ISLAMIAH MAT HR SEC SCHOOL, KILAKARAI, RAMANATHAPURAM DT.

XI COMMON PUBLIC EXAMINATION, MARCH -2024 (18-03-2024)

Question type A
TENTATIVE ANSWER KEY
SUB: BOTANY

Q.NO	CONTENT	MARKS	MODE OF QUESTION
I.	PART -I CHOOSE THE CORRECT ANSWER	$15 \times 1=15$	BOOK BACK / BOOK INSIDE/ CREATIVE
1	c) Glycocalyx		BOOK INSIDE
2	b) Cuticular	1	BOOK INSIDE
3	a) 202 Families	- 1	BOOK INSIDE
4	a) Acetyl CoA	1	BOOK BACK
5	c) Copper	1	BOOK INSIDE
6	d) Pachytene	1	BOOK BACK
7	d) C_{4} plants	1	BOOK INSIDE
8	d) Chloroplast	1	BOOK INSIDE
9	d) Foliar bud, cauline bud	1	BOOK BACK
10	c) B	1	BOOK INSIDE
11	b) Mixed inflorescence	1	BOOK INSIDE
12	b) Cucurbitaceae	1	BOOK INSIDE
13	b) Pea, Barley, Oats	1	BOOK INSIDE
14	a) Floridean starch	1	BOOK INSIDE
15	c) Duramen	1	BOOK BACK

Q.NO		MARKS	MODE OF QUESTION
II.	PART -III ANSWER ANY SIX OF THE FOLLOWING QUESTION NUMBER 24 IS COMPULSORY	$6 \mathrm{X} 2=12$	BOOK BACK / BOOK INSIDE CREATIVE
16	Apical dominance Suppression of growth in lateral bud by apical bud due to auxin produced by apical bud is termed as apical dominance.	2	BOOK INSIDE
17	4 types of ascocarps Cleistothecium (Completely closed), Perithecium (Flask shaped with ostiole), Apothecium (Cup shaped, open type) and Pseudothecium	2	BOOK INSIDE
18	The vessels of angiosperms are larger in size In the spring season, cambium is very active and produces a large number of xylary elements having vessels/tracheids with wide lumen. The wood formed during this season is called spring wood or early wood		BOOK BACK
19	Nucule In Chara the female sex organ is called Oogonium or Nucule	2	BOOK BACK
20	Mineral deficiency Plant A Molybdenum (or) Mo Deficiency Plant B Zinc (or) Zn Deficiency	2	BOOK BACK
21	Solanaceae food plants (Any 2 plants) Solanum tuberosum Lycopersicon esculentum Solanum melongena Capsicum annuum Capsicum frutescens Physalis peruviana	2	BOOK INSIDE
22	Overall process of respiration $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}+$ Energy (686 K cal or 2868 KJ)	2	BOOK INSIDE
23	Parameters which control water potential (i) Solute concentration or Solute potential (Ψ s) (ii) Pressure potential (Ψ p)	2	BOOK BACK
24	Mangrove plant respiration They have a large number of breathing pores or pneumatophores for exchange of gases	2	BOOK INSIDE

Q.NO	CONTENT	MARKS	MODE OF QUESTION
III.	PART -III ANSWER ANY SIX OF THE FOLLOWING QUESTION NUMBER 33 IS COMPULSORY	$6 \mathrm{X} 3=18$	BOOK BACK / BOOK INSIDE/ CREATIVE
25	Importance of Studying Growth Rings - Age of wood can be calculated. - The quality of timber can be ascertained. - Radio-Carbon dating can be verified. - Past climate and archaeological dating can be made - Provides evidence in forensic investigation.	3	BOOK INSIDE
26	Root climbers differ from Stem climber root climbers stem climber Plants climbing with the help of adventitious roots arising from nodes are called Root climbers. Stem part of the plant co round a support for climbing. Eg. Piper nigrum Eg: Ipomoea.	3	BOOK BACK
27		3	BOOK INSIDE
28	Starch sugar interconversion theory The discovery of enzyme phosphorylase in guard cells by Hanes (1940) greatly supports the starch-sugar interconversion theory. The enzyme phosphorylase hydrolyses starch into sugar and high pH followed by endosmosis and the opening of stomata during light. The vice versa takes place during the night.	3	BOOK BACK

29	Human disease by Bacteria			3	BOOK INSIDE	
	S.No	Name of the disease	Name of the pathogen			
	1.	Cholera	Vibrio cholerae			
	2.	Typhoid	Salmonella typhi			
	3.	Tuberculosis	Mycobacterium tuberculos,			
	4.	Leprosy	Mycobacterium leprae			
	5.	Pneumonia	Diplococcus pneumoniae			
	6.	Plague	Yersinia pestis			
	7.	Diphtheria	Corynebacterium diptheric			
	8.	Tetanus	Clostridium tetani			
	9.	Food poisoning	Clostridium botulinum			
	10	Syphilis	Treponema pallidum			
30	Respiration Quotient and malic acid (i) The ratio of volume of carbon dioxide given out and volume of oxygen taken in during respiration is called Respiratory Quotient or Respiratory ratio (or) $\mathrm{RQ}=$ Volume of CO 2 liberated Volume of O 2 consumed (ii) When respiratory substrate is an organic acid the value of RQ will be more than unity. (or) $\begin{aligned} \mathrm{RQ} \text { of malic acid }= & \frac{4 \text { molecules of } \mathrm{CO}_{2}}{3 \text { molecules of } \mathrm{O} 2} \\ & =1.33 \text { (more than unity) } \end{aligned}$			3	BOOK INSIDE	
31	Wood Xylem derived from the Gk. Xylos - wood The secondary xylem also called wood.				3	BOOK BACK
32	Three phase of Dark reaction 1. Carboxylation (fixation) 2. Reduction (Glycolytic Reversal) 3. Regeneration			3	BOOK INSIDE	

33 living Characters of Virus (Any 3 point)

- Presence of nucleic acid and protein.
- Capable of mutation
- Ability to multiply within living cells.
- Able to infect and cause diseases in living beings.
- Show irritability.
- Host - specific

Q.NO	CONTENT	MARKS	MODE OF QUESTION
IV.	PART -IV ANSWER ALL THE QUESTION	$5 \times 5=25$	BOOK BACK / BOOK INSIDE/ CREATIVE
34 (a)	Physiological effect of Cytokinins (Any 5 points) - Cytokinin promotes cell division in the presence auxin (IAA). - Induces cell enlargement associated with IAA and gibberellins - Cytokinin can break the dormancy of certain light-sensitive seeds like tobacco and induces seed germination. - Cytokinin promotes the growth of lateral bud in the presence of apical bud. - Application of cytokinin delays the process of Aging by nutrient mobilization. It is known Richmond Lang effect. - Cytokinin (i) increases rate protein synthesis (ii) induces the formation of inter-fascicular cambium (iii) overcomes apical dominance (iv) induces formation of new leaves, chloroplast and lateral shoots. (v)Plants accumulate solutes very actively with help of cytokinins.	5	BOOK BACK

34 (b)	Marchantia Sporophyte Zygote develops in to a multicellular structure called sporophyte. The sporophyte is not free- living but attached to the photosynthetic gametophyte and derives nutrition from it. Sporophyte is differentiated into foot, seta and capsule. The foot is bulbous and is embedded in the gametophyte. It derives nutrition from the gametophyte and transfers to the sporophyte. Seta is short and connects foot and capsule. The capsule consists of single layered jacket layer and encloses numerous haploid spores and elaters. The capsule is covered by protective covering called calyptra. On maturation the capsule dehisces and spores are released. Elaters helps in the dispersal of spores. The spores under favourable conditions germinate and develop into new gametophyte. The haploid gametophytic phase alternates with diploid sporophytic phase, thus the life cycle of Marchantia shows alternation of generation res	5	BOOK INSIDE

35 (b)	Difference Between Mitosis and Meiosis	5	BOOK BACK
36 (a)	Structure of DNA Watson and Crick shared the Nobel Prize in 1962 for their discovery, along with Maurice Wilkins, who had produced the crystallographic data supporting the model. Rosalind Franklin (19201958) had earlier produced the first clear crystallographic evidence for a helical structure. James Watson and Francis Crick (Figure 8.40) of Cavendish laboratory in Cambridge built a scale	5	BOOK BACK

model of double helical structure of DNA which is the most prevalent form of DNA, the B-DNA. This is the secondary As proposed by James Watson and Francis Crick, DNA consists of right handed double helix with 2 helical polynucleotide chains that are coiled around a common axis to form rightstructure of DNA. handed B form of DNA. The coils are held together by hydrogen bonds which occur between complementary pairs of nitrogenous bases. The sugar is called $2^{\prime}-$ deoxyribose because there is no hydroxyl at position 2^{\prime}. Adenine and thiamine base pairs has two hydrogen bonds while guanine and cytosine base pairs have three hydrogen bonds.
Chargaff 's Rule:

- $\mathrm{A}=\mathrm{T} ; \mathrm{G} \equiv \mathrm{C}$
- $\mathrm{A}+\mathrm{G}=\mathrm{T}+\mathrm{C}$
- $\mathrm{A}: \mathrm{T}=\mathrm{G}: \mathrm{C}=1$

As published by Erwin Chargaff in 1949, a purine pairs with pyrimidine and vice versa. Adenine (A) always pairs with Thymine (T) by double bond and Guanine (G) always pairs with Cytosine (C) by triple bond.

37 (b)	Difference between C_{3} and C_{4} plants		5	BOOK INSIDE
	$\mathrm{c}_{\text {, Plants }}$	C_{4} Plants		
	1. $\mathrm{CO}_{\text {, fixation takes place in mesophyll }}^{\text {cells only }}$	1. CO_{2} fixation takes place mesophyll and bundle sheath		
	2. CO_{2} acceptor is stuPP only	2. PEP in mesophyll and RUBP in bundle sheath cells		
	3. First product is 3 C. PGA	3. First product is 4 C- OAA		
	4. Kranz antamy is not present	4. Kranz antomy is preest		
	5. Granum is present in mesophyll cells	5. Granum present in mesophyll cells and		
	6. Normal Chloroplast	6. Dimorphic chloroplast		
	7. Optimum temperature 20° to $25^{\circ} \mathrm{C}$	7. Optimum temperature 30° to $45^{\circ} \mathrm{C}$		
	8. Fixation of $\mathrm{CO}_{2} \mathrm{a}$ a 50 ppm	8. Fixation of CO_{2} even less than 10 ppm		
	9. Less efficient due to higher photorespiration	9. More efficient due to less photorespiration		
	10. RUBP carboxylase enzyme used for fixation	$\begin{aligned} & \text { 10. PEP carboxylase and RUBP } \\ & \text { carboxylase used } \end{aligned}$		
	11. 18 ATPs used to synthesize one glucose	11. Consumes 30 ATPs to produce one glucose.		
	12. Effricent at low CO_{2}	12. Effrientat thigher CO_{2}		
	13. Example: Paddy, Wheat, Potato and so on	13. Example: Sugar cane, Maize, Sorghu Amaranthus and so on		
38 (a)	Ricinus communis Habit: Tall perennial shrub Root: Branched tap root system Stem: Aerial, erect, cylindrical, branched and hollow solid at the base, glabrous, Leaf: Simple, petiolate, hollow, exstipulate, alternate broad, palmately lobed, usually 7-9 lobes, serrate, palmately reticulate divergent venation. Inflorescence: Terminal panicle. Male Flower Bracteate, ebracteolate, pedicellate, ma flowers (open for one day) towards lower portion of the inflorescence, actinomorphic, incomplete. Perianth: Tepals 5, apophyllous, uniseriate, green, valvate aestivation, odd tepal posterior in position. Androecium: Stamens numerous (upto 1000) crowde and connate into about 8 mm long cluster of stipitate phalanges, each stamen profusely branded, anthers globose basifixed. Gynocium: usually absent rarely represented by pistillode. Female Flower Bracteate, ebracteolate, pedicellate,		5	BOOK INSIDE

female flowers (open for fourteen days) found towar the apical portion of inflorescence, actinomorphic, incomplete and hypogynous. Perianth: Tepals 3, apophyllous, green valvate. Androecium: Absent but staminode is present. Gynoecium: Tricarpellary, syncarpous, ovary superi distinctly trilobed, trilocular, covered with spiny outgrowth, single large ovule in each locule on axile placentation, style three with three bifid stigma. Fruit: A schizocarp with spiny outgrowth, splits into three one seeded cocci. Seed: Endospermous, knob-like caruncle develops from the micorpyle, that absorbs and temporarily retains water enabling germination. Floral Formula: Male flower: Br.,Ebrl., $\oplus, \mathbf{O}^{\boldsymbol{\prime}}, \mathbf{P}_{(5)}, \mathbf{A}_{\propto}, \mathbf{G}_{0}$ Female flower: Br.,Ebrl., $\oplus, \underset{q}{\mathbf{O}}, \mathrm{P}_{(33}, \mathbf{A}_{0}, \mathbf{G}_{3}$		

38 (b)	Tap root modification	5	BOOK INSIDE

> M.MATHAN., M.Sc., M.Ed., M.Phil., PGT IN BOTANY, ISLAMIAH MAT HR SEC SCHOOL, KILAKARAI, RAMANATHAPURAM DT., 9865330431

- Daily classes by Namakkal Well Experienced Staff
- Two years integrated program for XI and XII - NEET.
- We provide online test for both NEET.
- Weekly intensive test for NEET.
- We teach from basics make you achievers.
- Learn with interest without stress.
- Daily practice test and monthly cumulative test for state board.
- Extra care for slow learners.

