PUBLIC EXAMINATION - MARCH 2024
Reg. No.

PART - III

Business Mathematics And Statistics (with answers)
Time Allowed: 3.00 Hours]
[Maximum Marks : 90

Instructions :

(1) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.
(2) Use Blue or Black ink to write and underline and pencil to draw diagrams.

PART - I

Note: (i) Answer all the questions. $20 \times \mathbf{1}=\mathbf{2 0}$
(ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.

1. The inventor of input-output analysis is :
(a) Prof. Wassily W. Leontief
(b) Sir Francis Galton
(c) Arthur Caylay
(d) Fisher
2. The number of permutation of n different things taken r at a time, when the repetition is allowed is :
(a) $\frac{n!}{(n-r)!}$
(b) r^{n}
(c) $\frac{n!}{(n+r)!}$
(d) n^{r}
3. If $y=e^{2 x}$, then $\frac{d^{2} y}{d x^{2}}$ at $x=0$ is :
(a) 2
(b) 4
(c) 0
(d) 9
4. The correlation coefficient :
(a) $r=b_{x y} \times b_{y x}$
(b) $r= \pm \sqrt{b_{x y} \times b_{y x}}$
(c) $r= \pm \sqrt{\frac{1}{b_{x y} \times b_{y x}}}$
(d) $r=\frac{1}{b_{x y} \times b_{y x}}$
5. Let $\mathrm{P}(\mathrm{A})=\frac{3}{5}$ and $\mathrm{P}(\mathrm{B})=\frac{1}{5}$. Find $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ if A and B are independent events.
(a) $\frac{3}{16}$
(b) $\frac{3}{25}$
(c) $\frac{4}{25}$
(d) $\frac{4}{10}$
6. If $\tan \mathrm{A}=\frac{1}{2}$ and $\tan \mathrm{B}=\frac{1}{3}$ then $\tan (2 \mathrm{~A}+\mathrm{B})$ is equal to :
(a) 3
(b) 1
(c) 4
(d) 2
7. For the function $y=x^{3}+19$, find the values of x when its marginal value is equal to 27 .
(a) ± 3
(b) ± 1
(c) ± 4
(d) ± 2
8. If ' a ' is the annual payment ' n ' is the number of periods and ' i ' is compound interest for $₹ 1$ then future amount of the ordinary annuity is :
(a) $\mathrm{P}=\frac{a}{i}$
(b) $\mathrm{A}=\frac{a}{i}(1+i)\left[(1+i)^{n}-1\right]$
(c) $\mathrm{P}=\frac{a}{i}(1+i)\left[1-(1+i)^{-n}\right]$
(d) $\mathrm{A}=\frac{a}{i}\left[(1+i)^{n}-1\right]$
9. If $\left|\begin{array}{ll}x & 2 \\ 8 & 5\end{array}\right|=0$ then the value of x is :
(a) $\frac{-16}{5}$
(b) $\frac{-5}{6}$
(c) $\frac{16}{5}$
(d) $\frac{5}{6}$
10. If $y=4 a e^{4 x}$, then find $\frac{d y}{d x}$:
(a) $16 a e^{x}$
(b) $a e^{4 x}$
(c) $16 a e^{4 x}$
(d) $4 a e^{4 x}$
11. The value of $\sin \left(-420^{\circ}\right)$ is :
(a) $\frac{1}{2}$
(b) $\frac{\sqrt{3}}{2}$
(c) $\frac{-1}{2}$
(d) $\frac{-\sqrt{3}}{2}$
12. If m_{1} and m_{2} are the slopes of the pair of lines given by $a x^{2}+2 h x y+b y^{2}=0$, then the value of $m_{1}+m_{2}$ is :
(a) $\frac{2 h}{a}$
(b) $\frac{2 h}{b}$
(c) $-\frac{2 h}{a}$
(d) $-\frac{2 h}{b}$
13. One of the conditions for the activity (i, j) to lie on the critical path is :
(a) $\mathrm{E}_{j}-\mathrm{E}_{i}=\mathrm{L}_{i}-\mathrm{L}_{j}=t_{i j}$
(b) $\mathrm{E}_{j}-\mathrm{E}_{i}=\mathrm{L}_{j}-\mathrm{L}_{i}=t_{i j}$
(c) $\mathrm{E}_{j}-\mathrm{E}_{i}=\mathrm{L}_{j}-\mathrm{L}_{i} \neq t_{i j}$.
(d) $\mathrm{E}_{i}-\mathrm{E}_{j}=\mathrm{L}_{j}-\mathrm{L}_{i}=t_{i j}$
14. If $q=1000+8 p_{1}-p_{2}$, then $\frac{\partial q}{\partial p_{1}}$ is :
(a) 1000
(b) -1
(c) $1000-\mathrm{P}_{2}$
(d) 8
15. The dividend received on 200 shares of Face Value ₹ 100 at 8% stock is :
(a) $₹ 1500$
(b) ₹ 1600
(c) ₹ 800
(d) ₹ 1000
16. If clockwise and anticlockwise circular permutations are considered to be same, the number of circular permutation of n objects taken all at a time is :
(a) $\frac{n!}{2}$
(b) $\frac{(n+1)!}{2}$
(c) $\frac{(2 n+1)!}{2}$
(d) $\frac{(n-1)!}{2}$
17. If two events A and B are dependent, then the conditional probability of $\mathrm{P}(\mathrm{B} / \mathrm{A})$ is :
(a) $\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})}$
(b) $\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} / \mathrm{A})$
(c) $\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{A} / \mathrm{B})$
(d) $\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}$
18. Correlation co-efficient lies between:
(a) -1 to 0
(b) 0 to ∞.
(c) -1 to ∞
(d) -1 to +1
19. Find the equation of the circle with centre at $(4,5)$ and radius 3 units.
(a) $x^{2}+y^{2}-8 x-10 y+32=0$
(b) $x^{2}+y^{2}-6 x+2 y-6=0$
(c) $x^{2}+y^{2}-8 x-6 y=0$
(d) $x^{2}+y^{2}+8 x-10 y=0$
20. Find the value of ${ }^{100} \mathrm{C}_{99}$:
(a) 1
(b) 100
(c) 0
(d) 99

PART - II
Note : Answer any seven questions. Question No. 30 is Compulsory.
$7 \times 2=14$
21. Evaluate $\left|\begin{array}{rrr}1 & 3 & 4 \\ 102 & 18 & 36 \\ 17 & 3 & 6\end{array}\right|$
kindly send me your key Answers to our email id - padasalai.net @ gmail.com
22. If ${ }^{n} \mathrm{C}_{4}={ }^{n} \mathrm{C}_{6}$, find ${ }^{12} \mathrm{C}_{n}$.
23. If $f(x)=x^{3}-\frac{1}{x^{3}}, x \neq 0$, then show that $f(x)+f\left(\frac{1}{x}\right)=0$
24. Find D_{2} and D_{6} for the following series $22,4,2,12$, $16,6,10,18,14,20,8$.
25. Which is better investment? 20% stock at $₹ 140$ (or) 10% stock at ₹ 70 .
26. A manufacturing company has a contract to supply 4000 units of an item per year at uniform rate. The storage cost per unit per year amounts to ₹50 and the set-up cost per production run is $₹ 160$. If the production run can be started instantaneously and shortages are not permitted, determine the number of units which should be produced per run to minimize the total inventory cost.
27. If the centre of the circle $x^{2}+y^{2}+2 x-6 y+1=0$ lies on a straight line $a x+2 y+2=0$, then find the value of ' a '.
28. Find the $5^{\text {th }}$ term in the expansion of $(x-2 y)^{13}$.
29. If $f(x)=2 x$, then show that $f(x) \cdot f(y)=f(x+y)$
30. Find the rank of the word "TABLE" in English dictionary.

PART - III

Note : Answer any seven questions. Question No. 40 is Compulsory.
$7 \times 3=21$
31. Find the values of a and b if the equation $(a-1) x^{2}+b y^{2}+(b-8) x y+4 x+4 y-1=0$ represents a circle .
32. Evaluate : $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$.
33. Draw the event oriented network for the following data.

Events	1	2	3	4	5	6	7
Immediate Predecessors	-	1	1	2,3	3	4,5	5,6

34. Solve the following linear programming problems by graphical method.
Maximize $z=40 x_{1}+50 x_{2}$ subject to constraints $3 x_{1}+x_{2} \leq 9 ; x_{1}+2 x_{2} \leq 8$ and $x_{1}, x_{2} \geq 0$.
35. Find the interval in which the function $f(x)=x^{2}-4 x+6$ is strictly increasing and strictly decreasing.
36. Find the value of $\tan 75^{\circ}$.
37. A person purchases tomatoes from each of the 4 places at the rate of 1 kg ., 2 kg ., 3 kg . and 4 kg . per rupee respectively. On the average, how many kilograms has he purchased per rupee?
38. The technology matrix of an economic system of two industries is $\left[\begin{array}{ll}0.8 & 0.2 \\ 0.9 & 0.7\end{array}\right]$. Test whether the system is viable as per Hawkins - Simon conditions.
39. If the payment of $₹ 2,000$ is made at the end of every quarter for 10 years at the rate of 8% per year, then find the amount of annuity. $\left[(1.02)^{40}=2.2080\right]$.
40. Prove that $\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{7}{24}\right)=\tan ^{-1}\left(\frac{1}{2}\right)$

PART - IV

Note : Answer all the questions.
$7 \times 5=35$
41. (a) An economy produces only coal and steel. These two commodities serve as intermediate inputs in each other's production. 0.4 tonne of steel and 0.7 tonne of coal are needed to produce a tonne of steel, Similarly 0.1 tonne of steel and 0.6 tonne of coal are required to produce a tonne of coal. No capital inputs are needed. Do you think that the system is viable? 2 and 5 labour days are required to produce a tonnes of coal and steel respectively. If economy needs 100 tonnes of coal and 50 tonnes of steel, calculate the gross output of the two commodities and the total labour days required.

> (OR)
(b) Verify Euler's theorem for the function $u=x^{3}+y^{3}+3 x y^{2}$.
42. (a) Show that the equation $2 x^{2}+7 x y+3 y^{2}+5 x+5 y$ $+2=0$ represent two straight lines and find their separate equations.

(OR)

(b) Solve : $\tan ^{-1}(x+1)+\tan ^{-1}(x-1)=\tan ^{-1}\left(\frac{4}{7}\right)$.
43. (a) A project schedule has the following characteristics.

Activity	$1-2$	$1-3$	$2-4$	$3-4$	$3-5$	$4-9$	$5-6$	$5-7$	$6-8$	$7-8$	$8-10$	$9-10$
Time	4	1	1	1	6	5	4	8	1	2	5	7

Construct the network and calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and determine the Critical path of the project and duration to complete the project.
(OR)
(b) Compute Quartile deviation from the following data.

CI	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
f	12	19	5	10	9	6	6

44. (a) By Mathematical Induction, prove that $1^{2}+2^{2}+3^{2}+\ldots . .+n^{2}=\frac{n(n+1)(2 n+1)}{6}$, for
all $n \in \mathbb{N}$.
(OR)
(b) If $\sin y=x \sin (a+y)$, then prove that

$$
\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a} .
$$

45. (a) The following are the ranks obtained by 10 students in Commerce and Accountancy are given below :

Commerce	6	4	3	1	2	7	9	8	10	5
Accountancy	4	1	6	7	5	8	10	9	3	2

To what extent is the knowledge of students in two subjects related?

(OR)

(b) A person sells a 20% stocks of Face Value $₹ 10,000$ at a premium of 42%. With the money obtained he buys a 15% stock at a discount of 22%. What is the change in his income if the brokerage paid is 2%.
46. (a) The sum of three numbers is 20 . If we multiply the first by 2 and add the second number and subtract the third, we get 23 . If we multiply the first by 3 and add second and third to it, we get 46. By using matrix inversion method find the numbers.

(OR)

(b) A factory has 3 machines $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ producing $1000,2000,3000$ screws per day respectively. A_{1} produces 1% defectives, A_{2} produces 1.5% and A_{3} produces 2% defectives. A screw is chosen at random at the end of a day and found defective. What is the probability that it comes from machine A_{1} ?

47．（a）Find the equation of the circle passing through the points $(1,0),(-1,0)$ and $(0,1)$ ．
（OR）
（b）Resolve into partial fraction．$\frac{x-2}{(x+2)(x-1)^{2}}$

资资资

ANSWERS

Part－I

1．（a）Prof．Wassily W．Leontief
2．（d）n^{r}
3．（b） 4
4．（b）$r= \pm \sqrt{b_{x y} \times b_{y x}}$
5．（b）$\frac{3}{25}$
6．（a） 3
7．（a）± 3
8．（d） $\mathrm{A}=\frac{a}{i}\left[(1+i)^{n}-1\right]$
9．（c）$\frac{16}{5}$
10．（c） $16 a e^{4 x}$
11．（d）$\frac{-\sqrt{3}}{2}$
12．（d）$-\frac{2 h}{b}$
13．（c） $\mathrm{E}_{j}-\mathrm{E}_{i}=\mathrm{L}_{j}-\mathrm{L}_{i}=t_{i j}$
14．（d） 8
15．（b）₹ 1600
16．（d）$\frac{(n-1)!}{2}$
17．（a）$\frac{P(A \cap B)}{P(A)}$
18．（d）-1 to +1
19．（a）$x^{2}+y^{2}-8 x-10 y+32=0$
20．（b） 100

Part－II

21．$\left|\begin{array}{rrr}1 & 3 & 4 \\ 102 & 18 & 36 \\ 17 & 3 & 6\end{array}\right|=6\left|\begin{array}{rrr}1 & 3 & 4 \\ 17 & 3 & 6 \\ 17 & 3 & 6\end{array}\right|=0$
（since $\mathrm{R}_{2} \equiv \mathrm{R}_{3}$ ）
22．If $n \mathrm{C}_{x}=n \mathrm{C}_{y}$ ，then $x+y=n$ ．
Here $n \mathrm{C}_{4}=n \mathrm{C}_{6}$

$$
\begin{aligned}
\therefore n & =4+6=10 \\
12 \mathrm{C}_{n} & =12 \mathrm{C}_{10}=12 \mathrm{C}_{2} \\
& =\frac{12 \times 11}{1 \times 2}=66
\end{aligned}
$$

23．Given $f(x)=x^{3}-\frac{1}{x^{3}}$

$$
\begin{equation*}
f\left(\frac{1}{x}\right)=\left(\frac{1}{x}\right)^{3}-\frac{1}{\left(\frac{1}{x}\right)^{3}}=\frac{1}{x^{3}}-\frac{1}{\frac{1}{x^{3}}}=\frac{1}{x^{3}}-x^{3} . . \tag{1}
\end{equation*}
$$

Adding（1）and（2）we get，

$$
f(x)+f\left(\frac{1}{x}\right)=x^{3}-\frac{1}{x^{3}}+\frac{1}{x^{3}}-x^{3}=0
$$

Hence proved．
24．Here $n=11$ observations are arranged into ascending order
$2,4,6,8,10,12,14,16,18,20,22$
$\mathrm{D}_{2}=$ size of $2\left(\frac{n+1}{10}\right)^{\text {th }}$ value
$\mathrm{D}_{6}=$ size of $6\left(\frac{n+1}{10}\right)^{\text {th }}$ value
$D_{2}=$ size of $2.4^{\text {th }}$ value \approx size of $2^{\text {nd }}$ value $=4$
$D_{6}=$ size of $7.2^{\text {th }}$ value \approx size of $7^{\text {th }}$ value $=14$
25．Let the investment in each case be $₹(140 \times 70)$
Case（i）Income from 20% stock at ₹ 140
$=\frac{20}{140} \times(140 \times 70)=₹ 1400$
Case（ii）Income from 10% stock at ₹ 70
$=\frac{10}{70} \times(140 \times 70)=₹ 1400$
For the same investment both stocks fetch the same income．Therefore they are equivalent shares．
26. Annual demand: $\mathrm{R}=4000$

Storage cost: $\mathrm{C}_{1}=₹ 50$
Setup cost per production: $\mathrm{C}_{3}=₹ 160$
$\mathrm{EOQ}=\sqrt{\frac{2 \mathrm{R} c_{3}}{c_{1}}}=\sqrt{\frac{2 \times 4000 \times 160}{50}}=160$.
\therefore To minimize the production cost, number of units produced per run is 160 units.
27. Centre $\mathrm{C}(-1,3)$

It lies on $a x+2 y+2=0$

$$
\begin{aligned}
-a+6+2 & =0 \\
a & =8
\end{aligned}
$$

28. Given $(x-2 y)^{13}$

Here $n=13, x=x, a=-2 y$
The general term is

$$
\mathrm{T}_{r+1}=n \mathrm{C} r x^{n-r} a^{r}
$$

$\therefore \mathrm{T}_{r+1}=13 \mathrm{C}_{r} x^{13-r}(-2 y)^{r}=13 \mathrm{C}_{r} x^{13-r}(-1)^{r} .2^{r} y^{r}$
To find the $5^{\text {th }}$ term, put $r=4$

$$
\begin{aligned}
\therefore \mathrm{T}_{4+1} & =13 \mathrm{C}_{4} x^{13-4}(-1)^{4} \cdot 2^{4} \cdot y^{4}=13 \mathrm{C}_{4} x^{9}(16) y^{4} \\
& =\frac{13 \times 12 \times 11 \times 10}{4 \times 3 \times 2 \times 1} \times 16 \times x^{9} y^{4} \\
\mathrm{~T}_{5} & =11440 x^{9} y^{4}
\end{aligned}
$$

29. $f(x)=2^{x}$ (Given)
$\therefore f(x+y)=2^{x+y}$
$=2^{x} \cdot 2^{y}=f(x) \cdot f(y)$
30. The rank of the word TABLE

$\mathrm{A}--$	$=4!=24$ ways
$\mathrm{B}--$	$=4!=24$ ways
$\mathrm{E}--$	$=4!=24$ ways
$\mathrm{L}--$	$=4!=24$ ways
TABEL	$=1$ way
TABLE	$=1$ way

The rank of the word TABLE is $4 \times 4!+1+1=98$:

Part - III

31. Equation of the circle is
$(a-1) x^{2}+b y^{2}+(b-8) x y+4 x+4 y-1=0$
Equation of the circle will not have (xy) term.
\therefore Co-efficient of $(x y)$ term is 0
$\Rightarrow \quad b-8=0 \Rightarrow b=8$
Also, for any circle,
Co - efficient of $x^{2}=$ Co-efficient of y^{2}
$\Rightarrow \quad a-1=b$

$$
\begin{aligned}
\Rightarrow & a-1 & =8 \\
\Rightarrow & a & =9 \\
& \therefore a & =9 \text { and } b=8 .
\end{aligned}
$$

32. $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$.

Multiplying the numerator and denominator by the conjugate of the numerator, we get,

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x} \times \frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} \\
& =\lim _{x \rightarrow 0} \frac{(1+x)-(1-x)}{x(\sqrt{1+x}+\sqrt{1-x})} \\
& =\lim _{x \rightarrow 0} \frac{2 x}{x(\sqrt{1+x}+\sqrt{1-x})} \\
& =\lim _{x \rightarrow 0} \frac{2}{(\sqrt{1+x}+\sqrt{1-x})} \\
& =2\left(\frac{1}{\sqrt{1+0}+\sqrt{1-0})=2\left(\frac{1}{2}\right)=1}\right.
\end{aligned}
$$

33.

34. Maximize $Z=40 x_{1}+50 x_{2}$ subject to the constraints $3 x_{1}+x_{2}=9, x_{1}+2 x_{2}=8$ and $x_{1}, x_{2}=0$

Since both the decision variables x_{1} and x_{2} are nonnegative, the solution lies in the first quadrant of the plane.
Consider the equations
$3 x_{1}+x_{2}=9$

x_{1}	0	3
x_{2}	9	0

$x_{1}+2 x_{2}=8$

x_{1}	0	8
x_{2}	4	0

Any point lying on or below the lines $3 x_{1}+x_{2}=9$ and $x_{1}+2 x_{2}=8$ satisfies the constraints $3 x_{1}+x_{2}=9$ and $x_{1}+2 x_{2}=8$.

The feasible region is OABC and its co-ordinates are $\mathrm{O}(0,0), \mathrm{A}(3,0), \mathrm{C}(0,4)$ and B is the point of intersection of the lines

$$
\begin{align*}
3 x_{1}+x_{2} & =9 \tag{1}\\
\text { and } x_{1}+2 x_{2} & =8 \tag{2}
\end{align*}
$$

Verification of B

$(1) \Rightarrow \begin{aligned} & 3 k_{1}+x_{2}=9 \\ &(-) \quad(-)\end{aligned}$
$(2) \times 3 \Rightarrow 3 x_{1}+6 x_{2}=$
$-5 x_{2}=-15$

Substituting $x_{2}=3$ in (1) we get

$$
\begin{aligned}
& & 3 x_{1}+3 & =9 \\
\Rightarrow & & 3 x_{1} & =6 \\
\Rightarrow & & x_{1} & =2
\end{aligned}
$$

$\therefore \mathrm{B}$ is $(2,3)$

Corner Points	$\mathbf{Z}=\mathbf{4 0} \boldsymbol{x}_{\mathbf{1}}+\mathbf{5 0} \boldsymbol{x}_{\mathbf{2}}$
$\mathrm{O}(0,0)$	0
$\mathrm{~A}(3,0)$	120
$\mathrm{~B}(2,3)$	230
$\mathrm{C}(0,4)$	200

Maximum value occurs at $\mathrm{B}(2,3)$.
\therefore The solution is $x_{1}=2, x_{2}=3$ and $\mathrm{Z}_{\text {max }}=230$
35. Given that $f(x)=x^{2}-4 x+6$

Differentiate with respect to x,
$f^{\prime}(x)=2 x-4$
When $f^{\prime}(x)=0 \Rightarrow 2 x-4=0 \Rightarrow x=2$.
Then the real line is divided into two intervals namely $(-\infty, 2)$ and $(2, \infty)$

```
\leftrightarrows 
```

[To choose the sign of $f^{\prime}(x)$ choose any values for x from the intervals ans substitute in $f^{\prime}(x)$ and get the sign.]

Interval	Sign of $\boldsymbol{f}^{\prime}(\boldsymbol{x})=\mathbf{2 x}-\mathbf{4}$	Nature of the function
$(-\infty, 2)$	<0	$f(x)$ is strictly decreasing in $(-\infty, 2)$
$(2, \infty)$	>0	$f(x)$ is strictly increasing in $(2, \infty)$

36. $\tan 75^{\circ}=\frac{1}{\tan 75^{\circ}}$

$$
\begin{aligned}
& \tan 75^{\circ}=\tan \left(45^{\circ}+30^{\circ}\right)=\frac{\tan 45^{\circ}+\tan 30^{\circ}}{1-\tan 45 \cdot \tan 30} \\
& {\left[\because \tan (\mathrm{~A}+\mathrm{B})=\frac{\tan \mathrm{A}+\tan \mathrm{B}}{1-\tan \mathrm{A} \tan \mathrm{~B}} \mathrm{~A}=45^{\circ}, \mathrm{B}=30^{\circ}\right]} \\
& {\left[\tan 45^{\circ}=1, \tan 30^{\circ}=\frac{1}{\sqrt{3}}\right]} \\
& =\frac{1+\frac{1}{\sqrt{3}}}{1-1\left(\frac{1}{\sqrt{3}}\right)}=\frac{\frac{\sqrt{3}+1}{\sqrt{3}}}{\frac{\sqrt{3}-1}{\sqrt{3}}}=\frac{\sqrt{3}+1}{\sqrt{3-1}}
\end{aligned}
$$

37. Since we are given rate per rupee, harmonic mean will give the correct answer.

$$
\begin{aligned}
& \mathrm{HM}=\frac{n}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}=\frac{4}{\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}} \\
&=\frac{4 \times 12}{25}=1.92 \mathrm{~kg} \text { per rupee. } \\
& \text { 38. } \quad \begin{aligned}
\mathrm{B} & =\left[\begin{array}{ll}
0.8 & 0.2 \\
0.9 & 0.7
\end{array}\right] \\
1-\mathrm{B} & =\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
0.8 & 0.2 \\
0.9 & 0.7
\end{array}\right] \\
& =\left[\begin{array}{cc}
0.2 & -0.2 \\
-0.9 & 0.3
\end{array}\right] \\
& =(0.2)(0.3)-(0.2)(-0.9) \\
& =0.06-0.18=-0.12<0
\end{aligned}
\end{aligned}
$$

Since $|\mathrm{I}-\mathrm{B}|$ is negative, Hawkins - Simon conditions are not satisfied.
Therefore, the given system is not viable.
39. Given $a=₹ 2,000$

$$
\begin{aligned}
i & =8 \%=\frac{8}{\frac{100}{4}}=\frac{2}{100}=0.02 \\
n & =10 \times 4=40 \\
\mathrm{~A} & =\frac{a}{i}\left[(1+i)^{n}-1\right]=\frac{2000}{0.02}\left[(1+0.02)^{40}-1\right] \\
& =\frac{2000}{0.02}\left[(1.02)^{40}-1\right]=\frac{2000}{0.02}[2.2080-1] \quad\left[\because(1.02)^{40}=2.2080\right] \\
& =100,000[1.2080]=₹ 1,20,800
\end{aligned}
$$

40. To prove : $\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{7}{24}\right)=\tan ^{-1}\left(\frac{1}{2}\right)$

$$
\begin{aligned}
\text { LHS } & =\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{7}{24}\right) \\
& =\frac{\tan ^{-1}\left(\frac{2}{11}+\frac{7}{24}\right)}{1-\frac{2}{11} \times \frac{7}{24}} \\
& =\frac{\tan ^{-1}\left(\frac{48+77}{264}\right)}{\frac{11 \times 24-14}{11 \times 24}}=\frac{\tan ^{-1}\left(\frac{48+77}{264}\right)}{\frac{250}{264}}=\frac{\left.\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right]}{\frac{250}{264}}=\tan ^{-1} \frac{125}{264} \times \frac{264}{250} \\
& =\tan ^{-1} \frac{1}{2}=\text { R.H.S } \quad \therefore \text { Hence proved. }
\end{aligned}
$$

Part - IV

41. (a) Here the technology matrix is given under

	Steel	Coal	Final demand
Steel	0.4	0.1	50
Coal	0.7	0.6	100
Labour days	5	2	-

The technology matrix is B $=\left[\begin{array}{ll}0.4 & 0.1 \\ 0.7 & 0.6\end{array}\right]$

$$
\begin{aligned}
& \mathrm{I}-\mathrm{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
0.4 & 0.1 \\
0.7 & 0.6
\end{array}\right]=\left[\begin{array}{rr}
0.6 & -0.1 \\
-0.7 & 0.4
\end{array}\right] \\
& \mathrm{I}-\mathrm{B}=\left[\begin{array}{rr}
0.6 & -0.1 \\
-0.7 & 0.4
\end{array}\right]=(0.6)(0.4)-(-0.7)(-0.1)=0.24-0.07=0.17
\end{aligned}
$$

Since the diagonal elements of $I-B$ are positive and value of $(I-B)$ is positive, the system is viable.

$$
\begin{aligned}
\operatorname{adj}(\mathrm{I}-\mathrm{B}) & =\left[\begin{array}{cc}
0.4 & 0.1 \\
0.7 & 0.6
\end{array}\right] \\
(\mathrm{I}-\mathrm{B})^{-1} & =\frac{1}{|\mathrm{I}-\mathrm{B}|} \operatorname{adj}(\mathrm{I}-\mathrm{B})=\frac{1}{0.17}\left[\begin{array}{cc}
0.4 & 0.1 \\
0.7 & 0.6
\end{array}\right] \\
\mathrm{X}=(\mathrm{I}-\mathrm{B})^{-1} \mathrm{D} \text {, where D } & =\left[\begin{array}{c}
50 \\
100
\end{array}\right]=\frac{1}{0.17}\left[\begin{array}{cc}
0.4 & 0.1 \\
0.7 & 0.6
\end{array}\right]\left[\begin{array}{c}
50 \\
100
\end{array}\right]=\frac{1}{0.17}\left[\begin{array}{c}
30 \\
95
\end{array}\right]=\left[\begin{array}{c}
176.5 \\
558.8
\end{array}\right] \\
\text { Steel output } & =176.5 \text { tonnes } \\
\text { Coal output } & =558.8 \text { tonnes } \\
\text { Total labour days required } & =5(\text { steel output })+2(\text { coal output })=5(176.5)+2(558.8) \\
& =882.5+1117.6=2000.1 \simeq 2000 \text { labour days. }
\end{aligned}
$$

(OR)
(b)

$$
\begin{aligned}
\text { Given } u(x, y) & =x^{3}+y^{3}+3 x y^{2} \\
u(t x, t y) & =(t x)^{3}+(t y)^{3}+3(t x)(t y)^{2}=t^{3}\left(x^{3}+y^{3}+3 x y^{2}\right)=t^{3} u(x, y)
\end{aligned}
$$

$\therefore u$ is a homogeneous function of degree 3 .

$$
\text { To verify } \begin{aligned}
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y} & =3 u \\
u & =x^{3}+y^{3}+3 x y^{2}
\end{aligned}
$$

Differentiating partially with respect to ' x ' we get,

$$
\begin{align*}
\frac{\partial u}{\partial x} & =3 x^{2}+0+3 y^{2}(1)=3 x^{2}+3 y^{2} \\
x \frac{\partial u}{\partial x} & =3 x^{3}+3 x y^{2} \tag{1}
\end{align*}
$$

Differentiating ' u ' partially with respect to ' y ' we get,

$$
\begin{align*}
\frac{\partial u}{\partial y} & =0+3 y^{2}+6 x y \\
y \frac{\partial u}{\partial y} & =3 y^{3}+6 x y^{2} \tag{2}
\end{align*}
$$

Adding (1) and (2),

$$
\begin{aligned}
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y} & =3 x^{3}+3 x y^{2}+3 y^{3}+6 x y^{2}=3 x^{3}+3 y^{3}+9 x y^{2}=3\left(x^{3}+y^{3}+3 x y^{2}\right) \\
\therefore x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y} & =3 u
\end{aligned}
$$

Hence Euler's theorem is verified.
42. (a) $2 x^{2}+7 x y+3 y^{2}+5 x+5 y+2=0$

$$
\begin{aligned}
& a=2 ; b=3 ; h=\frac{7}{2} ; g=\frac{5}{2} ; f=\frac{5}{2} ; c=2 \\
& \left|\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right|=\left|\begin{array}{ccc}
2 & \frac{7}{2} & \frac{5}{2} \\
\frac{7}{2} & 3 & \frac{5}{2} \\
\frac{5}{2} & \frac{5}{2} & 2
\end{array}\right|=0 \\
& \left.\begin{array}{l}
2 x^{2}+7 x y+3 y^{2}+5 x+5 y+2=(x+3 y+l)(2 x+y+m) \\
2 l+m=5 \\
l+3 m=5
\end{array}\right\} \Rightarrow \begin{array}{l}
l=2 \\
m=1
\end{array}
\end{aligned}
$$

\therefore Separate equations are $x+3 y+2=0$ and $2 x+y+1=1$
(b)

$$
\begin{array}{rlrl}
& & \tan ^{-1}\left(\frac{x+\not x+x-\not x}{1-(x+1)(x-1)}\right) & =\tan ^{-1}\left(\frac{4}{7}\right) \\
\Rightarrow & \tan ^{-1}\left(\frac{2 x}{1-\left(x^{2}-1\right)}\right) & =\tan ^{-1}\left(\frac{4}{7}\right) \\
\Rightarrow & \tan ^{-1}\left(\frac{2 x}{1-x^{2}+1}\right) & =\tan ^{-1}\left(\frac{4}{7}\right) \\
\Rightarrow & \tan ^{-1}\left(\frac{2 x}{2-x^{2}}\right) & =\tan ^{-1}\left(\frac{4}{7}\right) \\
\Rightarrow & \left(\frac{2 x}{2-x^{2}}\right) & =\left(\frac{4}{7}\right) \\
\Rightarrow & & \frac{x}{2-x^{2}} & =\frac{2}{7} \\
\Rightarrow & & 2 x^{2}+7 x-4=0 \Rightarrow & x=-4 \text { or } \frac{1}{2}
\end{array}
$$

Since $x=-4$ is not possible. $x=\frac{1}{2}$
43. (a)

kindly send me your key Answers to our email id - padasalai.net @ gmail.com

$$
\begin{aligned}
\mathrm{E}_{1} & =0 \\
\mathrm{E}_{2} & =0+4=4 \\
\mathrm{E}_{3} & =0+1=1 \\
\mathrm{E}_{4} & =4+1=5 \\
\mathrm{E}_{5} & =1+6=7 \\
\mathrm{E}_{6} & =7+4=11 \\
\mathrm{E}_{7} & =8+7=15 \\
\mathrm{E}_{8} & =15+2=17 \\
\mathrm{E}_{9} & =5+5=10 \\
\mathrm{E}_{10} & =17+5=22 \\
\mathrm{~L}_{10} & =22 \\
\mathrm{~L}_{9} & =22-7=15 \\
\mathrm{~L}_{8} & =22-5=17 \\
\mathrm{~L}_{7} & =17-2=15 \\
\mathrm{~L}_{6} & =17-1=16 \\
\mathrm{~L}_{5} & =(16-4) \text { or }(15-8)
\end{aligned}
$$

whichever is minimum $=7$

$$
\begin{aligned}
& \mathrm{L}_{4}=15-5=10 \\
& \mathrm{~L}_{3}=(10-1) \text { or }(7-6)
\end{aligned}
$$

whichever is minimum $=1$

$$
\begin{aligned}
& \mathrm{L}_{2}=10-1=9 \\
& \mathrm{~L}_{1}=0
\end{aligned}
$$

Activity	Duration	EST	EFT $=\mathbf{E S T}+\mathbf{t}_{\mathbf{i j}}$	LST $=\mathbf{L F T}-\mathbf{t}_{\mathbf{i j}}$	LFT
$1-2$	4	0	4	$9-4=5$	9
$1-3$	1	0	1	$1-1=0$	1
$2-4$	1	4	5	$10-1=9$	10
$3-4$	4	1	2	$10-1=9$	10
$3-5$	6	1	7	$7-6=1$	7
$4-9$	5	5	10	$15-5=10$	15
$5-6$	4	7	11	$16-4=12$	16
$5-7$	8	7	15	$15-8=7$	15
$6-8$	1	11	12	$17-1=16$	17
$7-8$	2	15	17	$17-2=15$	17
$8-10$	5	17	22	$22-5=17$	22
$9-10$	7	10	17	$22-7=15$	22

Since EFT and LFT is same on $1-3,3-5,5-7$ and $7-8$ and $8-10$ the critical path is $1-3-5-7-8-10$ and the duration is 22 time units.
(OR)
(b)

CI	Frequency	Cumulative Frequency	
$10-20$	12	12	
$20-30$	19	31	
$30-40$	5	36	
$40-50$	10	46	
$50-60$	9	55	
$60-70$	6	61	
$70-80$	6	67	

$\mathrm{Q}_{1}=$ Size of $\left(\frac{\mathrm{N}}{4}\right)^{\text {th }}$ value $=$ size of $\left(\frac{67}{4}\right)^{\text {th }}$ value $=16.75^{\text {th }}$ value
Thus, Q_{1} lies in the class 20-30; and corresponding values are

$$
\begin{aligned}
\mathrm{L} & =20, \frac{\mathrm{~N}}{4}=16.75 ; p c f=12, f=19, c=10 \\
\therefore \mathrm{Q}_{1} & =\mathrm{L}+\left(\frac{\frac{N}{4}-p c f}{f}\right) c=20+\frac{16.75-12}{19} \times 10=20+2.5=22.5 \\
\mathrm{Q}_{3} & =\text { Size of }\left(\frac{3 \mathrm{~N}}{4}\right)^{\text {th }} \text { value }=50.25^{\text {th }} \text { Value }
\end{aligned}
$$

Thus Q_{3} lies in the class $50-60$ and corresponding values are

$$
\begin{aligned}
\mathrm{L} & =50, \frac{3 \mathrm{~N}}{4}=50.25, f=9, p c f=46, c=10 \\
\therefore \mathrm{Q}_{3} & =\mathrm{L}+\left(\frac{\frac{3 \mathrm{~N}}{4}-p c f}{f}\right) \times c \\
\mathrm{Q}_{3} & =50+\left[\frac{50.25-46}{9}\right] \times 10=54.72 \\
\mathrm{QD} & =\frac{1}{2}\left(\mathrm{Q}_{3}-\mathrm{Q}_{1}\right)=\frac{54.72-22.5}{2}=16.11 \\
\mathrm{QD} & =16.11
\end{aligned}
$$

44. (a) Let $\mathrm{P}(n)$ denote the statement:

$$
\begin{aligned}
1^{2}+2^{2}+3^{2}+\ldots+n^{2} & =\frac{n(n+1)(2 n+1)}{6} \\
\text { Put } n & =1 \\
\therefore \text { LHS } & =1^{2}=1 \\
\text { RHS } & =\frac{1(1+1)(2+1)}{6}=1 \\
\text { LHS } & =\text { RHS }
\end{aligned}
$$

$\therefore \mathrm{P}(1)$ is true.

Assume that $\mathrm{P}(k)$ is true.

$$
\begin{aligned}
\mathrm{P}(k) & =1^{2}+2^{2}+3^{2}+\ldots+k^{2} \\
& =\frac{k(k+1)(2 k+1)}{6}
\end{aligned}
$$

Now, $1^{2}+2^{2}+3^{2}+\ldots+\mathrm{K}^{2}+(k+1)^{2}=\mathrm{P}(k)+(k+1)^{2}$

$$
\begin{aligned}
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6} \\
& =\frac{(k+1)[k(2 k+1)+6(k+1)]}{6} \\
& =\frac{(k+1)\left(2 k^{2}+7 k+6\right)}{6} \\
& =\frac{(k+1)(k+2)(2 k+3)}{6}
\end{aligned}
$$

$\therefore \mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true
$\therefore \mathrm{P}(n)$ is true for all $n \in \mathbb{N}$

> (OR)
(b) (i) $\quad \sin y=x \sin (a+y)$

$$
x=\frac{\sin y}{\sin (a+y)}
$$

Differentiating with respect to y,

$$
\begin{aligned}
& \frac{d x}{d y} \\
\therefore \frac{d y}{d x} & =\frac{\sin (a+y) \cos y-\sin y \cdot \cos (a+y)}{\sin ^{2}(a+y)}=\frac{\sin (a+y-y)}{\sin ^{2}(a+y)}=\frac{\sin a}{\sin ^{2}(a+y)}
\end{aligned}
$$

45. (a)

Rank in Commerce ($\mathbf{R}_{\mathbf{X}}$)	Rank in Accountancy $\left(\mathbf{R}_{\mathbf{Y}}\right)$	$\boldsymbol{d}=\mathbf{R}_{\mathbf{X}}-\mathbf{R}_{\mathbf{Y}}$	$\boldsymbol{d}^{\mathbf{2}}$
6	4	2	4
4	1	3	9
3	6	-3	9
1	7	-6	36
2	5	-3	9
7	8	-1	1
9	10	-1	1
8	9	-1	1
10	3	7	49
5	2	3	9

kindly send me your key Answers to our email id - padasalai.net @ gmail.com

Rank Correlation is given by

$$
\begin{aligned}
& \rho=1-\frac{6 \Sigma d^{2}}{\mathrm{~N}\left(\mathrm{~N}^{2}-1\right)}=1-\frac{6(128)}{10(100-1)}=1-\frac{768}{990}=1-0.7758 \\
& \rho=0.224
\end{aligned}
$$

(OR)
(b) Step 1: For 20\% stocks :

$$
\begin{aligned}
\text { F.V. } & =₹ 100 \\
\text { Income } & =\frac{20}{100} \times 10000=₹ 2,000 \\
\text { Investment } & =₹ 10,000 \\
\text { Face value } & =₹ 100 \\
\text { Market value } & =₹ 100+42-2=140 \\
\text { Number of shares } & =\frac{\text { investments }}{\text { FV }}=\frac{10,000}{100}=100 \\
\text { Sales proceeds } & =100 \times 140=14,000
\end{aligned}
$$

Step 2: For 15\% stocks :

$$
\begin{aligned}
\text { M.V. } & =₹ 100-22+2=80 \\
\text { Number of shares } & =\frac{\text { investments }}{\text { FV }}=\frac{14000}{80}=175 \\
\text { Income } & =175 \times \frac{15}{100} \times 100=₹ 2625
\end{aligned}
$$

Step 3: Change of income :

$$
\text { Change of income }=₹ 2625-₹ 2000=₹ 625
$$

46. (a) Let the required numbers be x, y and z.

$$
\begin{aligned}
\text { Given } x+y+z & =20 \\
2 x+y-z & =23 \\
3 x+y+z & =46
\end{aligned}
$$

These equations can be written in matrix form as $\left[\begin{array}{rrr}1 & 1 & 1 \\ 2 & 1 & -1 \\ 3 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}20 \\ 23 \\ 46\end{array}\right] \Rightarrow \mathrm{AX}=\mathrm{B}$

$$
\text { Where } \mathrm{A}=\left[\begin{array}{rrr}
1 & 1 & 1 \\
2 & 1 & -1 \\
3 & 1 & 1
\end{array}\right], \mathrm{X}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \mathrm{B}=\left[\begin{array}{l}
20 \\
23 \\
46
\end{array}\right]
$$

$$
|\mathrm{A}|=\left[\begin{array}{rrr}
1 & 1 & 1 \\
2 & 1 & -1 \\
3 & 1 & 1
\end{array}\right]=1\left|\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right|-1\left|\begin{array}{rr}
2 & -1 \\
3 & 1
\end{array}\right|+1\left|\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right|
$$

$$
\begin{aligned}
& =1\left(\begin{array}{rr}
1+1)-1(2+3)+1(2-3)=2-5-1=2-6=-4 \neq 0 \Rightarrow \mathrm{~A}^{-1} \text { exists. } \\
\operatorname{adj} \mathrm{A} & =\left[\begin{array} { r r r }
{ + | r } & { - 1 } \\
{ 1 } & { 1 }
\end{array} \left|-\left|\begin{array}{rr}
1 & -1 \\
3 & 1
\end{array}\right|+\left|\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right|\right.\right. \\
-\left|\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right|+\left|\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right|-\left|\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right| \\
\mathrm{T}
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{rrr}
+(1+1) & -(2+3) & +(2-3) \\
-(1-1) & +(1-3) & -(1-3) \\
+(-1-1) & -(-1-2) & +(1-2)
\end{array}\right]^{\mathrm{T}}
\end{aligned}
$$

$$
\mathrm{X}=\left[\begin{array}{r}
13 \\
2 \\
5
\end{array}\right] \therefore \text { The required numbers are } 13,2 \text { and } 5
$$

(b)

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{~A}_{1}\right)=\mathrm{P}\left(\text { that the machine } \mathrm{A}_{1} \text { produces screws }\right)=\frac{1000}{6000}=\frac{1}{6} \\
& \mathrm{P}\left(\mathrm{~A}_{2}\right)=\mathrm{P}\left(\text { that the machine } \mathrm{A}_{2} \text { produces screws }\right)=\frac{2000}{6000}=\frac{1}{3}
\end{aligned}
$$

$P\left(A_{3}\right)=P\left(\right.$ that the machine A_{3} produces screws $)=\frac{3000}{6000}=\frac{1}{2}$

Let B be the event that the chosen screw is defective
$\therefore \mathrm{P}\left(\mathrm{B} / \mathrm{A}_{1}\right)=\mathrm{P}\left(\right.$ that defective screw from the machine $\left.\mathrm{A}_{1}\right)=0.01$
$P\left(B / A_{2}\right)=P\left(\right.$ that defective screw from the machine $\left.A_{2}\right)=0.015$ and
$\mathrm{P}\left(\mathrm{B} / \mathrm{A}_{3}\right)=\mathrm{P}\left(\right.$ that defective screw from the machine $\left.\mathrm{A}_{3}\right)=0.02$
We have to find $\mathrm{P}\left(\mathrm{A}_{1} / \mathrm{B}\right)$
Hence by Baye's theorem, we get

$$
\mathrm{P}\left(\mathrm{~A}_{1} / \mathrm{B}\right)=\frac{\mathrm{P}\left(\mathrm{~A}_{1}\right) \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{1}\right)}{\mathrm{P}\left(\mathrm{~A}_{1}\right) \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{~A}_{2}\right) \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{2}\right)+\mathrm{P}\left(\mathrm{~A}_{3}\right) \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{3}\right)}
$$

$$
\begin{aligned}
& =\frac{\left(\frac{1}{6}\right)(0.01)}{\left(\frac{1}{6}\right)(0.01)+\left(\frac{1}{3}\right)(0.015)+\left(\frac{1}{2}\right)(0.02)} \\
& =\frac{0.01}{0.01+0.03+0.06}=\frac{0.01}{0.1}=\frac{1}{10}
\end{aligned}
$$

47. (a) Let the equation of the circle be $x^{2}+y^{2}+2 g x+2 f y+c=0$

It passes through the points $(1,0),(-1,0)$ and $(0,1)$

$$
\begin{align*}
(1,0) \Rightarrow 1+0+2 g+c & =0 \\
2 g+c & =-1 \tag{1}\\
(-1,0) \Rightarrow 1+0-2 g+c & =0 \\
-2 g+c & =-1 \tag{2}\\
(0,-1) \Rightarrow 0+1+0+2 f+c & =0 \\
2 f+c & =-1 \tag{3}\\
\text { Now solving (1)+(2) } \Rightarrow 2 c & =-2 \\
c & =-1
\end{align*}
$$

Substitute in equation (1) we get

$$
\begin{aligned}
2 g-1 & =-1 \\
2 g & =0 \Rightarrow g=0
\end{aligned}
$$

Substitute in equation (3) we get

$$
\begin{aligned}
2 f-1 & =-1 \\
2 f & =-1+1 \Rightarrow 2 f=0 \Rightarrow f=0
\end{aligned}
$$

So we get $g=0, f=0$ and $c=-1$
Therefore, the required equation of the circle is $x^{2}+y^{2}-1=0$
(OR)
（b）

$$
\begin{aligned}
& \frac{x-2}{(x+2)(x-1)^{2}}=\frac{\mathrm{A}}{x+2}+\frac{\mathrm{B}}{x-1}+\frac{\mathrm{C}}{(x-1)^{2}} \\
& \Rightarrow \quad \frac{x-2}{(x+2)(x-1)^{2}}=\frac{\mathrm{A}(x-1)^{2}+\mathrm{B}(x+2)(x-1)+\mathrm{C}(x+2)}{(x+2)(x-1)^{2}} \\
& \Rightarrow \quad x-2=\mathrm{A}(x-1)^{2}+\mathrm{B}(x+2)(x-1)+\mathrm{C}(x+2) \\
& \text { Substituting } x=1 \text { in (1) we get, } \\
& 1-2=\mathrm{C}(1+2) \Rightarrow-1=3 \mathrm{C} \Rightarrow \mathrm{C}=\frac{-1}{3}
\end{aligned}
$$

Putting $x=-2$ in（1）we get，

$$
-2-2 \quad=\quad \mathrm{A}(-3)^{2} \Rightarrow-4=9 \mathrm{~A} \Rightarrow \mathrm{~A}=\frac{-4}{9}
$$

Putting $x=0$ in（1）we get，

$$
\begin{aligned}
& -2=\mathrm{A}-2 \mathrm{~B}+2 \mathrm{C} \\
& \Rightarrow \quad-2=\frac{-4}{9}-2 \mathrm{~B}-\frac{2}{3}\left[\because \mathrm{~A}=\frac{-4}{9}, \mathrm{C}=\frac{-1}{3}\right] \\
& \Rightarrow \quad 2 \mathrm{~B}=\frac{-4}{9}-\frac{2}{3}+2 \\
& \Rightarrow \quad 2 \mathrm{~B}=\frac{-4-6+18}{9}=\frac{8}{9} \\
& \Rightarrow \quad B=\frac{4}{9} \\
& \therefore \frac{x-2}{(x+2)(x-1)^{2}}=\frac{-\frac{4}{9}}{x+2}+\frac{\frac{4}{9}}{x-1}+\frac{-\frac{1}{3}}{(x-1)^{2}} \\
& =\frac{-4}{9(x+2)}+\frac{4}{9(x-1)}-\frac{1}{3(x-1)^{2}}
\end{aligned}
$$

倠然资

