\{(2,3)(3,2)(5,2)(7,2)\}-
\end{aligned}
$$

R.H.S $(A \times C) \cap(B \times C)$

$$
\begin{aligned}
\mathrm{A} \times \mathrm{C} & =\{1,2,3,4,5,6,7\} \times\{2\} \\
& =\{(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(7,2)\} \\
\mathrm{B} \times \mathrm{C} & =\{2,3,5,7\} \times\{2\} \\
& =\{(2,2)(3,2)(5,2)(7,2)\}
\end{aligned}
$$

$(A \times C) \cap B \times C=\{(2,2)(3,2)(5,2)(7,2)\} \square$ (2)
L.H.S $=$ R.H.S
30. $A=\{1,2,3,4\} ; B=\{2,5,8,11,14\} ; f(x)=3 x-1$
$f(1)=3(1)-1=3-1=2 ; f(2)=3(2)-1=6-1=5$
$f(3)=3(3)-1=9-1=8 ; f(4)=4(3)-1=12-1=11$
(i) Arrow diagram

Let us represent the function : $A \rightarrow B$ by an arrow diagram (Fig.1.19).

Fig. 1.19
(ii) Table form
kindly send me your key Answers to our email id - padasalai.net @gmail.com

The given functiotrfadasalaieple sented in a tabular form aswh.TrbeTowsc.com

x	1	2	3	4
$f(x)$	2	5	8	11

(iii) Set of ordered pairs

The function f can be represented as a set of ordered pairs as $f=\{(1,2),(2,5),(3,8),(4,11)\}$
(iv) Graphical form

In the adjacent $x y$-plane the points
$(1,2),(2,5),(3,8),(4,11)$ are plotted (Fig.1.20).

Fig. 1.20
31.

The natural numbers between which are divisible by 11 .

$$
\begin{aligned}
& \text { ie., } 110,121, \ldots, 990 . \\
& \text { Here } a=110, d=18, \quad l=990 .
\end{aligned}
$$

$$
\begin{aligned}
n & =\left(\frac{l-a}{d}\right)+1 \\
& =\left(\frac{990-110}{11}\right)+1 \\
& =\left(\frac{880}{11}\right)+1 \\
& =80+1 \\
n & =81 \\
S_{n} & =\frac{n}{2}(a+1) \\
S_{s i} & =\frac{81}{2}(110+990)=\frac{81}{2}(4+500)=\frac{89100}{2} \\
& =\frac{89100}{2}=44550 .
\end{aligned}
$$

32.

33.

$$
\begin{aligned}
& f(x)=x^{4}+3 x^{3}-x-3 \\
& g(x)=x^{3}+x^{2}-5 x+3 \\
& \begin{array}{l|l}
& x+2 \\
\cline { 2 - 3 } & \begin{array}{l}
x^{3}+x^{2}-5 x+3 x^{3}+0 x^{2}-x-3 \\
x^{4}+x^{3}-5 x^{2}+3 x
\end{array} \\
\cline { 2 - 3 } \begin{array}{c}
2 x^{3}+5 x^{2}-4 x-3 \\
2 x^{3}+2 x^{2}-10 x+6
\end{array} \\
\hline 3 x^{2}+6 x-9
\end{array} \\
& =3\left(\mathrm{x}^{2}+2 \mathrm{x}-3\right) \neq 0 \\
& \mathrm{GCD}=x^{2}+2 x-3 \text {. }
\end{aligned}
$$

34.

35.

LHS $(A B)^{\mathbf{w w w} \text { wadasalai.Net }}$

$$
\begin{align*}
A B & =\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & -1 & 1
\end{array}\right)_{2 \times 3} \times\left(\begin{array}{cc}
2 & -1 \\
-1 & 4 \\
0 & 2
\end{array}\right)_{3 \times 2} \\
& =\left(\begin{array}{cc}
2-2+0 & -1+8+2 \\
4+1+0 & -2-4+2
\end{array}\right)=\left(\begin{array}{cc}
0 & 9 \\
5 & -4
\end{array}\right) \\
(A B)^{T} & =\left(\begin{array}{cc}
0 & 9 \\
5 & -4
\end{array}\right)^{T}=\left(\begin{array}{cc}
0 & 5 \\
9 & -4
\end{array}\right) \tag{1}
\end{align*}
$$

RHS $\left(B^{T} A^{T}\right)^{\text {www.Trb Tnpsc.com }}$

$$
\begin{aligned}
B^{T} & =\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 4 & 2
\end{array}\right), A^{T}=\left(\begin{array}{cc}
1 & 2 \\
2 & -1 \\
1 & 1
\end{array}\right) \\
B^{T} A^{T} & =\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 4 & 2
\end{array}\right)_{2 \times 3} \times\left(\begin{array}{cc}
1 & 2 \\
2 & -1 \\
1 & 1
\end{array}\right)_{3 \times 2} \\
& =\left(\begin{array}{cc}
2-2+0 & 4+1+0 \\
-1+8+2 & -2-4+2
\end{array}\right) \\
B^{T} A^{T} & =\left(\begin{array}{cc}
0 & 5 \\
9 & -4
\end{array}\right)
\end{aligned}
$$

From (1) and (2), $(A B)^{T}=B^{T} A^{T}$.
Hence proved.
36. Angle Bisector Theorem

Statement

The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the corresponding sides containing the angle.
Proof
Given: In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the internal bisector
To prove : $\frac{A B}{A C}=\frac{B D}{C D}$
Construction : Draw a line through C parallel to $A B$. Extend $A D$ to meet line through C at E

Fig. 4.33

No	Statement	Reason
1.	$\angle A E C=\angle B A E=\angle 1$	Two parallel lines cut by a transversal make alternate angles equal.
2.	$\triangle A C E$ is isosceles $\begin{equation*} \mathrm{AC}=\mathrm{CE} \ldots \tag{1} \end{equation*}$	In $\triangle A C E, \angle C A E=\angle C E A$
3.	$\begin{aligned} & \triangle A B D \sim \triangle E C D \\ & \frac{A B}{C E}=\frac{B D}{C D} \end{aligned}$	By A A Similarity
4.	$\frac{A B}{A C}=\frac{B D}{C D}$	From (1) $A C=C E$. Hence proved.

Given vetices are $(-4,-2),(-3, k),(3,-2)$ and $(2,3)$. Given area 28 sq. units.

$$
\begin{aligned}
\frac{1}{2}\{(-4 k+6+9-4)-(6+3 k-4-12)\} & =28 \\
(-4 k+11)-(3 k-10) & =28 \times 2 \\
-4 k+11-3 k+10 & =56 \\
-7 k+21 & =56 \\
-7 k & =56-21 \\
k & =\frac{35}{-7} \\
k=-5 &
\end{aligned}
$$

38. Solution:

From (1) \& (2)

$$
\begin{aligned}
\frac{60-h}{0.7813} & =20 \sqrt{3} \\
60-h & =20(1.732) \times 0.7813 \\
60-h & =27.06 \\
h & =60-27.06=32.94 \\
h & =32.94 \mathrm{~m}
\end{aligned}
$$

Given:
$\mathrm{h}_{1}=9 \mathrm{~cm}, \quad \mathrm{r}_{1}=10 \mathrm{~cm}$
$h_{2}=4 \mathrm{~cm}, \quad x_{2}=5 \mathrm{~cm}$
Volume of Cylinders

$$
\begin{aligned}
V_{1}+V_{2} & =\pi r_{1}^{2} h+\pi r_{2}^{2} h \\
& =\pi(10 \times 10 \times 9+5 \times 5 \times 4) \\
& =\pi(900 \times 100) \\
& =1000 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

Height of the water level is $h_{3} \mathrm{~cm}$

$$
\begin{aligned}
\pi r^{2} h_{3} & =1000 \pi \\
\pi \times 10 \times 10 \times h_{3} & =1000 \pi \\
h_{3} & =\frac{1000 \pi}{100 \pi}=10
\end{aligned}
$$

Raise of the water in glass

$$
=\mathrm{h}_{3}-\mathrm{H}_{1}=10-9=1 \mathrm{~cm}
$$

40.

41. Solwww.Padasalai.Net

Two dice are rolled

$$
\text { sample sapce } S=\left\{\begin{array}{l}
(1,1)(1,2)(1,3) \\
(1,4)(1,5)(1,6)
\end{array}\right.
$$

$$
(2,1)(2,2)(2,3)
$$

```
(2,4) (2, 5) (2, 6)
(3,1) (3, 2) (3, 3) (3, 4) (3,5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2)}(5,3)(5,4)(5,5)(5,6
(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)}
```

$n(S)=36$
(i) Let A be the event of getting a
doublet
$A=\{(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)\}$
$n(A)=6$
$P(A)=\frac{n(A)}{n(S)}=\frac{6}{36}=\frac{1}{6}$
(ii) Let B be the event of getting a
product is a prime number
$B=\{(1,2)(1,3)(1,5)(2,1)(3,1)(5,1)\}$
$n(B)=6$
$p(B)=\frac{m(B)}{n(S)}=\frac{6}{36}=\frac{1}{6}$
(iii) Let (um be the event of getting a
sum is prime number.
$C=\begin{array}{llll} & (1,1) & (1,2) & (1,4) \\ & (2,1) & (2,3) & (2,5) \\ & (3,4) & (4,1) & (3) \\ & (5,6)(6,1)(6,5) & (5,3)\end{array}$
$n(C)=15$
(iv) Let D be the event of getting
a sum is 1 .
$\therefore D$ is an impossible event D
$=\{ \}$

$$
\therefore P(D)=0
$$

42.

43. (a) Solvww.Padasalai.Net

Construction:

1. Draw a $\triangle \mathrm{ABC}$
2. Draw a ray $B X$
3. Locate 6 points $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$ and B_{6} on BX
4. Join $B_{5} C$ and draw a line passing through B_{6} parallel to $B_{5} C$ intersect at C^{\prime}.
5. Draw a line through parallel AC intersect the extended line segment $A B$ at A^{\prime}.
Then $\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle.
(or)
(b) Soluttbww.Padasalai.Net

Construction:

1. With centre at O , draw a circle of radius 5 cm
2. Draw a line $\mathrm{OP}=\mathrm{PO} \mathrm{cm}$
3. Draw a perpendicular bisector of OP. Which cuts OP at M.
4. With M as centre and MO as radius, draw a circle which cuts previous circle at A and B.
5. Join AP and BP . These are the required tangents. The length of the tangents $P A=P B=8.7 \mathrm{~cm}$.
6. (a) Step 1

Prepare the table of values for the equation $y=x^{2}-8 x+16$

x	-1	0	1	2	3	4	5	6	7	8
y	25	16	9	4	1	0	1	4	9	16

Step 2

Plot the points for the above ordered pairs (x, y) on the graph using suitable scale.

Fig. 3.13

Step 3

Draw the parabola and mark the coordinates of the parabola which intersect with the X axis.

Step 4

The roots of the equation are the x coordinates of the intersecting points of the parabola with the X axis $(4,0)$ which is 4 .
Since there is only one point of intersection with X axis, the quadratic equation $x^{2}-8 x+16=0$ has real and equal roots.
(or)
(b) Solution:

$$
y=2 x^{2}-3 x-5
$$

x	-4	-3	-2	-1	0	1	2	3	4
y	39	22	9	0	-5	-6	-3	4	15

Now

$$
\begin{align*}
& y=2 x^{2}-3 x-5 \\
& 0=2 x^{2}-4 x-6 \tag{-}\\
& y=x+1
\end{align*}
$$

$$
y=x+1
$$

x	-2	0	2
y	-1	1	3

The straight line $y=x+1$ intersects the x axis at 2 different points There fore, the solution for

$$
2 x^{2}-4 x-6=0 \text { is }-1 \text { and } 3
$$

- E.VIKRAM (M.Sc., B.Ed(Mathematics))

Now I am Working in Sri Rajalakshmi Tuition Centre.,
Arni -632301.,Tiruvannamalai district.

