Note: i) Answer all the questions.

## PART – I

|     | ii) Choose the most and the corresponding   |                         | rom the given four alte      | ernatives and write the option code $15 \times 1 = 15$ |
|-----|---------------------------------------------|-------------------------|------------------------------|--------------------------------------------------------|
| 1.  | The number of water mo                      | lecules in a drop of w  | ater weighing 0.018 g i      | s                                                      |
|     | a) $6.022 \times 10^{26}$                   |                         | b) $6.022 \times 10^{23}$    |                                                        |
|     | c) $6.022 \times 10^{20}$                   |                         | d) $9.9 \times 10^{22}$      |                                                        |
| 2.  | Two electrons occupying                     | g the same orbital are  | distinguished by             |                                                        |
|     | a) azimuthal quantum nu                     | mber                    | b) spin quantum nui          | mber                                                   |
|     | c) magnetic quantum nur                     | mber                    | d) principal quantum         | number                                                 |
| 3.  | Which of the following p                    | pairs of elements exhib | bit diagonal relationship    | o?                                                     |
|     | a) Be and Mg                                | b) Li and Be            | c) Be and B                  | d) Be and Al                                           |
| 4.  | The cause of permanent                      | hardness of water is d  | ue to                        |                                                        |
|     | a) $Ca(HCO_3)_2$                            | b) $Mg(HCO_3)_2$        | c) CaCl <sub>2</sub>         | d) $MgCO_3$                                            |
| 5.  | Match the flame colours                     | of the alkali and alkal | line earth metal salts in    | the Bunsen burner                                      |
|     | 1) Sodium                                   | (i) Blue                |                              | <b>7</b>                                               |
|     | 2) Caesium                                  | (ii) Apple gr           | reen                         |                                                        |
|     | 3) Calcium                                  | (iii) Yellow            |                              |                                                        |
|     | 4) Barium                                   | (iv) Brick red          |                              |                                                        |
|     | a) (1)-(iii), (2)-(iv), (3)-(               | i), (4)-(ii)            | b) (1)-(i), (2)-(ii), (3)-   | ·(iv), (4)-(iii)                                       |
|     | c) (1)-(iii), (2)-(i), (3)-(iv              |                         | d) (1)-(ii), (2)-(i), (3)-   | ·(iv), (4)-(iii)                                       |
| 6.  | The value of the gas con                    | stant R is              |                              |                                                        |
|     | a) $0.082 \ dm^3 \ atm$                     |                         | b) $0.987 \ cal \ mol^{-1}k$ | -1                                                     |
|     | c) 8.3 $J mol^{-1}k^{-1}$                   |                         | d) 8 $erg \ mol^{-1}k^{-1}$  |                                                        |
| 7.  | The temperature of the s                    | ystem, decreases is an  |                              |                                                        |
|     | a) Isothermal expansion                     |                         | b) Isothermal Compre         |                                                        |
|     | c) adiabatic expansion                      |                         | d) adiabatic compress        | ion                                                    |
| 8.  | $\frac{K_c}{K_p}$ for the reaction $N_2(g)$ |                         | (g) is:                      |                                                        |
|     | a) $\frac{1}{RT}$                           | b) $\sqrt{RT}$          | c) RT                        | $\mathbf{d}) (RT)^2$                                   |
| 9.  | Normality of 1.25 M sul                     | phuric acid is:         |                              |                                                        |
|     | a) 1.25 N                                   | b) 3.75 N               | c) 2.5 N                     | d) 2.25 N                                              |
| 10. | According to Valence bo                     | ond theory a bond betw  | ween two atoms is form       | ed when:                                               |
|     | a) fully filled atomic orb                  | itals overlap           | b) half filled atomic        | orbitals overlap                                       |
|     | c) non-bonding atomic o                     | rbitals overlap         | d) empty atomic orbit        | als overlap                                            |
| 11. | In an organic compound,                     | , phosphorus is estima  | ated as:                     |                                                        |
|     | a) $Mg_2P_2O_7$                             | b) $Mg_3(PO_4)_2$       | c) $H_3 PO_4$                | d) $P_2O_5$                                            |
| 12. | Homolytic fission of cov                    | alent bond leads to th  | e formation of               |                                                        |
|     | a) Electrophile                             | b) Nucleophile          | c) Carbo cation              | d) Free radical                                        |
| 13. | The compounds formed                        | at anode in the electro | olysis of aqueous solution   | on of potassium acetate are                            |
|     | a) $CH_4$ and $H_2$                         | b) $CH_4$ and $CO_2$    | c) $C_2H_6$ and $CO_2$       | d) $C_2H_4$ and $Cl_2$                                 |
| 14. | The name of $C_2F_4Cl_2$ is                 |                         |                              |                                                        |
|     | a) Freon – 112                              | b) Freon – 113          | c) Freon _ 114               | d) Fregon – 115                                        |

c) Nuclear pollution d) Soil pollution PART - II  $6 \times 2 = 12$ Note: Answer any six questions. Question no.24 is compulsory. 16. What do you understand by the term mole? Ch 1 17. Define orbital. Ch 2 18. How is tritium prepared? Ch 4 19. Explain intensive properties with two examples. Ch 7 20. Distinguish between diffusion and effusion Ch 9 21. Write  $K_p$  and  $K_C$  for the reaction Ch 8  $2CO(g) \rightleftharpoons CO_2(g) + C(S)$ 22. Give the IUPAC name of the following compounds Ch 11 i)  $CH_2 = CH - CH = CH_2$ ii)  $CH_3 - C \equiv C - CH - CH_3$ 23. What happens when acetyl chloride is treated with excess of  $CH_3MgI$ ? Ch 14 24. Complete the following: Ch 13  $CH_3CH_2OH \xrightarrow{Conc.H_2SO_4} A$ PART-III  $6 \times 3 = 18$ Note: Answer any six questions. Question no.33 is compulsory. 25. Explain the fact that he second ionisation potential is always higher than first ionisation potential. Ch 3 26. What are the uses of heavy water? Ch 4 27. Give any three similarities between Beryllium and Aluminium. Ch 5 28. Mention the three methods used for liquefaction of Gases. Ch 6 29. Define Molality. Ch 9 30. State Fajan's rule Ch 10 31. Which is considered to be earth's protective umbrella? Why? Ch 15 32. How the aromatic character of a compound can be decided by Huckel's rule? Ch 13 33. Define: i) Sigma bond ii) Pi bond Ch 10 PART - IV  $5 \times 5 = 25$ **Note: Answer all the questions.** 34. a) Write shorts note on: Ch 2 i) Magnetic Quantum Number ii) Azimuthal Quantum Number (OR) b) Calculate the effective nuclear charge on 4s electron and 3d electron in Scandium Ch 3

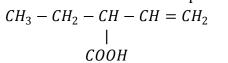
kindly send me your key Answers to our email id - padasalai.net@gmail.com

www.Trb Tnpsc.com

15. Bhopal gas Tragedyn Padasalai. Net

b) Air pollution

a) Thermal pollution


| 35. | a)           | i) What is water gas shift lead fon?                        | www.                        | Trb Tnpsc.com        | Ch 4           |
|-----|--------------|-------------------------------------------------------------|-----------------------------|----------------------|----------------|
|     |              | ii) Write the uses of sodium bicarbonate                    |                             |                      | Ch 5           |
|     |              |                                                             | (OR)                        |                      |                |
|     | b)           | i) State Joule-Thomson effect                               |                             |                      | Ch 6           |
|     | - /          | ii) A sample of gas at $15^{\circ}C$ at 1 atm has a v       | volume of $2.58 \ dm^3$ . V | When the temperature |                |
|     |              | $38^{\circ}C$ at 1 atm, does the volume of the ga           |                             | =                    | Ch 6           |
| 36. | a) ]         | Derive the relation between $\Delta H$ and $\Delta U$ for a |                             |                      | the            |
|     |              | uation                                                      |                             |                      | Ch 7           |
|     |              |                                                             | (OR)                        |                      |                |
|     | b)           | i) What is reaction Quotient (Q)?                           |                             |                      | Ch 8           |
|     | - /          | ii) Write the four colligative properties.                  |                             |                      | Ch 9           |
| 37. | a) ]         | Discuss the formation of $N_2$ molecule using               | MO Theory.                  | (7)                  | Ch 10          |
|     | ĺ            | 2                                                           |                             |                      |                |
|     |              |                                                             | (OR)                        |                      |                |
|     | b) :         | Describe the classification of organic compo                | ounds based on their st     | ructure.             | Ch 11          |
| 38. | Co           | mplete the reaction                                         |                             |                      | Ch 13          |
|     |              | i) $CaC_2 \xrightarrow{H_2O}$                               |                             |                      |                |
|     |              | ii) How is DDT prepared?                                    |                             |                      |                |
|     |              | , ,                                                         |                             | 7                    |                |
|     |              |                                                             | (OR)                        |                      |                |
|     | b)           | i) Differentiate BOD and COD                                |                             |                      | Ch 15          |
|     |              | ii) What is green chemistry?                                | 2.0                         |                      | Ch 15          |
|     |              |                                                             |                             |                      |                |
|     |              |                                                             | 2022                        |                      |                |
|     |              | MAI                                                         | RCH – 2023                  |                      |                |
|     |              | P                                                           | ART – I                     |                      |                |
| No  | te:          | i) Answer all the questions.                                |                             | 15 >                 | < 1 = 15       |
|     |              | ii) Choose the most appropriate answer                      | from the given four         | Alternatives and we  | ita tha antian |
|     |              | code and corresponding answer.                              | from the given four         | Aiternatives and wi  | ne the option  |
| 1.  | Ch           | loroform reacts with Nitric acid to produce:                |                             |                      |                |
|     |              | Chloropicrin                                                | b) Nitro toluene            |                      |                |
|     |              | Chloropicric acid                                           | d) Nitro glycerine          |                      |                |
| 2.  | So           | dium is stored in                                           |                             |                      |                |
|     | <b>a</b> ) : | <b>Kerosene</b> b) Alcohol                                  | c) Ether                    | d) Water             |                |
| 3.  | Os           | motic pressure $(\pi)$ of a solution is given by            | the equation:               |                      |                |
|     | <b>a</b> ) : | $\pi v = nRT$ b) $\pi RT = n$                               | c) $\pi = nRT$              | d) none of these     |                |
| 4.  | Th           | e IUPAC name of the compound                                |                             |                      |                |
|     |              | НО                                                          |                             |                      |                |
|     |              | $CH_3 - CH - CH_2 - CH = CH - CH_3$                         |                             |                      |                |
|     | a) l         | hex-2-en-4-ol <b>b) hex-4-en-2-ol</b>                       | c) hex-2-en-4-al            | d) hex-4-en-2-al     |                |

| 5.  | - I effect is shown by Pac                          | dasalai.Net                                                  | www.Trb Tnpsc.com         |                                       |  |
|-----|-----------------------------------------------------|--------------------------------------------------------------|---------------------------|---------------------------------------|--|
|     | a) – <i>Cl</i>                                      | b) – <i>Br</i>                                               | c) both a) and b)         | d) $-CH_3$                            |  |
| 6.  | Which of the following c                            |                                                              | _                         |                                       |  |
| _   | a) benzene                                          | b) Propene                                                   | c) Ethane                 | d) Ethyne                             |  |
| 7.  | The boiling point of heava) 375.4 K                 | yy water [ <i>D</i> <sub>2</sub> <i>0</i> ] 1s<br>b) 373.4 K | c) 376.2 K                | d) 374.4 K                            |  |
| 8.  | Which of the following is                           | ,                                                            |                           | u) 3/4.4 K                            |  |
| •   | a) entropy                                          | b) internal energy                                           | c) frictional energy      | d) enthalpy                           |  |
| 9.  | The pH of Normal rain w                             |                                                              | ,                         | , , , , , , , , , , , , , , , , , , , |  |
|     | a) 5.6                                              | b) 6.5                                                       | c) 4.6                    | d) 7.5                                |  |
| 10. | Which one of the followi                            | ng is aromatic?                                              |                           |                                       |  |
|     | a)                                                  |                                                              | b)                        |                                       |  |
|     |                                                     |                                                              |                           | *                                     |  |
|     |                                                     |                                                              |                           |                                       |  |
|     |                                                     |                                                              |                           | <b>(</b> ()                           |  |
|     |                                                     |                                                              |                           |                                       |  |
|     | •                                                   |                                                              |                           |                                       |  |
|     | c) // \                                             |                                                              | d) both a) and b)         |                                       |  |
|     | //                                                  |                                                              |                           |                                       |  |
|     | [/                                                  |                                                              |                           |                                       |  |
|     |                                                     |                                                              |                           |                                       |  |
|     |                                                     |                                                              |                           |                                       |  |
| 11. | The total number of orbit                           |                                                              | Principal Quantum Nu      |                                       |  |
|     | a) 5                                                | <b>b</b> ) 9                                                 | c) 7                      | d) 8                                  |  |
| 12. | Assertion: Oxygen mol                               | · ·                                                          |                           |                                       |  |
|     |                                                     | -                                                            | bonding molecular orb     | ital                                  |  |
|     | a) Assertion is true but                            |                                                              |                           |                                       |  |
|     | b) Both assertion and rea                           |                                                              | is the correct explana    | tion of assertion.                    |  |
|     | c) Both Assertion and read                          |                                                              | n is not the correct own  | lonation of assertion                 |  |
| 13  | d) Both Assertion and rea<br>What would be the IUPA |                                                              | <del>-</del>              |                                       |  |
| 13. | a) didibium                                         | b) bibibiium                                                 | c) bibibium               | d) bididium                           |  |
| 14  | <i>'</i>                                            |                                                              | ,                         | ame temperature and pressure. The     |  |
|     | molar mass of the unkow                             |                                                              | iai of thirogen at the st | ame temperature and pressure: The     |  |
|     |                                                     | _                                                            | c) $120 \ g \ mol^{-1}$   | d) 110 $a \ mol^{-1}$                 |  |
| 15. | Solubility of carbon-di-o                           |                                                              |                           |                                       |  |
|     | a) decrease in pressure                             |                                                              | b) increase in volume     | ,                                     |  |
|     | c) increase in pressure                             |                                                              | d) none of these          |                                       |  |
|     |                                                     |                                                              |                           |                                       |  |
|     |                                                     |                                                              |                           |                                       |  |
|     |                                                     | PA                                                           | ART – II                  |                                       |  |
| No  | te : Answer any six ques                            | tions, Question no.24                                        | is compulsory.            | $6 \times 2 = 12$                     |  |
| 16  | Distinguish between oxid                            | lation and reduction                                         |                           | Ch 1                                  |  |
|     | State Heisenberg's Uncer                            |                                                              |                           | Ch 2                                  |  |
|     | Mention the uses of Plast                           | • • •                                                        |                           | Ch 5                                  |  |
|     | State Le-Chatelier princip                          |                                                              |                           | Ch 8                                  |  |

 $20. \ Define \ Oskintley \textbf{Rucasture your key Answers to our email id-padasalai.net@gmail.com} \quad Ch \ 9$ 

| 21. | . Draw the Lewis www. Trb Tnpsc.com                                                                                                                                         | Ch 10              |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|
| 22. | . Write short notes on Friedel Craft's Reaction.                                                                                                                            | Ch 13              |  |  |  |  |  |
| 23. | 23. What are Particulate Pollutants? Give example                                                                                                                           |                    |  |  |  |  |  |
| 24. | . Calculate the entropy change during the melting of one mole of ice into water at $0^{\circ}C$                                                                             | and 1 atm          |  |  |  |  |  |
|     | pressure. Enthalpy of fusion of ice is $6008  J  mol^{-1}$                                                                                                                  | Ch 7               |  |  |  |  |  |
|     | PART – III                                                                                                                                                                  |                    |  |  |  |  |  |
| No  | te: Answer any six questions. Question no.33 is compulsory.                                                                                                                 | $6 \times 3 = 18$  |  |  |  |  |  |
| 25. | . Balance the following equations by oxidation number method                                                                                                                | Ch 1               |  |  |  |  |  |
|     | i) $KMnO_4 + Na_2SO_3 \rightarrow MnO_2 + Na_2SO_4 + KOH$                                                                                                                   |                    |  |  |  |  |  |
|     | ii) $Cu + HNO_3 \rightarrow Cu(NO_3)_2 + NO_2 + H_2O$                                                                                                                       |                    |  |  |  |  |  |
| 26. | . Write shorts notes on Principal Quantum number.                                                                                                                           | Ch 2               |  |  |  |  |  |
| 27. | . Explain the Diagonal Relationship                                                                                                                                         | Ch 3               |  |  |  |  |  |
| 28. | . How do you convert Para hydrogen into Ortho hydrogen                                                                                                                      | Ch 4               |  |  |  |  |  |
| 29. | . Derive ideal Gas equation                                                                                                                                                 | Ch 6               |  |  |  |  |  |
| 30. | . What are State and Path Functions? Give two examples.                                                                                                                     | Ch 7               |  |  |  |  |  |
| 31. | . An organic compound (A) with molecular formula $C_2H_5Cl$ reacts with aqueous                                                                                             | is KOH and gives   |  |  |  |  |  |
|     | compound (B) and with alcoholic KOH gives compound (C). Identify (A), (B) and (C                                                                                            | C). Ch 13          |  |  |  |  |  |
| 32. | . Explain inductive effect with suitable example                                                                                                                            | Ch 12              |  |  |  |  |  |
| 33. | . Write the structural formula for the following compounds.                                                                                                                 | Ch 12              |  |  |  |  |  |
|     | i) m-dinitro benzene                                                                                                                                                        |                    |  |  |  |  |  |
|     | ii) p-dichloro benzene                                                                                                                                                      |                    |  |  |  |  |  |
|     | iii) 1,3,5 trimethyl benzene                                                                                                                                                |                    |  |  |  |  |  |
|     | PART – IV                                                                                                                                                                   |                    |  |  |  |  |  |
| No  | te: Answer all the questions.                                                                                                                                               | $5 \times 5 = 25$  |  |  |  |  |  |
| 24  | a) A compound an analysis gave $N\alpha = 14.210\%$ $C = 0.070\%$ $M = 6.220\%$ $O = 60$                                                                                    | OFO/ Coloulate the |  |  |  |  |  |
| 34. | a) A compound on analysis gave $Na = 14.31\%$ , $S = 9.97\%$ , $H = 6.22\%$ , $O = 69$ molecular formula of the compound, if all the Hydrogen in the compound is present in |                    |  |  |  |  |  |
|     | Oxygen as water of Crystallisation. [molecular mass of the compound is 322]                                                                                                 | Ch 1               |  |  |  |  |  |
|     | Oxygen as water of crystamsation. [molecular mass of the compound is 322]                                                                                                   | Cli I              |  |  |  |  |  |
|     | (OR)                                                                                                                                                                        |                    |  |  |  |  |  |
|     | b) i) State Pauli Exclusion Principle                                                                                                                                       | Ch 2               |  |  |  |  |  |
|     | ii) State Modern Periodic law                                                                                                                                               | Ch 3               |  |  |  |  |  |
| 35. | a) i) What are isotopes? Write the names of isotopes of Hydrogen.                                                                                                           | Ch 4               |  |  |  |  |  |
|     | ii) Give the uses of Calcium                                                                                                                                                | Ch 5               |  |  |  |  |  |
|     | (OR)                                                                                                                                                                        |                    |  |  |  |  |  |
|     | b) Derive the values of Critical Constants in terms of vander Waals constants                                                                                               | Ch 6               |  |  |  |  |  |
| 36. | a) State the various statements of Second law of Thermodynamics.                                                                                                            | Ch 7               |  |  |  |  |  |
|     | (OR)                                                                                                                                                                        |                    |  |  |  |  |  |
|     |                                                                                                                                                                             | <b>C1</b>          |  |  |  |  |  |
|     | b) i) State law of Mass action                                                                                                                                              | Ch 8               |  |  |  |  |  |
| 27  | ii) What are the limitations of Henry's Law?                                                                                                                                | Ch 9               |  |  |  |  |  |
| 31. | . a) Explain the salient feature of Molecular Orbital theory.                                                                                                               | Ch 10              |  |  |  |  |  |

|     | b) i) Give any three characteristic of organic compound ii) Find the functional group of the following compound A) Acetaldehyde B) Oxalic acid C) Dimethyl ether |                                                                  | Ch 12             |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------|
| 38. | D) Methylamine Explain the structure of Benzene                                                                                                                  |                                                                  | Ch 13             |
|     | (OR)                                                                                                                                                             |                                                                  |                   |
|     |                                                                                                                                                                  |                                                                  |                   |
|     | b) i) Starting from $CH_3MgI$ , how will you prepare the form                                                                                                    | ollowing?                                                        | Ch 14             |
|     | A) Ethyl alcohol  P) A cataldahyda                                                                                                                               |                                                                  |                   |
|     | B) Acetaldehyde                                                                                                                                                  | ×                                                                |                   |
|     | C) Ethyl methyl ether ii) What is Eutrophication?                                                                                                                |                                                                  |                   |
|     | ii) what is Europineation:                                                                                                                                       |                                                                  |                   |
|     |                                                                                                                                                                  |                                                                  |                   |
|     | JULY - 202                                                                                                                                                       | 2                                                                |                   |
|     | PART – I                                                                                                                                                         |                                                                  |                   |
| No  | te: i) Answer all the questions.                                                                                                                                 |                                                                  |                   |
|     | ii) Choose the most appropriate answer from th                                                                                                                   |                                                                  |                   |
|     | code and the corresponding answer                                                                                                                                | 15                                                               | $5 \times 1 = 15$ |
| 1.  | Total number of electrons present in 1.7 g of ammonia i                                                                                                          |                                                                  |                   |
|     | a) 6. $022 \times 10^{23}$ b) $\frac{6.022 \times 10^{22}}{1.7}$ c) $\frac{6.022}{1.7}$                                                                          | $\frac{\times 10^{24}}{7}$ d) $\frac{6.022 \times 10^{23}}{1.7}$ |                   |
| 2.  | The total number of orbitals associated with the principal                                                                                                       | ol quantum number $n = 3$                                        |                   |
|     | a) 9 b) 8 c) 5                                                                                                                                                   | d) 7                                                             |                   |
| 3.  | Tritium, is a emitter                                                                                                                                            |                                                                  |                   |
|     | a) $\alpha$ b) $\beta$ c) $\gamma$                                                                                                                               | d) none of these                                                 |                   |
| 4.  | is used in devising photoelectric cells.                                                                                                                         |                                                                  |                   |
|     | a) Lithium b) Sodium c) Pota                                                                                                                                     | ssium d) Caesium                                                 |                   |
| 5.  | Among the following the least thermally stable is:                                                                                                               |                                                                  |                   |
|     | a) $K_2CO_3$ b) $Na_2CO_3$ c) $BaC$                                                                                                                              | $O_3$ d) $Li_2CO_3$                                              |                   |
| 6.  | If temperature and volume of an ideal gas is increased to                                                                                                        | twice its values, the initial press                              | sure P becomes:   |
|     | a) 4P b) 2P c) <b>P</b>                                                                                                                                          | d) 3P                                                            |                   |
| 7.  | The amount of heat exchanged with the surrounding at o                                                                                                           | constant pressure is given by the                                | quantity:         |
|     | a) $\Delta E$ b) $\Delta H$ c) $\Delta S$                                                                                                                        | d) $\Delta G$                                                    | -                 |
| 8.  | If X is the fraction of $PCl_5$ , the total number of moles of                                                                                                   | f reactants and products at equilib                              | orium is;         |
|     | a) $0.5 - X$ b) $X + 0.5$ c) $2X + 1$                                                                                                                            | _                                                                | ,                 |
| 9.  | Which one of the following binary liquid mixtures exhib                                                                                                          | , ,                                                              | t's law?          |
|     |                                                                                                                                                                  | er + Nitric acid                                                 |                   |
|     |                                                                                                                                                                  | anol + water                                                     |                   |
| 10. | The ratio of number of sigma ( $\sigma$ ) and pi ( $\pi$ ) bonds in 2                                                                                            |                                                                  |                   |
|     | a) $\frac{8}{3}$ b) $\frac{5}{3}$ c) $\frac{8}{2}$                                                                                                               | Q                                                                |                   |
|     | a) = 0) = 0) =                                                                                                                                                   | d) $\frac{7}{2}$                                                 |                   |



- a) 2-ethylbut-2-enoic acid
- c) 3-ethylbut-2-enoic acid

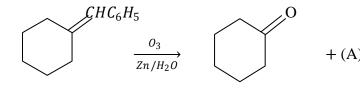
- b) 3-ethylbut-3-enoic acid
- d) 2-ethylbut-3-enoic acid

- 12. Match the following
  - 1)  $-NH_2$

i) Sulpho-

2) - CN

ii) Formyl -


3)  $-SO_3H$ 

iii) Amino -

4) - CHO

- iv) Cyano –
- a) 1) -i, 2) -ii, 3) -iii, 4) -iv)
- b) 1) -iv), 2) -iii), 3) -ii), 4) -i)
- c) 1) -iii), 2) -iv), 3) -i), 4) -ii)
- d) 1) -iii), 2) -i), 3) -iv), 4) -ii)

- 13. *I* effect is not shown by
  - a)  $-CH_2CH_3$
- c) Cl
- 14. Identify the compound (A) in the following reaction :



- a) **CHO**
- b) **CHO**
- c) OH
- **COOH**
- 15. Assertion: Increasing order of boiling points of halo alkanes are

$$CH_3Cl < CH_2Cl_2 < CHCl_3 < CCl_4$$

Reason: The boiling points of halo alkanes increase with increase in the number of halogen atoms

- a) Assertion is true but reason is false
- b) both assertion and reason are true and reason is the correct explanation of assertion
- c) Both Assertion and reason are false
- d) both assertion and reason are true but reason is no the correct explanation of assertion

#### PART - II

Note: Answer any six questions. Question no. 24 is compulsory.

 $6 \times 2 = 12$ 

16. What is meant by limiting reagents?

Ch 1

17. State Heisenberg's uncertainty principle

Ch 2

18. Give an example for ionic hydride and covalent hydride.

Ch 4

19. What is path function? Give two examples

Ch 7

20. Define reaction quotient

- Ch 8
- 21. 50g of tab water contains 20 mg of dissolved solids. What is the TDS value in ppm? 22. How will you prepare ethane by Kolbe's electrolytic method?
- Ch 9 Ch 13

23. Mention any two methods of preparation of haloalkanes from alcohols.

- Ch 14
- 24. If an automobile engine burns petrol at a temperature of 1089 K and if the surrounding temperature is 294 K, calculate its maximum possible efficiency. Ch 7

#### Note: Answer any six questions. Question no.33 is compulsory. $6 \times 3 = 18$ 25. Calculate the empirical formula of a compound containing 76.6% carbon, 6.38%, hydrogen and rest Ch 1 oxygen. 26. Compare the ionisation energy of beryllium and boron Ch 3 27. Distinguish between diffusion and effusion. Ch 6 28. At particular temperature $K_c = 4 \times 10^{-2}$ for the reactions Ch 8 $H_2S_{(g)} \rightleftharpoons H_{2(g)} + \frac{1}{2} S_{2(g)}$ Calculate $K_c$ for each of the following reactions i) $2H_2S_{(g)} \rightleftharpoons 2H_{2(g)} + S_{2(g)}$ ii) $3H_2S_{(g)} \rightleftharpoons 3H_{2(g)} + \frac{3}{2}S_{2(g)}$ 29. What are the conditions when a solution tends to behave like an ideal solution? Ch 9 Ch 10 30. Describe fajan's rule 31. Write short notes on hyper conjugation Ch 12 32. Explain Brich reduction Ch 13 33. Give an example for each of the following type of organic compounds Ch 11 i) Non-benzonoid aromatic compound ii) Aromatic heterocyclic compound iii) carbocyclic compound $5 \times 5 = 25$ **Note: Answer all the questions.** 34. a) i) Describe about magnetic quantum number? Ch 2 ii) Give the electronic configuration of $Mn^{2+}$ and $Cr^{3+}$ Ch 2 (OR) b) i) What are f-block elements? Ch 3 ii) State the trends in the variation of electronegativity in group and periods Ch 3 35. a) Discuss the similarities between lithium and magnesium Ch 5 (OR) b) i) Define entropy. Give its unit. Ch 7 Ch 7 ii) List any three characteristics of gibbs free energy. 36. a) Derive $K_c$ and $K_p$ for synthesis of ammonia Ch 8 (OR) b) Discuss the formation of $C_2$ molecule using MO theory Ch 10 37. a) Mention the shape of the following molecules based on VSEPR theory Ch 10 iii) *PCl*5 i) *BF*<sub>3</sub> ii) $BrF_3$ iv) $SF_6$ $v) IF_7$

Ch 11

(OR)

kindly send me your key Answers to our email id - padasalai.net@gmail.com

| 38 | (A) reacts with HBr to gi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                       |                            | chlorine gives (B).<br>Ch 13 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------|------------------------------|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              | (OR)                                                                  |                            |                              |
|    | b) Starting from $CH_3Mg_4$<br>i) Acetaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I, how will you pr<br>ii) Acetone                                            | repare the following iii) Methane                                     | <u>;</u> ?                 | Ch 14                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              | MAY - 2022                                                            |                            |                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              | PART – I                                                              |                            |                              |
| No | ote: i) Answer all the que                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | estions.                                                                     |                                                                       |                            | $15 \times 1 = 15$           |
|    | Choose the most apprope corresponding answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | riate answer froi                                                            | n the given four a                                                    | lternatives and write th   | e option code and            |
| 1. | Which of the following is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s aliphatic saturate                                                         | ed hydrocarbon?                                                       |                            |                              |
|    | a) $C_9H_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b) $C_8 H_{14}$                                                              | c) $C_8H_{18}$                                                        | d) All of the ab           |                              |
| 2. | Equimolal aqueous solutifreezing point of KCl sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              |                                                                       | f the freezing point of Na | aCl is $-2^{\circ}$ C, the   |
|    | a) $-1$ °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>b</b> ) <b>-2</b> °C                                                      | c) 0°C                                                                | d) -4°C                    |                              |
|    | The correct relative order<br><b>a)</b> $-C(CH_3)_3 > -CH(CG_3)_3 > -CH_2CH_3 > CH_2CH_3 > -CH_2CH_3 > CH_3CH_3 > -CH_3CH_3 > CH_3CH_3 > -CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(H_3)_2 > -CH_2CH_3$<br>- $-CH(CH_3)_2 > -C(CH_3)_3 > -C$                   | $H_3 > -CH_3$<br>$-C(CH_3)_3$<br>$CH(CH_3)_2$                         |                            |                              |
| 4. | 7.5 g of a gas occupies a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | _                                                                     | =                          |                              |
| _  | a) CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                                                       | , <b>-</b>                 |                              |
| 5. | Assertion: In monohaloan<br>Reason: Halogen atom is<br>a) Assertion is true but re<br>b) Both assertion and rea<br>c) Both assertion and rea<br>d) Both assertion and rea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a ring deactivator<br>eason is false<br>son are true and re<br>son are false | eason is the correct                                                  | explanation of assertion   |                              |
| 6. | The intensive property ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nong the quantitie                                                           |                                                                       |                            |                              |
|    | a) Enthalpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b) mass                                                                      | c) $\frac{mass}{volume}$                                              | d) volume                  |                              |
| 7. | <ul> <li>Which one of the following a) Presence of catalyst af</li> <li>b) for a system at equilical constant version of the following constant version ve</li></ul> | fects both the forv<br>brium Q is alway<br>aries with tempera                | tement?<br>ward reaction and re<br>y <b>s less than the eq</b> uature |                            | ne extent.                   |
| 8. | Match the following $(1) -NO_{2}$ $(2) -OCH_{3}$ $(3) -CH_{2} - CH_{2} - C$ $(4) -NH_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (i) propy<br>(ii) Amir                                                       | l<br>no<br>noxy                                                       |                            |                              |

| a) (1)-(iii), (2)-( <b>\(\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{\mathre{</b> | b) (1)-(iii), (2)-(iv), (2) |                             |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|----|
| c) (1)-(iv), (2)-(iii), (3)-(i), (4)-(ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d) (1)-(ii), (2)-(i), (3)-  |                             |    |
| 9. Spodumene is the mineral source for which of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                           |                             |    |
| a) Lithium b) Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c) Rubidium                 | d) Potassium                |    |
| 10. Which of the following has highest hydration er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | » a al                      |    |
| a) $BaCl_2$ b) $MgCl_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c) $SrCl_2$                 | d) $CaCl_2$                 |    |
| 11. Tritium nucleus contains:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                             |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c) $1p + 1n$                | d) $2p + 1n$                |    |
| 12. Which one of the following is diamagnetic?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                             |    |
| a) $O_2^{2-}$ b) $O_2^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c) <i>O</i> <sub>2</sub>    | d) None of these            |    |
| 13. Splitting of spectral lines in an electric field is c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | alled:                      |                             |    |
| a) Compton effect b) Zeeman effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c) Stark effect             | d) shielding effect         |    |
| 14. A bottle of ammonia and a bottle of HCl connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eted through a long tub     | e are opened simultaneously | at |
| both ends. The white ammonium chloride ring v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | will be first formed:       | . 01                        |    |
| a) near the ammonia bottle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c) at the centre of the     | tube                        |    |
| c) throughout the length of the tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d) near the hydroger        | n chloride bottle           |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                             |    |
| 15. $\bigcirc CH_2 - C - CH_3$ and $CH_2 = C - CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $H_3$ are                   |                             |    |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                             |    |
| 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                             |    |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                             |    |
| a) optical isomers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b) resonating structure     | es                          |    |
| c) conformers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d) tautomers                |                             |    |
| PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ART – II                    |                             |    |
| Note: Answer any six questions. Question no.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s compulsory.               | $6\times2=12$               |    |
| 16. Define Gram equivalent mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | Ch 1                        |    |
| 17. Calculate the maximum number of electrons that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | it can be accommodate       |                             |    |
| 18. Mention the three types of covalent hydrides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | Ch 4                        |    |
| 19. What are the conditions for the spontaneity of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nrocess                     | Ch 7                        |    |
| 20. Explain sign convention of heat?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | process                     | Ch 7                        |    |
| 21. Give a balanced chemical equation for the equil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ibrium reaction for wh      |                             |    |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iorium reaction for win     | •                           |    |
| given by expression $K_C = \frac{[NH_3]^4 [O_2]^5}{[NO]^4 [H_2 O]^6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             | Ch 8                        |    |
| 22. Define the term "isotonic" solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | Ch 9                        |    |
| 23. How will you convert ethyl chloride to ethane?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | Ch 1                        | 3  |
| 24. Complete the following reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                             |    |
| i) $C_6H_5Cl + 2NH_3 \xrightarrow[50 \text{ atm}]{250 \text{ °C}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                             |    |
| ii) $C_6H_5Cl + 2Na + Cl - C_6H_5 \xrightarrow{Ether} \Delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                             |    |
| PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RT – III                    |                             |    |
| Note: Answer any six questions. Question no. 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | is compulsory               | $6 \times 3 = 18$           |    |
| 25. Calculate the oxidation number of underlined el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ements                      | Ch 1                        |    |
| i) $\underline{CO_2}$ ii) $H_2\underline{SO_4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | CII I                       |    |
| 26. Define electron affinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | Ch 3                        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                             |    |

27. State Dalton Law wrong and spleis Nets. www.Trb Tnpsc.com Ch 6 28. Write the formula to calculate the molar mass of a solute from realative lowering of vapour pressure values. Ch 9 29. Describe the formation of HF molecule by orbital overlap Ch 10 30. What is meant by optical isomerism? Ch 11 31. Give any three differences between nucleophiles and electrophiles Ch 12 32. What happens when ethylene is passed through cold dilute alkaline potassium permanganate? Ch 13 33. The equilibrium concentrations of  $NH_3$ ,  $N_2$  and  $H_2$  are  $1.8 \times 10^{-2} M$ .  $1.2 \times 10^{-2} M$  and  $3 \times 10^{-2} M$ respectively. Calculate the equilibrium constant for the formation of  $NH_3$  from  $N_2$  and  $H_2$ PART - IV **Note: Answer all the questions.**  $5 \times 5 = 25$ 34. a) i) How many orbitals are possible for n = 4? Ch 2 ii) Write the electronic configuration and orbital diagram for nitrogen? Ch 10 (OR) b) Describe the pauling method for the determination of ionic radius Ch 3 35. a) i) What are the reasons for the anomalous properties of Berylium? Ch 5 ii) Give any three properties of beryllium that are different from other elements of the group Ch 5 (OR) b) Explain the characteristics of internal energy. Ch 7 36. a) How will you determine the molar mass of solute from elevation of boiling point? Ch 9 (OR) b) Define i) Bond length ii) Bond angle iii) Bond enthalpy Ch 10 37. a) How will you determine the ionic character in covalent bond using electronegativity values? Ch 10 (OR) b) Give the IUPAC names of the following compounds. Ch 11 i)  $CH_3 - CH - CH - CH_3$  $CH_3$  Brii)  $H_3C - O - CH_3$ iii)  $CH_3 - CH_2 - CH - CHO$ iv)  $H_3C - C \equiv C - CH - CH_3$ v)  $CH_2 = CH - CH = CH_2$ 38. a) How will you prepare the following compounds from benezene? Ch 13 ii) benzene sulphonic acid i) nitrobenzene iii) BHC



4) NaCl iv) Polar covalent bond kindly send me your key Answers to our email id - padasalai.net@gmail.com

b) 1)-ii), 2)-iv), **v3yyy), T4yb**ii**Tynpsc.com** a) 1)-iii), 2)-i), 3yyyy, Ladasalai.Net (1)-ii), (2)-iii), (3)-iv), (4)-i)c) 1)-i), 2)-iv), 3)-ii), 4)-iii) 11. The structure of isobutyl group in organic compound a)  $CH_3 - CH - CH_2$ b)  $CH_3 - CH_2 - CH_2 - CH_2 CH_{2}$ c)  $CH_3 - CH - CH_2 - CH_3$ | | H<sub>3</sub>C - C -| CH<sub>3</sub> 12. Which of the following is optically active? b) 3-chloropentane a) meso-tartaric acid c) glucose d) 2-chloropropane 13. The geometrical shape of carbocation is d) tetrahedral b) linear a) planar c) pyramidal 14. An alkane is obtained by decarboxylation of sodium propionate. Same alkane can be prepared by: b) catalytic hydrogenation of propene a) reduction of 1-chloro propane d) action of sodium metal in iodomethane c) reduction of bromo methane 15. Of the following compounds, which has the highest boiling point? a) t-butyl chloride **b) n-butyl chloride** c) n-propyl chloride d) isobutyl chloride PART - II  $6 \times 2 = 12$ Note: Answer any six questions. Question no.24 is compulsory. 16. What is the empirical formula of the following? Ch 1 i) Fructose  $(C_6H_{12}O_6)$ ii) Caffeine  $(C_8H_{10}N_4O_2)$ 17. State Aufbau principle Ch 2 18. How do you convert para hydrogen into ortho hydrogen? Ch 4 19. Give any two characteristics of gibbs free energy? Ch 7 20. Define Hess's law of constant heat summation. Ch 7 21. What is the relation between  $K_P$  and  $K_C$ ? Give one example for which  $K_P$  is equal to  $K_C$ . Ch 8 22. What is molal depression constant? Ch 9 23. Write short notes on Swarts reaction? Ch 14 24. Complete the following: Ch 13 a)  $CH_3 - CH = CH_2 + H_2 \xrightarrow{Pt}$ b)  $CH_3MgCl + H_2O \rightarrow$ PART - III Note: Answer any six questions. Question no.33 is compulsory.  $6 \times 3 = 18$ Ch 1 25. Distinguish between oxidation and reduction. 26. Define electronegativity. State the trends in the variation of electronegativity in group and period. Ch 3 27. What are homogeneous and heterogeneous equilibria? Give example Ch 8 28. What are ideal solutions? Give example Ch 9 29. Give the shapes of molecules predicted by VSEPR theory Ch 10 b) *NH*<sub>3</sub> c)  $H_2O$ a)  $BeCl_2$ 30. Give the general formula for the following class of organic compounds Ch 11 a) Alkanes b) alkenes c) Alkynes

kindly send me your key Answers to our email id - padasalai.net@gmail.com

32. Suggest a simple chemical test to distinguish propane and propene

Ch 13

33. Inside a certain automobile engine, the volume of air in a cylinder is  $0.375 \ dm^3$ , when the pressure is  $1.05 \ atm$ . When the gas is compressed to a volume of  $0.125 \ dm^3$  at the same temperature. What is the pressure of the compressed air?

#### PART – IV

| Note: Answer all the questions.                                                     | $\times$ 5 = 25 |
|-------------------------------------------------------------------------------------|-----------------|
| 34. a) i) What is exchange energy?                                                  | Ch 2            |
| ii) Write a note on principal quantum number                                        | Ch 2            |
| (OR)                                                                                |                 |
| b) i) Define atomic radius.                                                         | Ch 3            |
| ii) Explain diagonal relationship                                                   | Ch 3            |
| 35. a) Discuss the similarities between beryllium and aluminium                     | Ch 5            |
| (OR)                                                                                |                 |
| b) i) State the first law of thermodynamics                                         | Ch 7            |
| ii) What are the conditions for the spontaneity of a process?                       | Ch 7            |
| 36. a) How will you determine the molar mass of a solute from osmotic pressure?     | Ch 9            |
| (OR)                                                                                |                 |
| b) i) Define Bond order.                                                            | Ch 10           |
| ii) What are the salient features of VB theory?                                     | Ch 10           |
| 37. a) i) What is meant by homologous series?                                       | Ch 11           |
| ii) Give the structure for the following compounds.                                 | Ch 11           |
| 1) 3-methylpentane                                                                  |                 |
| 2) 2-methylpropan-2-ol                                                              |                 |
| 3) Propanone                                                                        |                 |
| (OR)                                                                                |                 |
| b) Explain the formation of $H_2$ molecule using MO-theory                          | Ch 10           |
| 38. a) i) How does Huckel rule help to decide the aromatic character of a compound? | Ch 13           |
| ii) Write the rection for conversion of acetylene to benzene                        | Ch 13           |
|                                                                                     |                 |

b) Simplest alkene (A) reacts with HBr to form compound (B). Compound (B) reacts with ammonia to form compound (C) of molecular formula  $C_2H_7N$ . Compound (C) undergoes carbylamines test. Identify (A), (B) and (C). And write the reactions.

(OR)

## PART – I

Note: i) Answer all the questions.

| ii) Choose the most appropriate answer from the given four alternatives and | write the option   |
|-----------------------------------------------------------------------------|--------------------|
| code and the corresponding answer.                                          | $15 \times 1 = 15$ |

| 1.  | The maximum number o                                                                                  | f electro                   | ons that can be  | accommodated in L or                      | rbit is                     |  |  |
|-----|-------------------------------------------------------------------------------------------------------|-----------------------------|------------------|-------------------------------------------|-----------------------------|--|--|
|     | a) 8                                                                                                  | b) 2                        |                  | c) 4                                      | d) 6                        |  |  |
| 2.  | The relative molecular mass of ethanol is                                                             |                             |                  |                                           |                             |  |  |
|     | a) 0.46g                                                                                              | b) 4.6                      | g                | c) 460 g                                  | d) 46g                      |  |  |
| 3.  | Intra molecular hydrogen                                                                              | n bondin                    | g is present in  | ·                                         |                             |  |  |
|     | a) Ortho-nitro phenol                                                                                 | b) Ice                      |                  | c) water                                  | d) Hydrogen fluoride        |  |  |
| 4.  | Ozone deplection will ca                                                                              | use                         |                  |                                           | (/)                         |  |  |
|     | a) Global warming                                                                                     | b) Fore                     | est fire         | c) Eutrophication                         | d) Bio-magnification        |  |  |
| 5.  | Among the following wh                                                                                | nich is th                  | e path functio   | n?                                        |                             |  |  |
|     | a) G                                                                                                  | b) U                        |                  | c) H                                      | <b>d</b> ) <b>q</b>         |  |  |
| 6.  | Match the following                                                                                   |                             |                  |                                           |                             |  |  |
|     | 1) lodoform                                                                                           |                             | i) fire extingu  | uisher                                    |                             |  |  |
|     | 2) Carbon tetrachlori                                                                                 | de                          | ii) Insecticide  | e                                         |                             |  |  |
|     | 3) CFC                                                                                                |                             | iii) Antiseptio  | c                                         |                             |  |  |
|     | 4) DDT                                                                                                |                             | iv) Refrigerar   | nts                                       |                             |  |  |
|     | a) (1)-(iii), (2)-(i), (3)-(iv                                                                        | v), (4)-(i                  | i)               | b) (1)-(ii), (2)-(iv), (3)-(i), (4)-(iii) |                             |  |  |
|     | c) (1)-(iii), (2)-(ii), (3)-(i                                                                        | v), (4)-(                   | i)               | d) (1)-(i), (2)-(ii), (3)                 | )-(iii), (4)-(iv)           |  |  |
| 7.  | Cold dilute alkaline KMn                                                                              | $nO_4$ is k                 | nown as          | 2.0                                       |                             |  |  |
|     | a) Schiff's reagent                                                                                   | b) Fen                      | ton's reagent    | c) Tollen's reagent                       | d) Baeyer's reagent         |  |  |
| 8.  | Osmotic pressure $(\pi)$ of                                                                           | a solutio                   | on is given by   | the relation                              |                             |  |  |
|     | a) $\pi RT = n$                                                                                       | b) $\pi =$                  | : nRT            | c) $\pi V = nRT$                          | d) None of these            |  |  |
| 9.  | n-propyl bromide on read                                                                              | ction wi                    | th alcoholic K   | OH gives                                  |                             |  |  |
|     | a) Butyl alcohol                                                                                      | b) Proj                     | pene             | c) Butene                                 | d) Propyl alcohol           |  |  |
| 10. | Which of the following i                                                                              | s incorre                   | ect statement?   |                                           |                             |  |  |
|     | a) Equilibrium constant v                                                                             | varies w                    | ith temperatur   | e                                         |                             |  |  |
|     | b) For a system at equilibrium, Q is always less than the equilibrium constant                        |                             |                  |                                           |                             |  |  |
|     | c) Equilibrium can be att                                                                             | ained fr                    | om either side   | of the reaction                           |                             |  |  |
|     | d) Presence of catalyst at                                                                            | ffects bo                   | th the forward   | reaction and reverse r                    | eaction to the same extent. |  |  |
| 11. | Assertion: Helium has th                                                                              | e highes                    | st value of ioni | sation energy among a                     | all the elements known.     |  |  |
|     | Reason: Helium has the highest value of electron affinity among all the elements known.               |                             |                  |                                           |                             |  |  |
|     | a) Both assertion and reason are false                                                                |                             |                  |                                           |                             |  |  |
|     | b) Both assertion and reason are true and the reason is correct explanation for the assertion         |                             |                  |                                           |                             |  |  |
|     | c) Both assertion and reason are true but the reason is not the correct explanation for the assertion |                             |                  |                                           |                             |  |  |
|     | d) Assertion is true and                                                                              | reason                      | is false.        |                                           |                             |  |  |
| 12. | Write the IUPAC name of                                                                               | of <i>CH</i> <sub>3</sub> - | $-CH_2-CH-$      | - CHO                                     |                             |  |  |
|     |                                                                                                       |                             | ।<br>ОН          |                                           |                             |  |  |
|     | a) 1-formyl propanol                                                                                  |                             | 011              | b) 1-hydroxy butana                       | 1                           |  |  |
|     | c) 2-hydroxy butanal                                                                                  |                             |                  | d) 3-hydroxy butana                       |                             |  |  |

| 13. Formula of Gypwww.Padasalai.Net                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                 | www                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trb Tnpsc.com        |                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------|
| a) $CaSO_4$                                                                                                                                                                                                                                                                                                                                        | b) $CaSO_4$ . $2H_2O$                                                                                                                                           | c) $CaSO_4 \cdot \frac{1}{2} H_2 O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d) $CaSO_4$ . $H_2O$ | )                                                                    |
| <ul> <li>14. Gases tend to behave idea</li> <li>a) Low temperature and le</li> <li>c) High temperature and</li> <li>15. Which of the following is</li> <li>a) NH<sub>3</sub></li> </ul>                                                                                                                                                            | lly only at<br>ow pressure<br>I low pressure                                                                                                                    | b) High temperature<br>d) Low temperature<br>c) ( <i>CH</i> <sub>3</sub> ) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • •                  |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                    | P.                                                                                                                                                              | ART – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                                                                      |
| Note: Answer any six questi                                                                                                                                                                                                                                                                                                                        | ons. Question no.24                                                                                                                                             | is compulsory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | $6 \times 2 = 12$                                                    |
| <ul> <li>16. Define basicity. Find the late 17. Write the exchange reaction 18. State zeroth Law of Therm 19. Explain homogeneous and 20. Write the shape and mole 21. Which element exhibits in 22. Write the no bond resonant 23. Give the structure and use 24. In degenerate orbitals, where the partially filled configuration.</li> </ul>    | ons of Deuterium.  nodynamics.  I heterogeneous equilocular geomentry for Enaximum catenation ance structure shown best of DDT.  ny do the completely trations? | libria.<br>3F <sub>3</sub><br>and why?<br>by propene?<br>filled and half filled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | configurations an    | Ch 1 Ch 4 Ch 7 Ch 8 Ch 10 Ch 11 Ch 12 Ch 14 re more stable than Ch 2 |
|                                                                                                                                                                                                                                                                                                                                                    | PA                                                                                                                                                              | ART – III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                                                                      |
| Note: Answer any six questi                                                                                                                                                                                                                                                                                                                        | ons. Question no.33                                                                                                                                             | is compulsory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | $6 \times 3 = 18$                                                    |
| <ul> <li>25. State Heisenber's Uncerta</li> <li>26. Derive ionic radius using</li> <li>27. How do you convert para</li> <li>28. Distinguish between exter</li> <li>29. Calculate the mole fraction of water.</li> <li>30. What is hybridisation? Months</li> <li>31. Explain the different type</li> <li>32. What is green house effect</li> </ul> | pauling's method. hydrogen into ortho leasive and intensive properties of methanol and we mention the type of hybrid sof polymerisation in the gases the        | roperty.  Vater when 0.5 mole or oridization found in Content of the content of t | $H_4$                | Ch 9<br>Ch 10<br>Ch 13<br>Ch 15                                      |
| 33. Explain geometrical isom                                                                                                                                                                                                                                                                                                                       | erism in 2-butene.                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Ch 11                                                                |
|                                                                                                                                                                                                                                                                                                                                                    | PA                                                                                                                                                              | ART – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                                                                      |
| Note: Answer all the question                                                                                                                                                                                                                                                                                                                      | ons.                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | $5 \times 5 = 25$                                                    |
| 34. a) Calculate the empirica hydrogen and rest oxygen                                                                                                                                                                                                                                                                                             |                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | containing 76.6%     | 6 carbon, 6.38% of<br>Ch 1                                           |
|                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                 | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                                                      |
| <ul><li>b) i) Calculate the total n</li><li>ii) Explain why the ele</li><li>35. a) i) Write the laboratory</li></ul>                                                                                                                                                                                                                               | ectron affinity of Be a                                                                                                                                         | and N is almost zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | resent in 3d and 4   | 4f orbitals. Ch 2<br>Ch 3<br>Ch 4                                    |

kindly send me your key Answers to our email id - padasalai.net@gmail.com

ii) Name the different methods of liquefaction of gases

Ch 6

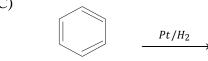
Ch 9

b) i) How is bleaching powder prepared?
ii) Write the uses of magnesium.
iii) Write the mathematical formula for compressibility factor 'Z'
Ch 6
36. a) i) Derive the relation between enthalpy ΔH and internal energy ΔU for an ideal gas.
Ch 7

ii) Define reaction quotient.

(OR)

b) i) Calculate the entropy change during the melting of one mole of ice into water at  $0^{\circ}$ C and 1 atm pressure. Enthalpy of fusion of ice is  $6008J \ mol^{-1}$  Ch 7


ii) Write any four postulates of molecular orbital theory.

37. a) i) What is van't hoff factor 'i'?

") C 1 .

ii) Complete

A)  $CH_2 = CH_2 + H - Br \xrightarrow{Benzoyl \ Peroxide}$ B)  $CH_3CHO \xrightarrow{Acid \ dic\ hromate}$ C)



D) OH  $\xrightarrow{K_2Cr_2O_7}$   $H_2SO_4$ 

(OR)

- b) Explain the purification of a solid organic compound by crystallization method
- 38. a) i) Write Brich reduction.

  Ch 13

ii) Write any three strategies to control environmental pollution. Ch 15

(OR)

b) explain the mechanism involved in the elimination reaction of tertiary butyl chloride with alcoholic KOH.

Ch 14

### PART – I

ii) Choose the most appropriate answer from the given four alternatives and write the option

Note: i) Answer all the questions.

|             | code and the corresp                                                                                                                                                                                | onding answer            |                   |                                            | $15 \times 1 = 15$            |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|--------------------------------------------|-------------------------------|--|
| 1.          | The oxidation number of o                                                                                                                                                                           | carbon in $CH_2F_2$ is _ |                   |                                            |                               |  |
|             | a) +4                                                                                                                                                                                               | b) -4                    | c) 0              | d) + 2                                     |                               |  |
| 2.          | The energy of an electron orbit will be                                                                                                                                                             |                          |                   | _                                          | y of an electron in the first |  |
|             | a) $-3E$                                                                                                                                                                                            | b) $-\frac{E}{3}$        | c) $-\frac{E}{9}$ | $\mathbf{d}) - 9\mathbf{L}$                | ī X                           |  |
| 3.          | The effective nuclear ch $(1s)^2 (2s, 2p)^8 (3s, 3p)^8$                                                                                                                                             |                          | the $d^1$         | electron in the giver                      | electronic configuration,     |  |
|             | / -                                                                                                                                                                                                 | ,                        | c) 2.1            | d) 6.9                                     |                               |  |
| 4.          | The type of H-bonding pro<br>a) Inter molecular H-bond                                                                                                                                              | ing and intra molecu     | lar H-bor         | ding                                       | respectively.                 |  |
|             | b) Intra molecular H-box                                                                                                                                                                            |                          |                   | -bonding                                   |                               |  |
|             | c) Intra molecular H-bond                                                                                                                                                                           | =                        | _                 |                                            |                               |  |
|             | d) Intra molecular H-bond                                                                                                                                                                           | •                        |                   |                                            |                               |  |
| 5.          | When $CaC_2$ is heated in at                                                                                                                                                                        |                          |                   | tric furnace, the compo                    | ound formed is                |  |
|             | a) $Ca(CN)_2$                                                                                                                                                                                       | b) CaNCN                 | c) $CaC_{i}$      | $_2N_2$ d) $CaN$                           | $C_2$                         |  |
| 6.          | When an ideal gas undergo                                                                                                                                                                           | oes unrestrained expa    | ansion, no        | cooling occurs becau                       | se the molecules              |  |
|             | a) are above the inversion                                                                                                                                                                          | temperature              | b) exer           | t no attraction force                      | on each other                 |  |
|             | c) do work equal to the los                                                                                                                                                                         | ss ion kinetic energy    | d) colli          | de without loss of ener                    | gy                            |  |
| 7.          | Among the following state                                                                                                                                                                           | ements, which one is     | are corre         | ct?                                        |                               |  |
|             | <ul><li>i) During cyclic process t<br/>surrounding</li></ul>                                                                                                                                        | he amount of heat a      | bsorbed l         | by the surrounding is                      | equal to work done on the     |  |
|             | ii) Refractive index is an e                                                                                                                                                                        | example for intensive    | property          |                                            |                               |  |
|             | iii) If the enthalpy change                                                                                                                                                                         | -                        |                   |                                            | ous                           |  |
|             | iv) The entropy of an isola                                                                                                                                                                         |                          |                   | = =                                        |                               |  |
|             | • • •                                                                                                                                                                                               | b) (i), (iv)             | _                 | (iv) d) (ii) d                             | only                          |  |
| 8.          | If $k_b$ and $k_f$ for a reve                                                                                                                                                                       |                          |                   |                                            | •                             |  |
|             | equilibrium constant is                                                                                                                                                                             |                          |                   |                                            | 1 ,                           |  |
|             | •                                                                                                                                                                                                   | b) $0.2 \times 10^{-1}$  | c) 0.05           | d) 0.2                                     |                               |  |
| 9.          |                                                                                                                                                                                                     |                          | ,                 | *                                          | ation from raoult's law       |  |
| •           | Assertion: Mixture of carbon tetrachloride and chloroform show positive deviation from raoult's law<br>Reason: In the mixture the inter molecular force of attraction between chloroform and carbon |                          |                   |                                            |                               |  |
|             | tetrachloride is weaker tha                                                                                                                                                                         |                          |                   |                                            |                               |  |
|             | a) Both assertion and rea                                                                                                                                                                           |                          |                   |                                            |                               |  |
|             | b) Both assertion and reas                                                                                                                                                                          |                          |                   | _                                          |                               |  |
|             | c) Both assertion and reason                                                                                                                                                                        |                          |                   | in the confect emplanair                   | on for assortion              |  |
|             | d) Assertion is true, but re                                                                                                                                                                        |                          |                   |                                            |                               |  |
| 10          | . Shape and hybridation of A                                                                                                                                                                        |                          |                   |                                            |                               |  |
| <b>.</b> U. | a) Trigonal bipyramidal sq                                                                                                                                                                          | ~                        | h) Trio           | onal bipyramidal $\mathit{sp}^3\mathit{d}$ | !                             |  |
|             | c) Square pyramidal $sp^3$                                                                                                                                                                          |                          | _                 | hedral, $sn^3d^2$                          |                               |  |
|             | ~ · · · · · · · · · · · · · · · · · · ·                                                                                                                                                             | 14.                      | u Cola            | neam, an a                                 |                               |  |

| 11. Which of the following ad applicative?                                             |                                                                                                                                                                                                   | www.Trb Tnpsc.com         |                           |                                                |                |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|------------------------------------------------|----------------|--|--|
| a)                                                                                     | 3-chlolro pentane                                                                                                                                                                                 |                           | b) 2-chloro propane       |                                                |                |  |  |
| c)                                                                                     | meso-tartaric acid                                                                                                                                                                                |                           | d) glucose                |                                                |                |  |  |
| 12. W                                                                                  | hich of the following s                                                                                                                                                                           | pecies is not electrop    | hile in nature?           |                                                |                |  |  |
| a)                                                                                     | $Cl^+$                                                                                                                                                                                            | b) <i>BH</i> <sub>3</sub> | c) $H_3O^+$               | d) $+NO_2$                                     |                |  |  |
| 13                                                                                     | group is ortho                                                                                                                                                                                    | para directing and de     | eactivating group         |                                                |                |  |  |
|                                                                                        | amino                                                                                                                                                                                             | b) methyl                 | c) halogen                | d) aldehyde                                    |                |  |  |
|                                                                                        | he raw material for Ras                                                                                                                                                                           |                           |                           |                                                |                |  |  |
| ,                                                                                      | chloro benzene                                                                                                                                                                                    | b) phenol                 | c) benzene                | d) anisole                                     |                |  |  |
|                                                                                        | cause kidney da                                                                                                                                                                                   | amage                     |                           |                                                |                |  |  |
|                                                                                        | Cadmium, mercury                                                                                                                                                                                  |                           | b) Lead, Cadmium          |                                                |                |  |  |
| c)                                                                                     | Freon, Fluoride                                                                                                                                                                                   |                           | d) copper, Cadmium        |                                                |                |  |  |
|                                                                                        |                                                                                                                                                                                                   | I                         | PART – II                 |                                                |                |  |  |
|                                                                                        |                                                                                                                                                                                                   | -                         |                           | (7)                                            |                |  |  |
| Note:                                                                                  | Answer any six quest                                                                                                                                                                              | tions. Question no.24     | 4 is compulsory.          | $6 \times 2$                                   | 2 = 12         |  |  |
| 16. W                                                                                  | hat is syn gas? How it                                                                                                                                                                            | is prepared?              |                           |                                                | Ch 4           |  |  |
|                                                                                        | rite any two similaritie                                                                                                                                                                          |                           | and aluminium             |                                                | Ch 5           |  |  |
|                                                                                        | hat is inversion temper                                                                                                                                                                           |                           |                           |                                                | Ch 6           |  |  |
|                                                                                        | -                                                                                                                                                                                                 |                           | ction at equilibrium?     | <b>/</b>                                       | Ch 8           |  |  |
|                                                                                        | <ul><li>19. What is the effect of added inert gas on the rection at equilibrium?</li><li>20. Linear form of carbon dioxide molecules has two polar bonds. Yet the molecule has zero dip</li></ul> |                           |                           |                                                |                |  |  |
|                                                                                        | hy?                                                                                                                                                                                               |                           | 1                         | 1                                              | Ch 10          |  |  |
|                                                                                        | •                                                                                                                                                                                                 | resence of nitrogen ar    | nd sulphur together in an | organic compound?                              | Ch 11          |  |  |
|                                                                                        | 22. What happens when acetylene undergoes ozonolysis?                                                                                                                                             |                           |                           |                                                |                |  |  |
|                                                                                        | 23. What is green chemistry?                                                                                                                                                                      |                           |                           |                                                |                |  |  |
|                                                                                        | alculate the orbital angi                                                                                                                                                                         |                           | and f orbital.            |                                                | Ch 2           |  |  |
|                                                                                        | PART – III                                                                                                                                                                                        |                           |                           |                                                |                |  |  |
| Nata                                                                                   | A                                                                                                                                                                                                 | tions Orestion no 2       | l in a survel a surv      | ( v 2                                          | _ 10           |  |  |
| Note:                                                                                  | Answer any six quest                                                                                                                                                                              | uons. Question no.3.      | o is compulsory.          | 6 × 3                                          | = 18           |  |  |
| 25. W                                                                                  | hat do you understand                                                                                                                                                                             | by the term mole?         |                           |                                                | Ch 1           |  |  |
| 26. Io                                                                                 | nisation potential of ni                                                                                                                                                                          | trogen is greater than    | that of oxygen. Explain   | by giving appropriate                          | reason. Ch 3   |  |  |
| 27. Among the alkali metal halides which is covalent? Explain with reason              |                                                                                                                                                                                                   |                           |                           |                                                | Ch 5           |  |  |
| 28. D                                                                                  | 28. Derive ideal gas equation.                                                                                                                                                                    |                           |                           |                                                |                |  |  |
| 29. D                                                                                  | 29. Define molar heat capacity. Give its unit.                                                                                                                                                    |                           |                           |                                                |                |  |  |
| 30. What is vapour pressure of a liquid? What is relative lowering of vapour pressure? |                                                                                                                                                                                                   |                           |                           |                                                | Ch 9           |  |  |
| 31. E                                                                                  | xplain a suitable metho                                                                                                                                                                           | d for purifying and se    | eparating liquids present | in a mixture having ve                         | ery close      |  |  |
| bo                                                                                     | oiling point.                                                                                                                                                                                     |                           |                           |                                                | Ch 11          |  |  |
| 32. W                                                                                  | 32. What is polymerisation? Explain the two types of polymerisation rection of acetylene.                                                                                                         |                           |                           |                                                |                |  |  |
| 33. T                                                                                  | he bond length between                                                                                                                                                                            | all the four carbon a     | toms is same in 1,3-buta  | diene. Explain with re                         | ason. Ch 12    |  |  |
| PART – IV                                                                              |                                                                                                                                                                                                   |                           |                           |                                                |                |  |  |
| Note:                                                                                  | Note: Answer all the questions. $5 \times 5$                                                                                                                                                      |                           |                           |                                                |                |  |  |
| 34. a)                                                                                 | i) What are auto redo                                                                                                                                                                             | x rections? Give an e     | example.                  |                                                | Ch 1           |  |  |
| u)                                                                                     |                                                                                                                                                                                                   |                           | ues for 3px and $4dx^2$ – | $v^2$ electron?                                | Ch 2           |  |  |
|                                                                                        | ,                                                                                                                                                                                                 |                           | - r                       | <u>,                                      </u> | - <del>-</del> |  |  |

| b)         | i) Why hydrwgen perdated is Netred in plastic containers, nown yells be transferom                                    | Ch 4        |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|
|            | ii) Give the general electronic configuration of lanthanides and actinides.                                           |             |  |  |  |  |  |
| 35. a)     | i) Why blue colour appears during the dissolution of alkali metals in liquid ammonia?                                 | Ch 5        |  |  |  |  |  |
|            | ii) What is boyle's temperature? What happens to real gases above and below the boyle'                                |             |  |  |  |  |  |
|            | temperature?                                                                                                          | Ch 6        |  |  |  |  |  |
|            | (OR)                                                                                                                  |             |  |  |  |  |  |
| <b>b</b> ) | i) Derive the relation between $k_p$ and $k_c$ for a general homogeneous gaseous reaction.                            | Ch 7        |  |  |  |  |  |
| 0)         | ii) How do you measure heat changes at constant pressure?                                                             | Ch 7        |  |  |  |  |  |
| 36. a)     | i) Draw the M.O diagram for oxygen molecule. Calculate its bond order and magnetic                                    |             |  |  |  |  |  |
| 50. u)     | character.                                                                                                            | Ch 8        |  |  |  |  |  |
|            | ii) Draw and explain the graph obtained by plotting solubility versus temperature for calculations.                   |             |  |  |  |  |  |
|            | chloride.                                                                                                             | Ch 9        |  |  |  |  |  |
|            |                                                                                                                       |             |  |  |  |  |  |
|            | (OR)                                                                                                                  |             |  |  |  |  |  |
| b)         | i) Write the IUPAC names for the following compounds:                                                                 | Ch 11       |  |  |  |  |  |
|            | $(X) \qquad 0 \qquad (Y) \qquad (Z)$                                                                                  |             |  |  |  |  |  |
|            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                  |             |  |  |  |  |  |
|            | но                                                                                                                    |             |  |  |  |  |  |
|            | CI                                                                                                                    | e e         |  |  |  |  |  |
|            |                                                                                                                       | -o Ch 10    |  |  |  |  |  |
| 37. a)     | i) Explain about inductive effect.                                                                                    | Ch 12       |  |  |  |  |  |
|            | ii) What do you mean by conformation? Explain about staggered conformation in ethane.                                 | Ch 13       |  |  |  |  |  |
| (OR)       |                                                                                                                       |             |  |  |  |  |  |
|            |                                                                                                                       |             |  |  |  |  |  |
| b)         | i) Among the following compounds, o-dichloro benzene and p-dichloro benzene which ha                                  |             |  |  |  |  |  |
|            | melting point? Explain with reason.                                                                                   | Ch 14       |  |  |  |  |  |
| 20 -)      | ii) Write notes on the adverse effect caused by ozone depletion.                                                      | Ch 15       |  |  |  |  |  |
| 38. a)     | i) Calculate the uncertainty in the position of an electron, if the uncertainty velocity is $5.7 \times 10^5 ms^{-1}$ | Ch 2        |  |  |  |  |  |
|            | ii) what is the mass of glucose $(C_6H_{12}O_6)$ in it one litre solution which is isotonic with $6g$                 | Ch 2        |  |  |  |  |  |
|            | ( $NH_2CONH_2$ )?                                                                                                     | Ch 1        |  |  |  |  |  |
|            |                                                                                                                       | CII I       |  |  |  |  |  |
|            | (OR)                                                                                                                  |             |  |  |  |  |  |
| b)         | i) An organic compound (A) of molecular formula $C_2H_6O$ , on heating with conc. $H_2SO_4$ g                         | gives       |  |  |  |  |  |
|            | compound (B). (B) on treating with cold dilute alkaline $KMnO_4$ gives compound (C). Ide                              | ntify (A),  |  |  |  |  |  |
|            | (B) and (C) and explain the reactions.                                                                                | Ch 13       |  |  |  |  |  |
|            | ii) A simple aromatic hydrocarbon (A) reacts with chlorine to give compound (B) compound                              |             |  |  |  |  |  |
|            | reacts with ammonia to give compound (C) with undergoes carbylamines reaction. Identif                                | fy (A), (B) |  |  |  |  |  |

and (C) and explain the reactions.

Ch 13

## PART – I

| No  | te: i) Answer all the qu                                     | estions.                          |                                                        |                                                          |
|-----|--------------------------------------------------------------|-----------------------------------|--------------------------------------------------------|----------------------------------------------------------|
|     | <ul><li>ii) Choose the mos<br/>and the correspondi</li></ul> |                                   | from the given four al                                 | ternatives and write the option code $15 \times 1 = 15$  |
| 1   | Many of the organic co                                       | mnounds are inflamm               | vable because of its                                   |                                                          |
| 1.  | a) vander waal's force                                       | impounds are inflamin             | b) co-ordinate natur                                   | ra                                                       |
|     | c) covalent nature                                           |                                   | d) ionic nature                                        |                                                          |
| 2   | When $\Delta$ ng is negative in                              | n chemical equilibriu             | · · · · · · · · · · · · · · · · · · ·                  |                                                          |
|     | a) $K_P < K_C$                                               | n enemear equinorial              | b) $K_P = 1/K_C$                                       |                                                          |
|     | c) $K_P = K_C(RT)^{-ve}$                                     |                                   | d) $K_P > K_C$                                         |                                                          |
|     | Find A in the following                                      | reaction                          | $\mathbf{u} / \mathbf{n} p > \mathbf{n}_{\mathcal{U}}$ | . (7)                                                    |
| ٥.  | $CaO + 3C \xrightarrow{3273 K} A -$                          |                                   |                                                        |                                                          |
|     |                                                              |                                   | \ <b>G</b>                                             |                                                          |
|     | a) $CaC_2$                                                   | b) <i>CO</i> <sub>2</sub>         | c) Ca                                                  | d) $Ca_2O$                                               |
| 4.  | Splitting of spectral line                                   | es in an electric field i         |                                                        |                                                          |
|     | a) Compton effect                                            |                                   | b) stark effect                                        |                                                          |
| _   | c) Zeeman effect                                             |                                   | d) shielding effect                                    |                                                          |
| 5.  | Which of the following                                       | •                                 |                                                        |                                                          |
| _   | a) $C_6H_5NH_2$                                              | b) $C_6H_5NH_3^+$                 | c) $C_6H_5OH$                                          | d) <i>C</i> <sub>6</sub> <i>H</i> <sub>5</sub> <i>Cl</i> |
| 6.  | Match the following:                                         |                                   |                                                        |                                                          |
|     | Compound                                                     | uses                              |                                                        |                                                          |
|     | 1) Chloro picrin                                             |                                   | of primay amine                                        |                                                          |
|     | 2) Methyl isocyanide                                         | ii) DDT                           |                                                        |                                                          |
|     | 3) Chlolro benzene                                           | iii) paint re                     |                                                        |                                                          |
|     | 4) Methylene chloride                                        | iv) soil ster                     |                                                        | (2) (1) (1) (1)                                          |
|     | a) (1)-(iv), (2)-(iii), (3)-                                 |                                   | b) (1)-(iii), (2)-(iv),                                |                                                          |
| _   | c) (1)-(i), (2)-(ii), (3)-(i                                 |                                   | d) (1)-(iv), (2)-(i), (                                |                                                          |
| /.  | Use of hot air balloon in                                    |                                   |                                                        |                                                          |
| 0   | a) Kelvin's Law                                              |                                   | c) Boyle's law                                         | d) Newton's law                                          |
| 8.  | What is the pH of rain v                                     |                                   | \                                                      | N 7 5                                                    |
| 0   | a) 5.6                                                       | b) 4.6                            | c) 6.5                                                 | d) 7.5                                                   |
| 9.  | Which compound is nat                                        | _                                 | -                                                      |                                                          |
| 1.0 | a) $Ca_3(PO_4)_2$                                            | b) CaO                            | c) <i>CaH</i> <sub>2</sub>                             | d) <i>CaF</i> <sub>2</sub>                               |
| 10. | The element with positi                                      |                                   | = -                                                    | 1) P                                                     |
| 1 1 | a) Argon                                                     | b) Fluorine                       | c) Hydrogen                                            | d) sodium.                                               |
| 11. | Which of the following                                       |                                   |                                                        | 1) NO                                                    |
| 10  | a) $CO_2$                                                    | b) <i>H</i> <sub>2</sub> <i>O</i> | c) $SO_2$                                              | d) $NO_2$                                                |
| 12. |                                                              | •                                 | -                                                      | s that of ethylene $(C_2H_4)$ ?                          |
|     | a) benzene                                                   | b) ethane                         | c) propene                                             | d) ethyne                                                |
| 13. | They SI unit of molar h                                      |                                   |                                                        |                                                          |
|     | a) $JK^{-1}mol^{-1}$                                         | b) <i>KJ mol</i> <sup>+1</sup>    | · -                                                    | d) cm                                                    |
| 14. | What percentage of solu                                      |                                   |                                                        |                                                          |
| 1   | a) 15%                                                       | b) 50%                            | c) 20%                                                 | d) 30%                                                   |
| 15. | Osmotic pressure $(\pi)$ o                                   | •                                 |                                                        | )                                                        |
|     | a) $\pi RT = n$ kindly send 1                                | me your key Answer                | s to our email id - pad                                | asalai.net@gmail.com                                     |

| Note: Answer any six questions. Question no.24 is compulsory. $6 \times 2$                                                                                               | 2 = 12       |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|
| 16. State and explain pauli's exclusion principle.                                                                                                                       | Ch 2         |  |  |  |  |
| 17. Define valency                                                                                                                                                       |              |  |  |  |  |
| 18. What are ideal gas?                                                                                                                                                  |              |  |  |  |  |
| 19. State the third law of thermodynamics?                                                                                                                               |              |  |  |  |  |
| 20. What is called bond length? Name the techniques through which the length of a bond can                                                                               |              |  |  |  |  |
| determined.                                                                                                                                                              | Ch 10        |  |  |  |  |
| 21. Describe the reaction involved in the detection of nitrogen in an organic compound by lassaigne method.                                                              | Ch 11        |  |  |  |  |
| 22. How is alkane prepared from Grignard reagent?                                                                                                                        | Ch 13        |  |  |  |  |
| 23. Define-acid rain                                                                                                                                                     | Ch 15        |  |  |  |  |
| 24. Which is the suitable method for detection of nitrogen present in food and fertilizers?                                                                              | Ch 11        |  |  |  |  |
| PART – III                                                                                                                                                               |              |  |  |  |  |
| Note: Answer any six questions. Question no.33 is compulsory. $6 \times 3$                                                                                               | 3 = 18       |  |  |  |  |
| 25. Calculate the equivalent mass of $H_2SO_4$                                                                                                                           | Ch 1         |  |  |  |  |
| 26. Explain diagonal relationship.                                                                                                                                       | Ch 3         |  |  |  |  |
| 27. How is Tritium prepared?                                                                                                                                             | Ch 4         |  |  |  |  |
| 28. Define –Le-Chatelier principle.                                                                                                                                      | Ch 8         |  |  |  |  |
| 29. State the term "isotonic solution"                                                                                                                                   | Ch 9         |  |  |  |  |
| 30. Both $C_2H_2$ and $CO_2$ have the same structure. Explain why.                                                                                                       | Ch 10        |  |  |  |  |
| 31. Write note on Williamson's synthesis.                                                                                                                                | Ch 13        |  |  |  |  |
| 32. Explain why $Ca(OH)_2$ is used in white washing.                                                                                                                     | Ch 5         |  |  |  |  |
| 33. Give the structural formula for the following compounds.                                                                                                             | Ch 12        |  |  |  |  |
| a) m-dinitrobenzene b) p-dichlorobenzene c) 1,3,5, Tri-methyl Benzer                                                                                                     | ie           |  |  |  |  |
| PART – IV                                                                                                                                                                |              |  |  |  |  |
| Note: Answer all the questions $5 \times 10^{-5}$                                                                                                                        | 5 = 25       |  |  |  |  |
| 34. a) i) Calculate oxidation number of oxygen in $H_2O_2$                                                                                                               | Ch 1         |  |  |  |  |
| ii) Write the de-brogile equation.                                                                                                                                       | Ch 2         |  |  |  |  |
| (OR)                                                                                                                                                                     |              |  |  |  |  |
| b) i) State and explain Dobereiner's Triad                                                                                                                               | Ch 3         |  |  |  |  |
| ii) Complete the following equation                                                                                                                                      | Ch 4         |  |  |  |  |
| $Na_2O_2+? \rightarrow Na_2SO_4 + H_2O_2$                                                                                                                                |              |  |  |  |  |
| 35. a) i) Among the alkaline earth metals BeO is insoluble in water but other oxides are soluble                                                                         | <b>.</b>     |  |  |  |  |
| Why?                                                                                                                                                                     | Ch 5         |  |  |  |  |
| ii) State Diffusion law.                                                                                                                                                 | Ch 6         |  |  |  |  |
| (OR)                                                                                                                                                                     |              |  |  |  |  |
| b) i) Calculate the entropy change during the melting of one mole of ice into water at 0°C. I                                                                            | Enthaloxy of |  |  |  |  |
| fusion of ice is $6008  J  mol^{-1}$ .                                                                                                                                   | Ch 7         |  |  |  |  |
| ii) Write the balanced chemical equation for the $K_c = \frac{[CaO_{(s)}][CO_{2(g)}]}{\text{kindly send me your key Answers to our}}$ email [cop padasalai.net@gmail.com | Ch 8         |  |  |  |  |

ii) Write the structure of the following compounds

Ch 10

(A)  $NH_3$ 

(B)  $BF_3$ 

(OR)

b) i) identify the cis and trans isomers for the following compounds

Ch 11

a)

b,

ii) Explain with example the positive mesometric effect.

Ch 12

37. a) i) Write the IUPAC names for the following compounds.

Ch 11

(B)

ii) What are nucleophiles and electrophiles? Give one example each

Ch 12

(OR)

b) i) How will you get the following products with the given reactants?

Ch 13

- (A) Acetylene → Benzene
- (B) Phenol → Benzene3
- (C) Benzene → Tolune
- ii) Write any two different components you get during fractional distillation of coal tar at any two different temperatures.

  Ch 13
- 38. a) i) A compound having the empirical formula  $C_6H_6O$  has the vapour density 47. Find its molecular formula.
  - ii) The simple aromatic hydrocarbon compound (A) reacts with bromine to give (B). Compound (A) reacts with Raney Ni and gives (C). Identify (A), (B) and (C).

(OR)

b) i) 
$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$$

Calculate the standard entropy change for the above reaction, given the standard entropies of  $CO_{2(g)}$ ,  $C_{(s)}$ ,  $O_{2(g)}$  are 213.6, 5.740 AND 205  $JK^{-1}$  respectively. Ch 7

ii) Identify the compound (A) and (B)

Ch 14

$$R-C \equiv N \xrightarrow{H_2O/H^+} (A) \xrightarrow{H_2O/H^+} (B)$$

# For any doubts and assistance, feel free to reach me on 90806628732 (Whatsapp) ALL THE BEST

By,

T. S. Narayanan

**PGT Chemistry/Author/NEET Mentor**