www.Trb Tnpsc.com

ISLAMIAH MAT HR SEC SCHOOL, KILAKARAI, RAMANATHAPURAM DT.

XI COMMON PUBLIC EXAMINATION, MARCH -2024 (18-03-2024)

Question type A

TENTATIVE ANSWER KEY

SUB: BOTANY

MARKS: 70

		MADIZO	
Q.NO	CONTENT	MARKS	MODE OF
			QUESTION
	PART -I		BOOK BACK /
			BOOK INSIDE /
I.	CHOOSE THE CORRECT ANSWER	15 X 1 =15	CREATIVE
1	c) Glycocalyx	1	BOOK INSIDE
2	b) Cuticular	1	BOOK INSIDE
3	a) 202 Families	1	BOOK INSIDE
4	a) Acetyl CoA	1	BOOK BACK
5	c) Copper	1	BOOK INSIDE
6	d) Pachytene	1	BOOK BACK
7	d) C ₄ plants	1	BOOK INSIDE
8	d) Chloroplast	1	BOOK INSIDE
9	d) Foliar bud, cauline bud	1	BOOK BACK
10	c) B	1	BOOK INSIDE
11	b) Mixed inflorescence	1	BOOK INSIDE
12	b) Cucurbitaceae	1	BOOK INSIDE
13	b) Pea, Barley, Oats	1	BOOK INSIDE
14	a) Floridean starch	1	BOOK INSIDE
15	c) Duramen	1	BOOK BACK

ISLAMkahdlyAsentR becybuttooy Answers to MATetabil to Spatasettii, notted gmail&66030431

Q.NO		MARKS	MODE OF QUESTION
II.	PART -II ANSWER ANY SIX OF THE FOLLOWING QUESTION NUMBER 24 IS COMPULSORY	6 X 2 = 12	BOOK BACK / BOOK INSIDE/ CREATIVE
16	<u>Apical dominance</u> Suppression of growth in lateral bud by apical bud due to auxin produced by apical bud is termed as apical dominance.	2	BOOK INSIDE
17	<u>4 types of ascocarps</u> Cleistothecium (Completely closed), Perithecium (Flask shaped with ostiole), Apothecium (Cup shaped, open type) and Pseudothecium	2	BOOK INSIDE
18	The vessels of angiosperms are larger in size In the spring season, cambium is very active and produces a large number of xylary elements having vessels/tracheids with wide lumen. The wood formed during this season is called spring wood or early wood	2	BOOK BACK
19	<u>Nucule</u> In Chara the female sex organ is called Oogonium or Nucule	2	BOOK BACK
20	Mineral deficiency Plant A Molybdenum (or) Mo Deficiency Plant B Zinc (or) Zn Deficiency	2	BOOK BACK
21	Solanaceae food plants (Any 2 plants) Solanum tuberosum Lycopersicon esculentum Solanum melongena Capsicum annuum Capsicum frutescens Physalis peruviana	2	BOOK INSIDE
22	Overall process of respiration $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + Energy$ (686 K cal or 2868 KJ)	2	BOOK INSIDE
23	Parameters which control water potential(i) Solute concentration or Solute potential (Ψs)(ii) Pressure potential (Ψ p)	2	BOOK BACK
24	Mangrove plant respiration They have a large number of breathing pores or pneumatophores for exchange of gases	2	BOOK INSIDE

www.Trb Tnpsc.com

Q.NO	CO	NTENT	MARKS	MODE OF QUESTION
	PA	RT -III		
	ANSWER ANY SIX C	F THE FOLLOWING	6 X 3 = 18	BOOK BACK /
III.	QUESTION NUMBER 3		BOOK INSIDE	
				CREATIVE
25	Importance of Studying	<u>Growth Rings</u>	3	BOOK INSIDE
	• Age of wood can be calc		X	
	• The quality of timber car			
	Radio-Carbon dating can	n be verified.		O
	• Past climate and archaec	logical dating can be made		
	Provides evidence in for	ensic investigation.		r
26	Root climbers differ from	n Stem climber	3	BOOK BACK
	root climbers	stem climber		
	Plants climbing with the	Stem part of the plant co		
	help of adventitious	round a support		
	roots arising	for climbing.		
	from nodes are called			
	Root climbers.			
	Eg. Piper nigrum	Eg: Ipomoea.		
27	Structure of chloroplast	Inyiakoia memorane Ihylakoid lumen	3	BOOK INSIDE
	drop of lipids stroma	thylakoid granum stroma lamella		
	starch granule	inner membrane		
	ribosome	intermembrane space outer membrane		
28	Starch sugar interconver	rsion theory	3	BOOK BACK
	The discovery of enzyme			
	cells by Hanes (1940) grea			
	starch-sugar interconversi			
	phosphorylase hydrolyses			
	pH followed by endosmos			
	stomata during light. The			
	during the night.			

ISLAMkahdlyAsentrosety Answers to MATeraail to spattasettii, notted gmailaefin 30431

	Starch +	PO Phosphorylase - Hydrolyses PO Phosphorylase - Synthesis PH 5 C	cose - 1- Phosphate		
29	Human disease by Bacteria			3	BOOK INSID
	S.No	Name of the disease	Name of the pathogen		
	1.	Cholera	Vibrio cholerae		
	2.	Typhoid	Salmonella typhi		
	3.	Tuberculosis	Mycobacterium tuberculosi		
	4.	Leprosy	Mycobacterium leprae		7,
	5.	Pneumonia	Diplococcus pneumoniae		
	6.	Plague	Yersinia pestis		
	7.	Diphtheria	Corynebacterium diptheria		
	8.	Tetanus	Clostridium tetani		
	9.	Food poisoning	Clostridium botulinum		
	10.	Syphilis	Treponema pallidum		
30	Respin	ration Quotient and The ratio of volum given out and volu	malic acid ne of carbon dioxide ne of oxygen taken in	3	BOOK INSID
30	RQ = 1 (i) RQ = 1 (ii) RQ of	ration Quotient andThe ratio of volumgiven out and voluduring respirationQuotient or RespirQuotient or RespirQuotient or RespirVolume of CO2 liberaVolume of O2 consurtWhen respiratory sacid the value of Runity.(or)malic acid = 4 molect3 mole= 1.33 (malic acidmalic acidne of carbon dioxideume of oxygen taken inis called Respiratorycatory ratio(or)atednedsubstrate is an organicQ will be more thanules of CO_2 cules of O2more than unity)	3	BOOK INSID
30	RQ = (ii) RQ of Wood	ration Quotient andThe ratio of volumgiven out and voluduring respirationQuotient or RespirationQuotient or RespirationQuotient or RespirationWolume of CO2 liberaVolume of CO2 liberaVolume of O2 consurWhen respiratory sacid the value of Runity.(or)malic acid = 4 molect 3 mole= 1.33 (colspan="2">C	malic acidmalic acidne of carbon dioxideune of oxygen taken inis called Respiratoryratory ratio(or)atednedsubstrate is an organicQ will be more thanules of CO_2 cules of O2more than unity)	3	BOOK INSID
30	RQ = (i) RQ = (ii) RQ of <u>Wood</u> Xylem The se	ration Quotient andThe ratio of volumgiven out and voluduring respirationQuotient or RespirationQuotient or RespirationQuotient or RespirationQuotient or RespirationQuotient or RespirationQuotient or RespiratoryWolume of CO2 liberaVolume of O2 consurWhen respiratory acid the value of R unity.(or)malic acid = 4 molect 3 mole = 1.33 (A derived from the Gk condary xylem also c	malic acidmalic acidne of carbon dioxideune of oxygen taken inis called Respiratorycatory ratio(or)atednedsubstrate is an organicQ will be more thanules of CO2coules of O2more than unity). Xylos – woodalled wood.	3	BOOK INSID
30 31 32	Respin (i)RQ =(ii)RQ ofWood Xylem The seThree 1. Carl 2. Dot	ration Quotient and The ratio of volum given out and volu- during respiration Quotient or Respiration Quotient or Respiratory Volume of O2 consur When respiratory a acid the value of R unity. (or) malic acid = $\frac{4 \text{ molecr}}{3 \text{ mole}}$ = 1.33 (derived from the Gk condary xylem also c phase of Dark react poxylation (fixation) unition (Church trip P	malic acid ne of carbon dioxide ime of oxygen taken in is called Respiratory catory ratio (or) ated ned substrate is an organic Q will be more than ules of CO ₂ ecules of O2 more than unity) . Xylos – wood alled wood. ion	3	BOOK INSID

ISLAMIAndilyAsentrosety Answers 14 MATerali, 14. Spadasettii, notke gmail&65030431

	www.Padasalai.Net www.T	Trb Tnpsc.cor	n
33	 <u>living Characters of Virus (Any 3 point)</u> Presence of nucleic acid and protein. Capable of mutation Ability to multiply within living cells. Able to infect and cause diseases in living beings. Show irritability. Host –specific 	3	BOOK INSIDE
Q.NO	CONTENT	MARKS	MODE OF QUESTION
	PART –IV	5 X 5 = 25	
IV.	ANSWER ALL THE QUESTION		BOOK BACK / BOOK INSIDE/ CREATIVE
34 (a)	Physiological effect of Cytokinins	5	BOOK BACK
	(Any 5 points)		
	• Cytokinin promotes cell division in the presence		
	• Induces cell enlargement associated with IAA and		
	gibberellins		
	• Cytokinin can break the dormancy of certain		
	light-sensitive		
	soads like tobacco and induces soad cormination		
	seeds like tobacco and induces seed germination.Cytokinin promotes the growth of lateral bud in		

• Application of cytokinin delays the process of Aging by nutrient mobilization. It is known

Richmond Lang effect.
Cytokinin

(i) increases rate protein synthesis
(ii) induces the formation of inter-fascicular
cambium
(iii) overcomes apical dominance
(iv) induces formation of new leaves, chloroplast
and lateral shoots.

(v)Plants accumulate solutes very actively with help of cytokinins.

ISLAMkahdly Asentr becysuhd wey Answers to MATeraali, to Spatta et al. Spatta et al. 1993

www.Trb Tnpsc.com

ISLAMkahtilyAsentrosecysuit Choty Answers to MATetabil to Spattashii, notted gmailasofia 30431

	www.Padasalai	.Net	www.7	Frb Tnpsc.co r	n
	Harding the placentae along the margin of a unicarpellate ovary. Example:Fabaceae.	n n n n n n n n n n n n n n	h ind	Trb Tnpsc.cor	n
	Free-central It is with the placentae along column in a com over without se Example: Caryophyllaceae Dianthus, Primre	the pound opta.	iry. If old		2
35 (b)	Difference Between Mito	osis and Meiosis		5	BOOK BACK
	One division	Two divisions			
	Number of	Number of			
	chromosomes	chromosomes is			
	remains the same	halved			
	Homologous chromosomes line	Homologous chromosomes line			
	up separately on	up in pairs at the			
	the metaphase	metaphase plate			
	plate				
	Homologous chromosome do	Homologous			
	not pair up	pairup to form			
	Chiasmata do not	Chiasmata form			
	form and crossing	and crossingover			
	over never occurs	occurs			
	Daughter cells	Daughter cells			
	identical	different from the			
		parent cells			
	Two daughter cells	Four daughter cells			
$\mathcal{L}(\mathbf{x})$	are formed	are formed		5	
36 (a)	Structure of DNA		. 10.00	5	BOOK BACK
	Watson and Crick shared the Nobel Prize in 1962				
	for their discovery, along with Maurice Wilkins,				
	who had produced the crystallographic data				
	supporting the model. Rosalind Franklin (1920–				
	1958) had earlier produced the first clear				
	crystallographic evidence for a helical structure.				
	James Watson and Francis Crick (Figure 8.40) of		1		
	Iames Watson and F	Francis Crick (Figure	840 of		
	James Watson and F	Francis Crick (Figure	8.40) of		

www.Trb Tnpsc.com

C ₃ Plants	C ₄ Plants		
1. CO ₂ fixation takes place in mesophyll cells only	1. CO ₂ fixation takes place mesophyll and bundle sheath		
2. CO ₂ acceptor is RUBP only	2. PEP in mesophyll and RUBP in bundle sheath cells		
3. First product is 3C- PGA	3. First product is 4C- OAA		
4. Kranz anatomy is not present	4. Kranz anatomy is present		
5. Granum is present in mesophyll cells	 Granum present in mesophyll cells and absent in bundle sheath 		
6. Normal Chloroplast	6. Dimorphic chloroplast		
7. Optimum temperature 20° to 25°C	7. Optimum temperature 30° to 45°C		7
8. Fixation of CO ₂ at 50 ppm	8. Fixation of CO ₂ even less than 10 ppm		\mathbf{O}
9. Less efficient due to higher photorespiration	9. More efficient due to less photorespiration		
10. RUBP carboxylase enzyme used for fixation	10. PEP carboxylase and RUBP carboxylase used		
11. 18 ATPs used to synthesize one	11. Consumes 30 ATPs to produce one		
glucose	glucose.		
12. Efficient at low CO ₂	12. Efficient at higher CO ₂		
13. Example: Paddy, Wheat, Potato and	13. Example: Sugar cane, Maize, Sorghum,		
so on	Amaranthus and so on		
solid at the base, glabro Leaf: Simple, petiolate, broad, palmately lobed, palmately reticulate dive Inflorescence: Terminal Male Flower Bracteate, flowers (open for one day) towa inflorescence, actinomo Perianth: Tepals 5, apop valvate aestivation. odd	us, hollow, exstipulate, alternat usually 7-9 lobes, serrate, ergent venation. panicle. ebracteolate, pedicellate, ma ards lower portion of the orphic, incomplete. bhyllous, uniseriate, green, tenal posterior in position	e	
<u>Androecium:</u> Stamens n and connate into about 8 phalanges, each stamen globose basifixed.	numerous (upto 1000) crowd 8mm long cluster of stipitate profusely branded, anthers	e	

ISLAMkahtilyasente becysultowey Answers to MATetabil to Spattastici, noted gmailsofia 30431

M.MATHAN., M.Sc., M.Ed., M.Phil., PGT IN BOTANY, ISLAMIAH MAT HR SEC SCHOOL, KILAKARAI, RAMANATHAPURAM DT., 9865330431

- Daily classes by Namakkal Well Experienced Staff
- Two years integrated program for XI and XII NEET.
- We provide online test for both **NEET**.
- Weekly intensive test for **NEET**.
- We teach from basics make you achievers.
- Learn with interest without stress.
- Daily practice test and monthly cumulative test for state board.
- Extra care for slow learners.

kindly send me your key Answers to our email id - padasalai.net@gmail.com