

kindly send me your key Answers to our email id - padasalai.net@gmail.com

www.Padasalai.jet 6. Calculate the ratio of in $\frac{[Ag(NH_{3})2]^+}{[Ag(NH_{3})2]^+}$ 0.2 M solution of NH₃. If the stability constant for the complex $[Ag(NH_{3})2]^+$ is 1.7 x 10⁷

$$\begin{split} & [[Ag]^{+} + 2NH_{3} \rightleftharpoons Ag(NH_{3})_{2}]^{+} \Rightarrow stability \ constant \ \ \beta = \frac{[Ag(NH_{3})_{2}]^{+}}{[Ag]^{+} [NH_{3}]^{2}} \\ & [Ag(NH_{3})_{2}]^{+} \rightleftharpoons [Ag]^{+} + 2NH_{3} \implies instability \ constant \ \ \alpha = \frac{[Ag]^{+} [NH_{3}]^{2}}{[Ag(NH_{3})_{2}]^{+}} \\ & \beta = \frac{1}{\alpha} \ ; \ \ \beta = 1.7 \times 10^{7} \ ; \ \alpha = ? \implies \alpha = \frac{1}{\beta} = \frac{1}{1.7 \times 10^{7}} \\ & \alpha = \frac{1}{1.7 \times 10^{7}} = 5.88 \times 10^{-8} \end{split}$$

7. Give an example of coordination compound used in medicine and two examples of biologically important coordination compounds.

Many complexes are used as medicines for the treatment of various diseases. For example,

- Ca-EDTA chelate, is used in the treatment of lead and radioactive poisoning. That is for removing lead and radioactive metal ions from the body.
- Cis-platin is used as an antitumor drug in cancer treatment.
- i) Haemoglobin for oxygen carrier in blood.
- ii) Chlorophyll for photosynthesis in plant.

8. Based on VB theory explain why $[Cr(NH_3)_6]^{3+}$ is paramagnetic, while $[Ni (CN)_4]^{2-}$ is diamagnetic.

	Complex	[Cr(NH ₃) ₆] ³⁺	[Ni (CN) ₄] ²
1	Central metal ion and its outer configuration	Cr ³⁺ 3d ³ 4s ⁰	Ni ²⁺ 3d ⁸ 4s ⁰
2	Outer orbital of metal ion	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3	Nature of the ligand	NH₃ Weak field ligand Does not pair up 3d orbital	CN ⁻ Strong field ligand Pair up 3d orbital
4	Outer orbitals in the presence of ligand	$ \begin{array}{c c} \uparrow \uparrow \uparrow \\ 3d^{3} \\ 4s^{0} \\ 4p^{0} \end{array} $	1↓ 1↓ 1↓ 1↓ 3d ³ 4s ⁰
5	Hybridization	Co. no -6 Hybridization - d ² sp ³	Co. no -4 Hybridization - d ² sp ²
6	Hybridized orbitals of the metal atom in the complex	↑ ↑ ↑ ↑ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ 3d³ d²sp³ Hybridized orbital	ÎI ÎI
7	Geometry	Octahedral	Square planar
8	Orbital complex	Inner orbital	Inner orbital
9	Magnetic	No.of unpaired	No.of unpaired
	property	Paramagnetic	Diamagnetic
	Magnetic moment	$\mu_{\rm s}\sqrt{n(n+2)}$ = $\sqrt{3(3+2)}$ = 3.87 MB	$\mu_{\rm s}\sqrt{n(n+2)}=0$
kindly send me your key Answers to our email id - padasalai.net@gmail.com			

12. Give one test to differentiate [Co $(NH_3)_5$ Cl]SO₄ and [Co $(NH_3)_5$ SO₄]Cl

When ionization isomers are dissolved in water, they ionize to give different ions. These kindly send me your key Answers to our email id - padasalai.net@gmail.com ions then react differently with different reagents to give difference open ucts.

✤ [Co (NH₃)₅ Cl]SO₄ and [Co(NH₃)₅ SO₄]Cl are ionization isomers.

i) When [Co (NH₃)₅ Cl]SO₄ reacts with Barium chloride solution it gives white precipitate of $BaSO_4$

$$[Co(NH_3)_5Br]SO_4 + BaCl_2 \rightarrow [Co(NH_3)_5Br]Cl_2 + BaSO_4(s) \downarrow$$

But $[Co(NH)_3 SO_4]Cl$ complex does not answer this test

ii)When $[Co(NH_3)_5 SO_4]Cl$ reacts with Silver nitrate solution gives white precipitate of silver chloride is formed.

 $[\mathsf{Co}(\mathsf{NH}_3)_5\mathsf{SO}_4]\,\mathsf{Cl} + \mathsf{Ag}\mathsf{NO}_3 \to [\mathsf{Co}(\mathsf{NH}3)5\mathsf{SO}_4]\mathsf{NO}_3 + \mathsf{Ag}\mathsf{Cl}(\mathsf{s}) \downarrow$

13. In an octahedral crystal field, draw the figure to show splitting of d orbitals.

- In an octahedral complex, the metal ion is at the centre and the ligands are at the six corners.
- The directions x, y and z point to the three adjacent corners of the octahedran.
- The lobes of the e_g orbitals (dx²-y² and dz²) point along the x, y and z axis
- While the lobes of the t_{2g} orbitals (dxy, dzx and dyz) point in between the axes.

- As a result, the approach of six ligands along the x, y z, -x,-y and -z directions will increase the energy of dx²-y² and dz² orbitals (which point towards the ligands)
- It increases the energy of dxy, dzx and dyz orbitals (which point in between the metallegand bond axis).

14. What is linkage isomerism? Explain with an example.

This type of isomers arises when an ambidentate ligand is bonded to the central metal atom/ion through either of its two different donor atoms.

[(NH₃)₅Co-NO₂]²⁺

[(NH₃)₅Co-ONO]²⁺

15. Write briefly about the applications of coordination compounds involumetric analysis. The coordination compounds used for various purposes, in **volumetric analysis**

- Colour Tests: Since many complexes are highly coloured they can be used as colouri metric reagents e.g. formation of red 2,2'-bipyridyl and 1,10-phenanthroline complexes as a test for Fe²⁺
- Gravimetric Analysis : Here chelating ligands are often used to form insoluble complexes e.g. Ni(DMG)₂ and Al(oxine)₃.

kindly send me your key Answers to our email id - padasalai.net@gmail.com

- Complexo metric intrations and Masking Agents : www.Trb Tnpsc.com
- An example of this is the use of EDTA in the volumetric determination of a wide variety of metal ions in solution, e.g. Zn²⁺, Pb²⁺, Ca²⁺, Co²⁺, Ni²⁺, Cu²⁺, etc.
- By careful adjustment of the pH and using suitable indicators, mixtures of metals can be analysed, e.g. Bi³⁺ in the presence of Pb²⁺.
- EDTA may be used as a masking agent to remove a metal ion which would interfere with the analysis of a second metal ion present.

16. Classify the following ligand based on the number of donor atoms.

S.no	Ligand	Type of Ligand
1.	NH ₃	Monodentate Ligand
2.	en-	Bidentate Ligand
3.	ox ²⁻	Bidentate Ligand
4.	Triamino triethylamine	Tridentate Ligand
5.	Pyridine	Monodentate ligand
	(D) () ()	

17. Give the difference between double salts and coordination compounds.

	Double salt	Coordination compounds.
1.	The coumpound prepared by combination of two different salts	The compound composed of a central metal ion having coordination bond with ligands
2.	contain ionic bonds between cations and anions.	contain coordinate covalent bonds between metal ion and ligands.
3.	When dissolved in water, double salts are dissociated into ionic species.	They are soluble compounds and are not separated into ionic species.
4.	Can be easily analyzed by determining the ions present in the aqueous solution.	Cannot be easily analyzed by determining the ions present in the aqueous solution
5.	(NH ₄) ₂ Fe(SO ₄) ₂ ·6H ₂ O –Mohr's salt	K ₃ [Fe(SCN) ₆]

18. Write the postulates of Werner's theory.

- The central metal or the metal atoms in coordination compounds show two types of valency. They are the primary and secondary valency.
- The primary valency relates to the oxidation state and the secondary valency relates to the coordinate number.

outer sphere or ionization sphere

- Primary valencies are ionizable and are satisfied by the negative ions.
- Secondary valecies are non-ionizable. These are satisfied by negative ions. Also, the secondary valence is fixed for any metal and is equal to its coordination number.
- According to Werner, there are two spheres of attraction around a metal atom/ion in a complex.
- The inner sphere is known as coordination sphere and the groups present in this sphere are firmly attached to the metal. The outer sphere is called ionisation sphere. kindly send me your key Answers to our email id padasalai.net@gmail.com

The groups present indensity in the complex in a suitable solvent.

19. [Ni(CN)₄] ²	is diamagnetic ,	while [NiCl4] ²⁻	is paramagnetic ,	explain using o	crystal field
theory.					

	[Ni(CN)4] ²⁻	[NiCl4] ²⁻	
Electronic configuration of Ni atom in ground state	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & \uparrow \uparrow & \uparrow \downarrow \\ \hline 3d^8 & & 4s^2 & 4p^0 \end{array} $	
Ni ²⁺ ion			
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Nature of Ligand	CN ⁻ - strong field ligand	Cl ⁻ weak field ligand	
Electronic configuration			
of Ni atom in the			
complexes	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Hybridisation	dsp ²	sp ³	
Geometry	Square planar	Tetrahedral	
Magnetic property	No unpaired electrons	Two unpaired electrons	
	Diamagnetic	Paramagnetic	

20. Why tetrahedral complexes do not exhibit geometrical isomerism.

- Because all the four ligands are adjacent or equidistant to one another in tetrahedral complex.
- The relative positions of donor atoms of ligands attached to the central atom are same with respect to each other.

21. Explain optical isomerism in coordination compounds with an example.

The complexes which are non-superimposable on their mirror images are optically active.

Optically active complexes are asymmetric in nature i.e. not divisible into two identical halves. Levorotatory (I) – the compound which rotates plane polarised light to left hand side.

- Dextrorotatory (d) the compound which rotates plane polarised light to right hand side
- * d and this amena of the company of the contine participation of the contine participation of the company of the contine participation of the contine participat

• Octahedral complexes with coordination number 6"involving 2" or 3" bidentate ligands show optical isomerism.

22. What are hydrate isomers? Explain with an example.

- The exchange of free solvent molecules such as water , ammonia, alcohol etc.. in the crystal lattice with a ligand in the coordination entity will give solvate isomers.
- If the solvent molecule is water, then these isomers are called hydrate isomers.
- The best known example of this occurs for chromium chloride "CrCl₃.6H₂O" which may contain 4, 5, or 6 coordinated water 3+ molecules.
- OH2 H20/ • $[Cr(H_2O)_6]Cl_3$ Violet Cr. OH₂ [CrCl(H₂O)₅]Cl₂.H₂O - Pale -
 - [CrCl₂(H₂O)₄]Cl.2H₂O Dark-green
 - [Cr(OH₂)₅Cl]Cl₂.H₂O $[Cr(OH_2)_6]Cl_3$ These isomers have very different chemical properties and on reaction with $AqNO_3$ to test for CI- ions, would find 1, 2, and 3 CI- ions in solution respectively.

[Cr(OH2)4Cl2]Cl2H2O

23. What is crystal field splitting energy?'

- The degenerate d-orbitals split into two levels i.e., e_q and t_2g in the presence of ligands.
- The splitting of the degenerate levels due to the presence of ligands is called the crystal-field splitting energy.
- While the energy difference between the two levels (eq and t_2q) is called the crystalfield splitting energy.
- ***** It is denoted by Δo .

green

24. What is crystal field stabilization energy (CFSE)?

The crystal field stabilisation energy is defined as the energy difference of electronic configurations in the ligand filed (E_{LF}) and the isotropic field/barycentre (Eiso).

♦ CFSE (ΔE_o) = {E_{LF}} - {Eiso} = {[n_{t2q} (-0.4)+n_{eq}(0.6)] $\Delta o + n_p P$ } - {n'_pP}

- Where nt_{2q} is the number of electrons in t₂gorbitals;
- n_{eq} is number of electrons in e_qorbitals;
- n_p is number of electron pairs in the ligand field
- n'pis the number of electron pairs in the isotropic field (barycentre).

25. A solution of $[Ni(H_2O)_6]^{2+}$ is green , whereas a solution of $[Ni(CN)_4]^{2-}$ is colourless. Explain.

- [Ni $(H_2O)_6$]²⁺ consists of Ni⁺² ion with 3d⁸ electronic configuration.
- In this configuration, there are two unpaired electrons which cannot pair up because H_2O is a weak ligand.
- Thus, the d d transition absorbs the incoming light and it emits a green light.
- Thereby, giving a green color to the solution. $[Ni (CN)_4]^{2-}$ consists of Ni⁺² ion with 3d⁸ electronic configuration.
- But, CN⁻ is present here, which is a strong ligand and in its presence, the unpaired electrons pair up.
- Thus, there is no d –d transition so no color.

kindly send me your key Answers to our email id - padasalai.net@gmail.com

26. Discuss briefly the hates of bonding in metal carbony s.ww.Trb Tnpsc.com

- The metal-carbon bonds in metal carbonyls have both σ and π characters.
- A σ bond is formed when the carbonyl carbon donates a lone pair of electrons to the vacant orbital of the metal.
- A π bond is formed by the donation of a pair of electrons from the filled metal d orbital into the vacant anti-bonding π orbital

- This also known as back bonding of the carbonyl group.
- The σ bond strengthens the π bond
- Thus, a synergic effect is created due to this metal-ligand bonding.
- This synergic effect strengthens the bond between CO and the metal.

27. What is the coordination entity formed when excess of liquid ammonia is added to an aqueous solution copper sulphate?

$CuSO_4 + 4NH_4OH - [Cu(NH_3)_4]^{2+} + 4H_2O$

Tetraamminecopper(II)sulphate

CuSO4 reacts with excess liquid ammonia gives deep blue complex called Tetraamminecopper(II)sulphate. Coordination entity is $[Cu(NH_3)_4]^{2+}$

28. On the basis of VB theory explain the nature of bonding in $[Co(C_2O_4)_3]^{3-1}$

	Complex	[Co (C ₂ O ₄) ₃] ³⁻	
1	Central metal ion and its outer configuration	Co ³⁺ 3d ⁶ 4s ⁰	
2	Outer orbital of metal		
	ion	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
3	Nature of the ligand	$(C_2O_4)_3^{2^-}$	
		Weak field Ligand and hence	
		no pairing of 3d orbital	
4	Outer orbitals in the		
	presence of ligand	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
5	Hybridization	Co. no -6	
		Hybridization – sp ³ d ²	
6	Hybridized orbitals of		
	the metal atom in the complex	$\begin{array}{ $	
		Hybridized orbital	
7	Geometry	Octahedral	
8	Orbital complex	Outer orbital complex	
9	Magnetic property	No.of unpaired electrons= 4	
		Paramagnetic	
	Magnetic moment	= 4.899 BM	
	kindly send me your key Answers to our email id - padasalai.net@gmail.com		

29.	What are	the Winnt Ations d	Provident States of the second secon
-----	----------	---------------------------	--

1. It does not explain the colour of the complex

2. It considers only the spin only magnetic moments and does not consider the other components of magnetic moments.

3. It does not provide a quantitative explanation as to why certain complexes are inner orbital complexes and the others are outer orbital complexes for the same metal.

For example, $[Fe(CN)_6]^{4-}$ is diamagnetic (low spin) whereas $[FeF_6]^{4-}$ is paramagnetic (high spin)

30. Write the oxidation state, coordination number , nature of ligand, magnetic property and electronic configuration in octahedral crystal field for the complex $K_4[Mn(CN)_6]$

	Complex	K ₄ [Mn(CN) ₆]
1.	Electronic configuration in isotropic field	d^{5} $\uparrow \uparrow \uparrow \uparrow \uparrow$ no.of paired electrons(n _p) = 0 $E_{iso} = 0$
2.	Oxidation state and coordination no	Mn is +2 ; Coordination no : 6
3.	Nature of Ligand	CN⁻ is a strong field Ligand
4.	Ligand field	CFSE (ΔE_o) = CFSE (ΔE_o) = {E _{LF} } - {Eiso} = {[5 (-0.4) + 0 (0.6)] Δo +2 P} - {0 P} -2 Δ_o + 2P = (-2 x 35000) + (2 x 30000) -10000 cm ⁻¹ Negative CFSE value indicates that low spin compex is favarouble
5.	Nature of the complex	Low spin complex
6.	Electronic configuration in octahedral field of K4[Mn(CN)6] t ₂ g ⁵ e _g ⁰	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
7.	Magnetic property	No.of unpaired electron s = 1 Paramagnetic
8.	Magnetic moment (using low spin	
L	1	Prepared by
		D.Vignesh. M.Sc, B.Ed
	kindly send me your key Answer	9042939811 s to our email id - padasalai.net@gmail.com