6. GASEOUS STATE - Study Material

Boyle's Law states that

"The pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature."

$$
V \propto \frac{1}{P} \quad P_{1} V_{1}=P_{2} V_{2}=k
$$

- Robert Boyle

Charle's Law states that

"The volume of a fixed mass of a gas is directly proportional to the temperature."

$$
V \propto T \quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}=k
$$

- J.A.C. Charles

Gay-Lussac's Law states that

"At constant volume, the pressure of a fixed mass of a gas is directly proportional to temperature."

$$
P \propto T \quad \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}=k
$$

- Joseph Gay-Lussac

Avogadro's Hypothesis states that

"Equal volume of all gases under the same conditions of temperature and pressure contain equal number of molecules."

$$
V \propto n \quad \frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}=k
$$

Dalton's Law of partial pressure

"The total pressure of a mixture of non-reacting gases is the sum of partial pressures of the gases present in the mixture"

$$
p_{\text {total }}=p_{1}+p_{2}+p_{3}
$$

- John Dalton

Diffusion and Effusion

The property of gas which involves the movement of the gas molecules through another gases is called Diffusion. Effusion is another process in which a gas escapes from a container through a very small hole.

Graham's Law of Diffusion

"The rate of diffusion or effusion is inversely proportional to the square root of Molar mass."

$$
\text { Rate of Diffusion } \propto \frac{1}{\sqrt{M}}
$$

Compressibility Factor

The deviation of real gases from ideal behavior is measured in terms of a ratio of PV to nRT. This is termed as compressibility factor.Mathematically

$$
Z=\frac{P V}{n R T}
$$

For ideal gases PV = nRT, hence the compressibility factor, $\mathrm{Z}=1$ at all temperatures and pressures.
kindly send me your key Answers to our email id - padasalai.net@gmail.com

Joule-Thomson effect

The phenomenon of lowering of temperature when a gas is made to expand adiabatically from a region of high pressure into a region of low pressure is known as Joule-Thomson effect.

Inversion Temperature

The temperature below which a gas obeys Joule-Thomson effect is called inversion temperature (T_{i}).

$$
T_{i}=\frac{2 a}{R b}
$$

DERIVATION OF IDEAL GAS EQUATION

The gaseous state is described completely using the following four variables T, P, V and n and their relationships were governed by the gas laws below,

Boyle's Law	$V \propto \frac{1}{P}$
Charles Law	$V \propto T$
Avogadro's Law	$V \propto n$

Combining these equations,

$$
\begin{aligned}
& V \propto \frac{n T}{P} \\
& V=\frac{n R T}{P}
\end{aligned}
$$

where R is the proportionality constant called universal gas constant.

$$
P V=n R T
$$

Study Material by KISHORE.T

Email: kishoretamilt@gmail.com
kindly send me your key Answers to our email id - padasalai.net@gmail.com

