Reg.No.:

ARTHI EDUCATIONAL CENTRE

CREATIVE ONE MARK - UNIT 3,4

10th Standard

Maths	
Mr DEEPAK M.Sc.,M.A.,B.Ed.,DCA.,TET -1.,TET-2.,	
Mrs ARTHIDEEPAK B.E.,(REVENUE DEPARTMENT)	
KATTUPUTHUR -621207	
PH NO: 9944249262, EMAIL ADDRESS: darthi99ktp@gmail.com	
Time: 01:00:00 Hrs	
	Total Marks: 161
I. ANSWER ALL QUESTION	161 x 1 = 161
1) How many times 5 bells ring together in 1 hour if they start together and ring at intervals of 2, 3, 4, 5 and 6 sec	respectively?
(a) 71 times (b) 59 times (c) 60 times (d) 61 times	
2) If $f(x) = g(x) \cdot q(x) + r(x)$, must be added to $f(x)$ to make $f(x)$ completely divisible by $g(x)$	
(a) $p(x)$ (b) $g(x)$ (c) $q(x)$ (d) $-q(x)$	
3) If three planes are parallel then the number of possible point(s) of intersection is/are	
(a) O (b) 1 (c) 2 (d) 3	
4) Ajay and Vijay solved and equation In solving it, Ajay made a mistake in the constant term only and got the root made a mistake in the coefficient of x only and obtained roots -9 and -1. The correct roots of the quation are	
(a) 8, 1 (b) -9, 2 (c) -8, -2 (d) 9, 1	
5) The non diagonal elements in any unit matrix are	
(a) 0 (b) 1 (c) m (d) n	
6) Which of the following are linear equation in three variables	
(a) $2x = z$ (b) $2\sin x + y\cos y + z\tan z = 2$ (c) $x + 2y^2 + z = 3$ (d) $x - y - z = 7$	
7) Graphically an infinite number of solutions represents	
(a) three planes with no point in common (b) three planes intersecting at a single point	
(c) three planes intersecting in a line or coinciding with one another (d) None	
8) Which of the following is correct	
(i) Every polynomial has finite number of multiples	
(ii) LCM of two polynimials of degree 2 may be a constant	
(iii) HCF of 2 polynomials may be constant	
(iv) Degree of HCF of two polynomials is always less then degree of LCM	
(a) (i) and (ii) (b) (iii) and (iv) (c) (iii) only (d) (iv) only	
9) The HCF of two polynomials $p(x)$ and $q(x)$ is $2x(x + 2)$ and LCM is $24x(x + 2)^2(x - 2)$ if $p(x) = 8x^3 + 32x^2 + 32x$, the	n q(x)
(a) $4x^3-16x$ (b) $6x^3-24x$ (c) $12x^3+24x$ (d) $12x^3-24x$	
10) Consider the following statements:	
(i) The HCF of $x+y$ and x^8-y^8 is $x+y$	
(ii) The HCF of $x+y$ and x^8+y^8 is $x+y$	
(iii) The HCF of x-y nd x^8+y^8 is x-y	
(iv) The HCF of x-y and x^8-y^8 is x-y	

Date: 27-Mar-24

(a) (i) and (ii) (b) (ii) and (iii) (c) (i) and (iv) (d) (ii) and (iv)

11) For what set of values $\frac{x^2+5x+6}{x^2+8x+15}$ is underfined _____ kindly send me your key Answers to our email id - padasalai.net@gmail.com

12)
$$\frac{x^2+7x12}{x^2+8x+15} \times \frac{x^2+5x}{x^2+6x+8} =$$

(a)
$$x+2$$
 (b) $\frac{x}{x+2}$ (c) $\frac{35x^2+60x}{48x^2+120}$ (d) $\frac{1}{x+2}$

13) If
$$\frac{p}{q}=a$$
 then $\frac{p^2+q^2}{p^2-q^2}$ _____

(a)
$$\frac{a^2+1}{a^2-1}$$
 (b) $\frac{1+a^2}{1-a^2}$ (c) $\frac{1-a^2}{1-+a^2}$ (d) $\frac{a^2-1}{a^2+1}$

14) The square root of $4m^2$ - 24m + 36 is _____

(a)
$$4(m-3)$$
 (b) $2(m-3)$ (c) $(2m-3)^2$ (d) $(m-3)$

15) The product of the sum and product of roots of equation $(a^2-b^2)x^2-(a+b)^2x+(a^3-b^3)=0$ is

(a)
$$\frac{a^2+ab+b^2}{(a-b)}$$
 (b) $\frac{a-b}{a+b}$ (c) $\frac{a-b}{a+b}$ (d) $\frac{a-b}{a^2+ab+b^2}$

16) The real roots of the quardractic equation x^2 -x-1 are _____

(a) 1, 1 (b) -1, 1 (c)
$$\frac{1+\sqrt{5}}{2}$$
, $\frac{1-\sqrt{5}}{2}$ (d) None

17) A Quadratic polynomial whose one zero is 5 and sum of the zeroes is 0 is given by ____

(a)
$$x^2-25$$
 (b) x^2-5 (c) x^2-5x (d) x^2-5x+5

18) Axis of symmetry in the term of vertical line seperates parabola into

19) The parabola $y = -3x^2$ is ______

20) Choose the correct answer

(i) Every scalar matrix is an identity matrix

(ii) Every identity matrix is a scalar matrix

(iii) Every diagonal matrix is an identity matrix

(iv) Every null matrix is a scalar matrix

$$^{21)}$$
 If $2A+3B=egin{bmatrix} 2 & -1 & 4 \ 3 & 2 & 5 \end{bmatrix}$ and $A+2B=egin{bmatrix} 5 & 0 & 3 \ 1 & 6 & 2 \end{bmatrix}$ then B = [hint: B = (A+2B)-(2+3B)]

(a)
$$\begin{bmatrix} 8 & -1 & -2 \\ -1 & 10 & -1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 8 & -1 & 2 \\ -1 & 10 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} 8 & 1 & 2 \\ -1 & 10 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 8 & 1 & 2 \\ 1 & 10 & 1 \end{bmatrix}$

22) If
$$\begin{bmatrix} 4 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ x \end{bmatrix} = [6]$$
, then x is _____

$$A=egin{bmatrix} y & 0 \ 3 & 4 \end{bmatrix}$$
 and $I=egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$ then A^2 = 16 I for ______

(a)
$$y = 4$$
 (b) $y = 5$ (c) $y = -4$ (d) $y = 16$

24) If P and Q are matrices, then which of the following is true?

(a)
$$\mathbf{PQ} \neq \mathbf{QP}$$
 (b) $(P^T)^T \neq P$ (c) $P + Q \neq Q + P$ (d) All are true

If
$$A=\begin{bmatrix}1&2\\3&4\\5&6\end{bmatrix}_{3\times 2}$$
 $B=\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}_{2\times 3}$ then which of the following products can be made from these matrices (i) \mathbf{A}^2

(i) A²

(ii) B^2

(iii) AB

(iv) BA

(d) all the above (a) (i) only (b) (ii) and (iii) only (c) (iii) and (iv) only

27) If \triangle ABC is an isosceles triangle with right angle C = 90° and AC = 5cm, then AB is _____

(a) **2.5cm** (b) 5cm (c) 10cm (d)
$$4\sqrt{2}$$
cm

28) If α and β are the roots of $ax^2 + bx + c = 0$ then one of the quadratic equations whose roots are $1/\alpha$ and $1/\beta$ is ______

(a)
$$ax^2 + bx + c = 0$$
 (b) $bx^2 + ax + c = 0$ (c) $cx^2 + bx + a = 0$ (d) $cx^2 + ax + b = 0$

29) The value of x in (x + 2) + 2(x - 1) = 4x - 3

30) solve for
$$x: (x-\frac{1}{2})^2 - (x-\frac{3}{2})^2 = x+2$$

31) If x men can do a piece of work in y days, in how many days will z men do the same work?

(a)
$$\frac{xz}{y}$$
 (b) $\frac{xy}{z}$ (c) $\frac{yz}{x}$ (d) xyz

32) Find the value of x and y if $\frac{5}{y} - \frac{2}{x} = \frac{7}{6}$ and $\frac{36}{x} - \frac{24}{u} = 1$

(a)
$$x = 4$$
, $x = 3$ (b) $x = -4$, $x = 3$ (c) $x = -4$, $x = -3$ (d) $x = 4$, $x = -3$

33) The solution of $x^2 - 25 = 0$ is _____

34) What should be the value of P if 3x + 2y = 8 and 6x + 4y = 9 have infinitely many solutions?

35) What should be the value of m in the pair of equations 4x + my + 9 = 0 and 3x + 4y + 18 = 0 to have unique solutions?

(a)
$$m
eq 16$$
 (b) $m
eq 15$ (c) $m
eq rac{16}{3}$ (d) $m
eq rac{15}{3}$

36) If the Sum of two numbers is 640 and their difference is 280, then the numbers are _____

37) The total salary of 15 men and 8 women in Rs 3050. The difference of salaries of 5 women and 3 men is Rs 50. Find the sum of the salaries of 3 men and 5 women

38) Find the solution to the system x + y + z = 2, 6x - 4y + 5z = 31 and 5x + 2y + 2z = 13

39) The solution of the system of equations 4x + 2y - 4z = -18, 8x - 2y - 5z = -18 and -16x - 2y - z = -2.

40) The GCD of two nrrnbers is 36 and their LCM is 648. The product of two numbers is ______

41) The LCM of $a^2 + 3a + 2$, $a^2 + 5a + 6$ and $a^2 + 4a + 4$ is _____

(a)
$$(a + 2)^2(a+3)$$
 (b) $(a + 2)^2(a+1)$ (c) $(a + 2)^2(a+3)(a+1)$ (d) $(a + 3)(a+2)(a+1)$

42) The L.C.M of x^3 - a^3 and $(x - a)^2$ is _____

(a)
$$(x^3-a^3)(x+a)$$
 (b) $(x^3-a^3)(x-a)^2$ (c) $(x-a)^2(x^2+ax+a^2)$ (d) $(x+a)^2(x^2+ax+a^2)$

43) The GCD of $10(x^2 + x - 20)$, $15(x^2 - 3x - 4)$ and $20(x^2 + 2x + 1)$ is _____

(a)
$$5(x-4)$$
 (b) 5 (c) $5(x+1)$ (d) $5(x+1)(x-1)$

44) How many times 5 bells ring together in 1 hour if they start together and ring at intervals of 2, 3, 4, 5 and,6 sec respectively?

45) GCD of
$$x^2 - \frac{1}{x^2}$$
, $x^2 - 2 + \frac{1}{x^2}$ and $x^3 - \frac{1}{x^3} - 3x - \frac{3}{x}$ is

(a)
$$x^2 - \frac{1}{x^2}$$
 (b) $\left(x - \frac{1}{x}\right)^3 \left(x + \frac{1}{x}\right)$ (c) $x - \frac{1}{x}$ (d) $\left(x - \frac{1}{x}\right)^2$ (e) $\left(x - \frac{1}{x}\right)^2$ (for $x - \frac{1}{x}$ (d) $\left(x - \frac{1}{x}\right)^2$ (e) $\left(x - \frac{1}{x}\right)^2$ (for $x - \frac{1}{x}$ (e) $\left(x - \frac{1}{x}\right)^2$ (for $x - \frac{1}{x}$ (for $x - \frac{1}{x}$) (for x

(a)
$$36xy^2z^2$$

(b)
$$36x^2y^2z^2$$

(a)
$$36xy^2z^2$$
 (b) $36x^2y^2z$ (c) $36x^2y^2z^2$ (d) $3x^2y^2$

(d)
$$3x^2y$$

47) If the GCD and LCM of two expressions are x + 2 and $(x + 2)^2$ (x - 2) respectively, then the two expressions are _____

(a)
$$(x + 2), (x - 2)$$

(a)
$$(x + 2),(x - 2)$$
 (b) $(x + 2)^2, (x^2 - 4)$ (c) $(x + 2),(x^2 - 4)$ (d) $(x + 2)^2,(x - 2)$

(c)
$$(x + 2), (x^2 - 4)$$

(d)
$$(x + 2)^2$$
, $(x - 2)^2$

48) The GCD of $x^2 + 3x + 2$ and $x^3 + 9x^2 + 23x + 15$ is

(a)
$$(x + 1)$$

(b)
$$(x + 2)$$

(a)
$$(x + 1)$$
 (b) $(x + 2)$ (c) $(x + 1)(x + 2)$ (d) $(x + 1)(x - 1)$

(d)
$$(x + 1)(x - 1)$$

49) The biggest length of 4 tape that can be used for measuring both of lengths 3m, 5m, 10m and 90m is ______

50) The LCM of two numbers is a + b and the GCD is k (a - b). If one of the numbers is k, the other number is _____

(a)
$$\frac{ka}{1}$$

(c)
$$a^2 - h^2$$

(b) kab **(c)**
$$a^2 - b^2$$
 (d) $\frac{ka+b}{ka-b}$

51) The GCD and LCM of a and b are 27 and 2079 respectively. If a is divided by 9, the quotient is 21. Then b is ____

52) The LCM of $8x^4y^2z^3$, $10xy^3z^5$ and $12x^2y^2z^4$ is

(a)
$$120x^2y^2z$$

(b)
$$120x^4y^3$$

(c)
$$2xy^2z$$

(a)
$$120x^2y^2z^2$$
 (b) $120x^4y^3z^5$ (c) $2xy^2z^3$ (d) $120x^3y^3z^5$

53) The LCM of $x^2-3ax+2a^2, x^2-4ax+4a^2$ and $x^2-ax-2a^2$ is

(a)
$$(x-2a)^2(x^2-a^2)$$

(b)
$$(x-a)^2(x-2a)^2$$

(a)
$$(x-2a)^2(x^2-a^2)$$
 (b) $(x-a)^2(x-2a)$ (c) $(x-a)(x-2a)(x-3a)$ (d) $(x-2a)^3$

d)
$$(x-2a)$$

54) If a and b are two positive integers where a > 0 b is a factor of a, then HCF of a and b is

(a) **b** (b) a (c) 3ab (d)
$$\frac{a}{b}$$

(d)
$$\frac{a}{b}$$

55) If (x - 6) is the HCF of $x^2-2x-24$ and x^2-kx-6 then the value of k is

56) Simplified form of $\frac{x^3-3x^2}{9x^2-x^4}$ is _____

(a)
$$\frac{1}{1}$$

(a)
$$\frac{1}{x+3}$$
 (b) $-\frac{1}{x+3}$ (c) $\frac{1}{3(x+1)}$ (d) $\frac{1}{3(x-1)}$

(c)
$$\frac{1}{3(x+1)}$$

(d)
$$\frac{1}{3(x)}$$

57) Simplest form of $\frac{a^2-b^2}{a^2-3ab+2b^2}$ is _____

(a)
$$\frac{(a+b)^2}{a^2}$$

(b)
$$\frac{a+b}{a+b}$$

(a)
$$\frac{(a+b)^2}{a-2b}$$
 (b) $\frac{a+b}{a-2b}$ (c) $\frac{a-b}{a-2b}$ (d) $\frac{a+b}{a+2b}$

58) Simplest form of $\frac{1}{(x+1)(x+2)} + \frac{1}{(x+2)(x+3)} + \frac{1}{(x+3)(x+1)}$ is

(a)
$$\frac{1}{(x+1)(x+3)}$$

$$\overline{x+3)}$$

c)
$$\frac{3}{(x+2)(x+3)}$$

(a)
$$\frac{1}{(x+1)(x+3)}$$
 (b) $\frac{2}{(x+1)(x+3)}$ (c) $\frac{3}{(x+2)(x+3)}$ (d) $\frac{3}{(x+1)(x+3)}$

$$(x+1)(x+1)$$

$$\bigcirc (x+1)(x+1)$$

(c)
$$\frac{3}{(x+2)(x+3)}$$

(d)
$$\frac{3}{(x+1)(x+3)}$$

⁵⁹⁾ If $x=2\left(t+\frac{1}{t}\right)$ and $y=3\left(t-\frac{1}{t}\right)$ and then $\frac{x^2}{4}-\frac{y^2}{9}$ is ______

60) Simplified form of $\frac{p+p^2+p^3+p^4+p^5+p^6+p^7}{p^{-3}+p^{-4}+p^{-5}+p^{-6}+p^{-7}+p^{-8}+p^{-9}}$

(a)
$$P^{10}$$
 (b) P^{-10} (c) P^{9} (d) P^{-9}

61) Simplest form of
$$\frac{x^7 + 2x^6 + x^5}{x^3(x+1)^8}$$
 is

(a)
$$\frac{x^2}{(x^6+1)}$$
 (b) $\frac{x^2}{(x+1)^6}$ (c) $\frac{x^3}{x+1}$ (d) $\frac{x^4}{x+2}$

(c)
$$\frac{x^3}{1}$$

(d)
$$\frac{x^4}{x+2}$$

62) $\frac{x^2-5x-14}{x^2-3x+2} \times \frac{x^2-4}{x^2-14x+49} =$

$$(x+2)$$

(b)
$$\frac{(x+2)^{2}}{x^{2}}$$

(a)
$$\frac{x+2}{x+7}$$
 (b) $\frac{(x+2)^2}{x-7}$ (c) $\frac{(x+2)^2}{(x-1)(x-7)}$ (d) $\frac{x-2}{(x-1)(x-7)}$

(d)
$$\frac{x-2}{(x-1)(x-1)}$$

63) $\frac{m^2-9}{m^2+5m+6} \div \frac{3-m}{m+2} = ?$

(a) 1 (b) 3 (c) -3 (d) -1

64) Simplify
$$\frac{\left(y^2+5y+4\right)}{\left(\frac{y^2-1}{y+5}\right)}$$

(a) $\frac{y-1}{y-4}$ (b) $\frac{y+5}{y-1}$ (c) $\frac{(y+4)(y+3)}{y-1}$ www. Padasakan Net

65)
$$\frac{x^2}{x+3} + \frac{11x+24}{x+3} =$$

(a)
$$x + 8$$
 (b) $x - 8$ (c) $8 - x$ (d) $x + 3$

66) on dividing $\frac{x^2-25}{x+3}$ by $\frac{x+5}{x^2-9}$ is equal to

(a)
$$(x - 5)(x - 3)$$
 (b) $(x - 5)(x + 3)$ (c) $(x + 5)(x - 3)$ (d) $(x + 5)(x + 3)$

67) What is the result in simplest form when $\frac{4x-5}{x^2-64}$ is subtracted from $\frac{5x+3}{x^2-64}$

(a)
$$x - 8$$
 (b) $(x - 8)^{-1}$ (c) $(x - 8)^{-2}$ (d) $(x - 8)^{-3}$

68) Excluded values of $\frac{2x+1}{x^2-x-6}$ are

69) Excluded values of $\frac{4x-2}{2x^2+x-1}$ is / are

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{3}$ (c) $-\frac{1}{2}$ (d) -1

70) The excluded value of the rational expression $\frac{x^3+8}{x^2-2x-8}$

71) If a + b + c = 0, then the value of $\frac{(a+b)^2}{ab} + \frac{(b+c)^2}{bc} + \frac{(c+a)^2}{ca}$ is ______

72) Number of methods to find square root of an algebraic expression are ______

73) The square root of (x + 1) (x + 2)(x + 3) + 1 is _____

(a)
$$x^2 + 2x + 3$$
 (b) $x^2 + 5x + 5$ (c) $x^2 + 3x + 2$ (d) $x^2 + 2x + 1$

74) If the polynomial $16x^4$ - $24x^3$ + $41x^2$ - mx + 16 be a perfect square, then the value of 'm' is _____

75)
$$\sqrt{\frac{x^{-7}y^{14}}{x^{14}y^{-28}}} \div \sqrt{\frac{x^{-15}y^{25}}{x^{10}y^{-15}}}$$

(a)
$$\sqrt{x^3y^5}$$
 (b) xy **(c)** x^2y (d) xy^2

76)
$$\sqrt{(4a^2)(6b^2)(3a^2b^2)} =$$

(a)
$$a^2b^2$$
 (b) $6\sqrt{2}a^2b^2$ (c) $72a^4b^4$ (d) a^4b^4

77) Which of the following is a quadratic equation?

(a)
$$x^{1/2} + 2x + 3 = 0$$
 (b) $(x - 1)(x + 4) = x^2 + 1$ (c) $x^2 - 3x + 5 = 0$ (d) $(2x + 1)(3x - 4) = 6x^2 + 3$

78) The quadratic equation whose roots are $2+\sqrt{2}$ and $2-\sqrt{2}$ is ______

(a)
$$x^2-4x+2=0$$
 (b) $x^2-2x+2=0$ (c) $x^2+2x-4=0$ (d) $x^2-2x+4=0$

79) The Quadratic equation whose roots $\frac{p}{q}$, $\frac{-q}{p}$ is _____

(a)
$$qx^2 - (q^2 + p^2)x - pq = 0$$
 (b) $pqx^2 - (p^2 - q^2)x - pq = 0$ (c) $px^2 - (p^2 + 1)x + p = 0$

(d)
$$p^2x^2 - (p^2 - q^2)x - pq = 0$$

80) If $ax^2 + bx + c$ is a perfect square, then $b^2 =$

(a) 2ac (b) ac (c) 4ac (d)
$$\sqrt{2ac}$$

81) One root of $\mathrm{px}^2+q\mathrm{x}+\mathrm{r}=0$ is r then the second root is _____

(a) p (b) q (c)
$$\frac{1}{q}$$
 (d) $\frac{1}{p}$

82) The condition for $px^2 + qx + r = 0$ to be a pure quadratic equation is then the second root is _____

(a)
$$p = 0$$
 (b) $q = 0$ (c) $r = 0$ (d) $p = q = 0$

83) Common root of $x^2 + x - 6 = 0$ and $x^2 + 3x - 10 = 0$ is kindly send me your key Answers to our email id - padasalai.net@gmail.com

84) Ratio of the sum of the roots of x^2 -9x + 18 = 0 to the product of the roots is _____

85) If the discriminant of $3x^2 - 14x + k = 0$ is 100, then k =_____

86) The roots of the equation $4x^2 - 2x + 8 = 0$ are

87) The roots of the equation $(x - a) (x - b) = b^2$ are _____

88) The Discriminant of
$$\sqrt{x^2+x+1}=2$$
 is _____

89) If a and b are the roots of the equation x^2 - 6x+ 6 = 0, then the value of a^2 + b^2 is _____

90) Ajay and Vijay Solved an equatioa. In solving it Ajay made a mistake in the constant term only and got the roots as 8 and 2, while Vijay made a mistake in the coefficient of x only and obtained the roots as - 9 and - 1. The correct roots of the equation are ______

91) The roots of the equation $x^2 + kx + 12 = 0$ will differ by unity only when _____

(a)
$$k=\pm\sqrt{12}$$
 (b) $k=\pm\sqrt{48}$ (c) $k=\pm\sqrt{47}$ (d) $k=\pm\sqrt{49}$

92) If the sum of the squares of two consecutive even numbers is 100, then the numbers are ______

93) What is the smallest integral value of k such that $2x (kx - 4) - x^2 + 6 = 0$ has no real roots?

94) If lpha and eta are the roots of $ax^2+2bx+c=0$ then $\sqrt{rac{lpha}{eta}}+\sqrt{rac{eta}{lpha}}=$

(a)
$$\frac{2b}{ac}$$
 (b) $\frac{2b}{\sqrt{ac}}$ (c) $\frac{-2b}{\sqrt{ac}}$ (d) $\frac{-b}{\sqrt{ac}}$

95) If α, β are the roots of the equation x^2+k x+12=0, such that $\alpha-\beta=1$, then the value of k______

(a) 0 (b)
$$\pm 5$$
 (c) ± 1 (d) ± 7

96) If α and β are the roots of the equation $ax^2 + bx + c = 0$, identify the quadratic equation whose roots are $\alpha + \beta$ and $\alpha\beta$

(a)
$$a^2x^2 + a(b-c)x + bc = 0$$
 (b) $a^2x^2 + a(b-c)x - bc = 0$ (c) $ax^2 + (b+c)x + bc = 0$ (d) $ax^2 - (b+c)x - bc = 0$

97) The order of the matrix A is 3 x 5 and that of B is 2 x 3. The order of the matrix BA is _____

(a)
$$2 \times 3$$
 (b) 3×2 (c) 2×5 (d) 5×2

Positive Section 1989 For the given matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$ the order of the matrix $\left(\mathbf{A}^{\mathrm{T}}\right)^{\mathrm{T}}$ is

(a)
$$2 \times 3$$
 (b) 3×2 (c) 3×4 (d) 4×3

99) If $\mathbf{A} \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $\mathbf{k} \mathbf{A} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then the values of \mathbf{k} , a, \mathbf{b} are respectively

100) If m[3-4] + n[4-3] = then find 3m + 7n

101) If
$$\mathbf{A} = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$$
 and $\mathbf{A}^2 = \mathbf{I}$, then $\mathbf{x} =$

(a)
$$\begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & -4 \\ 10 & 6 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 4 \\ -10 & 6 \end{bmatrix}$ (d) None of these

$$\text{If } \mathbf{U} = \begin{bmatrix} 2 & -3 & 4 \end{bmatrix}, V = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, X = \begin{bmatrix} 0 & 2 & 3 \end{bmatrix} \text{ and } \mathbf{Y} = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}, \text{ then } \mathbf{U}\mathbf{V} + \mathbf{X}\mathbf{Y} =$$

104) If
$$\mathbf{A} \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix}$$
 and $\mathbf{A}^2 = \mathbf{k}\mathbf{A}$, then $\mathbf{k} =$

$$^{105)} \ \text{If} \ \mathbf{A} + \mathbf{B} = \begin{bmatrix} 10 & 8 \\ 8 & 4 \end{bmatrix} \ \text{and} \ \mathbf{A} - \mathbf{B} = \begin{bmatrix} 2 & -4 \\ 0 & 6 \end{bmatrix}, \ \text{then} \ \mathbf{A} =$$

(a)
$$\begin{bmatrix} 6 & 2 \\ 4 & 5 \end{bmatrix}$$
 (b) $\begin{bmatrix} 6 & 2 \\ 4 & 6 \end{bmatrix}$ (c) $\begin{bmatrix} 4 & 6 \\ 4 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}$

106) If
$$\mathbf{A} = \begin{bmatrix} 5 & x \\ y & 6 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} -4 & y \\ -4 & -5 \end{bmatrix}$ and $\mathbf{A} + \mathbf{B} = \mathbf{I}$, then the values of x and y respectively are

107) Number of matrices obtained with 36 elements is

108) If
$$\mathbf{A} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $\mathrm{f}(\mathbf{x}) = \mathrm{x}^2 - 5\mathbf{x} + 4\mathbf{I}$, then $\mathrm{f}(\mathbf{A}) =$

(a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix}$

109) If order of A,B,C are 3×4 , 5×4 and 5×8 , then the order of (AB^TC) is

$$^{110)}$$
 Given $\mathbf{A}=\left[egin{array}{cc} -1 & 0 \ 0 & 2 \end{array}
ight], ext{ then } \mathbf{A}^3-\mathbf{A}^2=$

111) If
$$AB = A$$
, $BA = B$ then $A^2 + B^2 =$

112) The concept of three Variables is used in ____

(a) Computer Coding System (b) Geo-positioning system (c) Binary Calculation System (d) Programe processing system

113) If $ax^2 + bx + c = 0$ has equal roots, then C is equal _____.

(a)
$$\frac{b^2}{2a}$$
 (b) $\frac{b^2}{4a}$ (c) $\frac{-b^2}{2a}$ (d) $\frac{-b^2}{4a}$

114) The first theorem in Mathematics is _____

115) If triangle PQR is similar to triangle LMN such that 4PQ = LM and QR = 6 cm then MN is equal to ______

116) I the given figure DE | | AC which of the following is true.

(a)
$$x=rac{ay}{b+a}$$
 (b) $x=rac{a+b}{ay}$ (c) $x=rac{ay}{b-a}$ (d) $rac{x}{y}=rac{a}{b}$

117) S and T are points on sides PQ and PR respectively of ΔPQR If PS = 3cm, AQ = 6 cm, PT = 5 cm, and TR = 10 cm and then QR

118) In the given figure DE \mid BC:BD = x - 3, BA = 2x,CE = x- 2, and AC = 2x + 3, Find the value of x.

119) The ratio of the areas of two similar triangles is requal to www.Trb Tnpsc.com
(a) The ratio of their corresponding sides (b) The cube of the ratio of theri corresponding sides
(c) The ratio of theri corresponding attitudes (d) The square of the ratio of their corresponding sides
120) If ABC is a triangle and AD bisects A, AB = 4cm, BD = 6cm, DC = 8cm then the value of AC is
(a) $\frac{16}{3}cm$ (b) $\frac{32}{3}cm$ (c) $\frac{3}{16}cm$ (d) $\frac{1}{2}cm$
121) In a triangle, the internal bisector of an angle bisects the opposite side. Find the nature of the triangle.
(a) right angle (b) equilateral (c) scalene (d) isosceles
122) The height of an equilateral triangle of side a is
(a) $\frac{a}{2}cm$ (b) $\sqrt{3a}$ (c) $\frac{\sqrt{3}}{2}a$ (d) $\frac{\sqrt{3}}{4}a$
123) The perimeter of a right triangle is 36 cm. Its hypotenuse is 15 cm, then the area of the traiangle is
(a) 108 cm ² (b) 54 cm² (c) 27 cm ² (d) 216 cm ²
124) A line which intersects a circle at two distinct points ic called
(a) Point of contact (b) sccant (c) diameter (d) tangent
125) If the angle between two radio of a circle is °, the angle between the tangents at the end of the radii is
(a) 50° (b) 90° (c) 40° (d) 70°
126) In figure $\angle OAB = 60^o$ and OA = 6cm then radius of the circle is
(a) $\frac{3}{2}\sqrt{3}cm$ (b) 2 cm (c) $3\sqrt{3}cm$ (d) $2\sqrt{3}cm$
127) Two concentric circles if radii a and b where a > b are given. The length of the chord of the circle which touches the smaller circle is
(a) $\sqrt{a^2-b^2}$ (b) $\sqrt{a^2-b^2}$ (c) $\sqrt{a^2+b^2}$ (d) $2\sqrt{a^2+b^2}$
128) Three circles are drawn with the vertices of a triangle as centres such that each circle touches the other two if the sides of the triang
are 2cm,3cm and 4 cm. find the diameter of the smallest circle.
(a) 1 cm (b) 3 cm (c) 5 cm (d) 4 cm
129) In the given figure if OC = 9 cm and OB = 15 cm then OB + BD is equal to
(a) 23 cm (b) 24 cm (c) 27 cm (d) 30 cm
130) Sides of two similar triangle are in the ratio 4:9. Areas of these triangles are in the ratio
(a) 2:3 (b) 4:9 (c) 81:16 (d) 16:81
131) The areas of two similar triangles are respectively 9 cm ² and 16 cm ² . The ratio the of their corresponding sides is
(a) 3:4 (b) 4:3 (c) 2:3 (d) 4:5
132) If $\triangle ABC$ and $\triangle DEF$ are similar such that 2AB = DE and BC = 8 cm and EF =
(a) 16 cm (b) 12 cm (c) 8 cm (d) 4 cm
133) Δ ABC is such that AB = 3 cm, BC = 2 cm and CA = 2.5 cm. If $\triangle DEF - \triangle ABC$ and EF = 4 cm then perimeter of Δ DEF
is
(a) 7.5 cm (b) 15 cm (c) 22.5 cm (d) 30 cm
134) If $\triangle ABC$ and $\triangle DEF$ are similar triangles such that $\angle A=47^\circ$ and $\angle B=83^\circ$, then $\angle F=$
(a) 50° (b) 60° (c) 70° (d) 80°
135) XY is drawn parallel to the base BC of a Δ ABC cutting AB at x and AC at y. If AB = 4 BX and YC = 2 cm and then AY =
(a) 2 cm (b) 4 cm (c) 8 cm (d) 6 cm
136) In Δ ABC, a line XY parallel to BC at AB at X and AC at Y. If BY bisects \angle XYC, t hen
(a) BC = CY (b) BC = BY (c) BC \neq CY (d) BC \neq BY
137) In Δ ABC , D and E are points on side AB and AC respectively such that DE II BC and AD : DB = 3 : 1. If EA = 3.3cm then AC = kindly send me your key Answers to our email id - padasalai.net@gmail.com

138) In $\triangle ABC$ and $\angle A=\angle E=40^\circ$, AB : ED = AC : EF and $\angle F=65^\circ$, then $\angle B=$ ______

- (a) 35° (b) 65° (c) 75° (d) 85°
- 139) Find the value of x for which DE ll AB is _____

- (a) 4 (b) 1 (c) 2 (d) 3
- 140) In an equilateral triangle $\triangle ABC$, if $AD \perp BC$ them
- (a) $2\mathrm{AB}^2=3\mathrm{AD}^2$ (b) $4\mathrm{AB}^2=3\mathrm{AD}^2$ (c) $3\mathrm{AB}^2=4\mathrm{AD}^2$ (d) $3\mathrm{AB}^2=2\mathrm{AD}^2$
- 141) The length of the hypotenuse of an isosceles right triangle whose one side is $4\sqrt{2}$ cm is
- (a) 12 cm (b) 8 cm (c) $8\sqrt{2}$ cm (d) $12\sqrt{2}$ cm
- 142) A man goes 24 m due west and then 7 m due north. How are is he from the starting point?
- (a) 31 m (b) 17 m (c) 25 m (d) 26 m
- 143) If an isosceles triangle $\triangle ABC$ if AC = BC and $AB^2 = 2AC^2$, then $\angle C =$ _____
- (a) 30° (b) 45° (c) 90° (d) 60°
- 144) Δ ABC is an isosceles triangle in with $\angle C=90^{o}$,If AC = 6cm, then AB = _____
- (a) $6\sqrt{2}$ cm (b) 6 cm (c) $2\sqrt{6}$ cm (d) $4\sqrt{2}$
- 145) If TP and TQ are two tangents to a circle with centre ' O ' so that $\angle POQ = 110^{\circ}$, then $\angle PTQ$ is
- (a) 60° **(b) 70^{\circ}** (c) 80° (d) 90°
- 146) The length of the tangent drawn from a point 8 cm away from the centre of a circle of radius 6cm is_____
- (a) $\sqrt{7}$ cm (b) $2\sqrt{7}$ cm (c) 10 cm (d) 5 cm
- 147) PQ is a tangent to a circle with center 'O' at the point R if Δ OPQ is an isosceles triangle, then \angle OQP is ______
- (a) 30° **(b) 45°** (c) 60° (d) 90°
- 148) A tangent PQ at a point p of circle of radius 5 cm meats a line through the center 'O', at a point e such that OQ = 12 cm, Length PQ is
- (a) 12 cm (b) 13 cm (c) 8.5 cm (d) $\sqrt{119}$ cm
- 149) If triangle PQR is similar to LMN such that 4PQ = LM and QR = 6 cm, then MN is equal to _____
- (a) 12 cm (b) 24 cm (c) 10 cm (d) 36 cm
- 150) From a point Q, the length of the tangent to a circle is 24 cm and the distance of a Q from, the center is 25 cm. The radius of the circle is ______
- (a) 7 cm (b) 12 cm (c) 15 cm (d) 24.5 cm
- 151) S and T are points on sides PQ and PR respectively of PQR. If PS = 3 cm, SQ = 6 cm, PT = 5 cm and TR = 10 cm, then QR

- (a) 4ST (b) 5ST (c) 3ST (d) 3QR
- 152) The ratio of the areas of two similar triangles is equal to _____
- (a) The ratio of their corresponding sides (b) The cube of the ratio of their corresponding sides
- (c) The ratio of their corresponding altitudes (d) The square of the ratio of their corresponding sides
- 153) If ABC is a triangle and AD bisects _____
- (a) $\frac{16}{3}$ cm (b) $\frac{32}{3}$ cm (c) $\frac{3}{16}$ cm (d) $\frac{1}{2}$ cm
- 154) In a triangle, the internal bisector of an angle bisects the opposite side. Find the nature of the triangle.
- (a) right angle (b) equilateral (c) scalene (d) isosceles kindly send me your key Answers to our email id padasalai.net@gmail.com

155) The height of an equilateral triangle whose side and the side an

(a) $\frac{a}{2}$ (b) $\sqrt{2}a$ (c) $\frac{\sqrt{3}}{2}a$ (d) $\frac{\sqrt{3}}{4}a$

156) The perimeter of a right triangle is 40 cm. Its hypotenuse is 15 cm, then the area of the triangle is ______

(a) 100 cm^2 (b) 200 cm^2 (c) 160 cm^2 (d) 225 cm^2

157) A line which intersects a circle at two distinct points is called ______

(a) point of contact (b) secant (c) diameter (d) tangent

158) If the angle between two radii of a circle is 130°, then the angle between the tangents at the end of the radii is ______

(a) **50°** (b) 90° (c) 40° (d) 70°

159) Two concentric circles of radii a and b where a > b are given. The length of the chord of the larger circle which touches the smaller circle is ______

(a) $\sqrt{a^2-b^2}$ **(b)** $2\sqrt{a^2-b^2}$ (c) $\sqrt{a^2+b^2}$ (d) $2\sqrt{a^2+b^2}$

160) Three circles are drawn with the vertices of a triangle as centres such that each circle touches the other two if the sides of the triangle are 2 cm, 3 cm and 4 cm, find the diameter of the smallest circle.

(a) 1 cm (b) 3 cm (c) 5 cm (d) 4 cm

161) _____ is a cevian that divides the angle, into two equal halves.

(a) parallel line (b) perpendicular line (c) angular bisector (d) perpendicular bisector