www.Padasalai.Net

www.Trb Tnpsc.com

SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL

SAKKARAMPALAYAM, AGARAM (PO) ELACHIPALAYAM TIRUCHENGODE(TK), NAMAKKAL (DT) PIN-637 202.

Cell:99655-31727, 99655-35967,94422-88402, 80726-68664

PUBLIC EXAMINATION - MARCH - 2024

STD: XII 11.03.2024

SUBJECT: CHEMISTRY TENTATIVE ANSWER KEY MARKS: 70

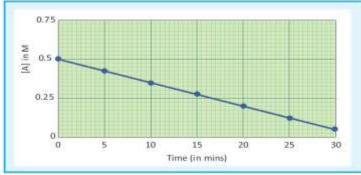
Q.N	SECTION - I			
	CODE - A CODE - B			
1.	b) Both Assertion and Reason are true and Reason is the correct explanation of Assertion	b) First order	1	
2.	c) Potassium trioxalato aluminate (III)	b) acetyl salicylic acid	1	
3.	b) HI	d) carbon dioxide	1	
4.	c) Dry ice	c) Potassium trioxalato aluminate (III)		
5.	c) Cytosine and Uracil	a) Sodium Chloride		
6.	b) acetyl salicylic acid	b) (i) and (iv)		
7.	d) carbon dioxide d) Impure copper		1	
8.	c) acetanilide	b) Both Assertion and Reason are true and Reason is the correct explanation of Assertion	1	
9.	a) Sodium Chloride	c) nucleophilic addition	1	
10.	b) (i) and (iv)	c) Dry ice	1	
11.	c) nucleophilic addition	d) PCC	1	
12.	b) First order	b) HI	1	
13.	d) Impure copper	c) acetanilide	1	
14.	c) Al ₂ O ₃	c) Cytosine and Uracil	1	
15.	d) PCC	c) Al ₂ O ₃	1	
Q.N	SECTION-II		MARKS	
16.	Calcination:Calcination is the process in which the concentrated ore is strongly heated in the absence of air.		2	
17.	Boric acid to Boron nitride: H ₃ BO ₃ + NH ₃ —	800K BN + 3H ₂ O	2	
	Boric acid Boron nitride Sulphuric acid is a dehydrating agent:		1	
18.	It is highly soluble in water and has strong used as a dehydrating agent.	g affinity towards water and hence it can be	1	
kindly send me your key Answers to our email id - padasalai.net@gmail.com				

	www.Padasalai.Net www.Trb Tnpsc.com	
	$C_{12}H_{22}O_{11}+H_{2}SO_{4} \rightarrow 12C + H_{2}SO_{4}. 11H_{2}O$ $(COOH)_{2}+H_{2}SO_{4} \rightarrow CO + CO_{2} + H_{2}SO_{4}. H_{2}O$ $HCOOH + H_{2}SO_{4} \rightarrow CO + H_{2}SO_{4}. H_{2}O$	1
40	(Any ONE example) Common ion effect with Example: When the salt of the weak acid is added to the acid, the dissociation of the weak acid decreases. This is known as common ion effect.	1
19.	• Ex. When sodium acetate is added to acetic acid, the dissociation of acetic acid decreases. Here CH3COO ⁻ is the common ion present.	1
	Fe ³⁺ oxidise bromide to bromine under standard conditions: $E_{cell}^{o} = \left(E_{ox}^{o}\right) + \left(E_{red}^{o}\right)$	1
20.	= $-4.09 + 0.771$ = $-0.319V$ E_{coll}^* is $-ve$; ΔG is +ve and the cell reaction is non spontaneous. Hence Fe^{3*} cannot oxidises Br^* to Br_s	1
21.	Kolbe's reaction: Sodium phenoxide prepared from phenol by adding NaOH and it is heated with CO ₂ at 400 K and 4 -7 bar pressure sodium salicylate is formed then it reacts with dil.HCl, salicylic acid is formed OH ONA OH COONA HT/H ₂ O phenol sodium phenoxide sodium salicylate Salicyclic acid	2
22.	$\alpha \& \beta \ D\text{-glucopyranose structure:}$ CH_2OH H OH OH H OH OH $A - D(+) \ glucopyranose.$ CH_2OH OH H OH OH H OH $A - D(+) \ glucopyranose.$ CH_2OH H OH OH OH H OH $A - D(+) \ glucopyranose.$	1+1
23.	Antibiotics: The medicines that have the ability to kill the pathogenic bacteria are grouped as antibiotics.	2
24.	Order of a reaction: It is the sum of the powers of concentration terms involved in the experimentally determined rate law.	2

kindly send me your key Answers to our email id - padasalai.net@gmail.com \\

	www.Padasalai.Net	www.Trb Tnpsc.com			
Q.N	SECTION-III				
25.	Uses of Helium:				
	1. It is much less denser than air and hence used for filling air balloons.				
	2.Helium has lowest boiling paint and hence used in cryogenics.				
	3.Helium is used to provide inert atmospher				
	4.Helium and oxygen mixture is used by the	Q			
		-			
	This prevents the painful dangerous condition called bends.				
	(Any 3 points)				
26.	More stable Fe ³⁺ or Fe ²⁺				
	Fe ³⁺	Fe ²⁺	_		
	Electronic configuration =[Ar] 3d ⁵ 4s ⁰	nic configuration =[Ar] 3d ⁶ 4s ⁰	1		
	It consists of 5 unpaired electrons	It consists of 4 unpaired electrons.	1		
	ılf filled d sub shell and more stable.	Partially filled d sub shell and less stable	_		
		NO	_		
	Hence Fe ³⁺ is more stable than Fe ²⁺ .		1		
27.	Edge length of unit cell: Given: r = 125pm.	60			
	12 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A		1		
	For ecp $r = \frac{a\sqrt{2}}{4} = \frac{a\sqrt{2}}{2x\sqrt{2x\sqrt{2}}} = \frac{a}{2\sqrt{2}}$				
	$a = 2\sqrt{2} r$				
	= 2 x 1.414 x 125 pm = 353.5 pm		1		
28.	Arrhenius equation:				
	$k = Ae^{-\frac{E_a}{RT}}$		1		
	k is rate constant A is Frequency factor				
	E₃ is Activation energy(Jmol ⁻¹)		2		
	T is Temperature in Kelvin				
29.	R is gas constant (8.314 JK ⁻¹ mol ⁻¹) Chemical adsorption:				
29.	Chemical adsorption is fast with increase.	ease pressure, it cannot alter the			
	amount.	pressure, is common miles one	1 1/2		
	❖ When temperature is raised chemisor	ption first increases and then			
	decreases.				
	Physisorption:❖ In Physisorption, when pressure increase.	eases the extent of adsorption			
	increases.	bases the extent of adsorption	1 ½		
	 Physisorption decreases with increase 	e in temperature.			
30.	Knoevenagal reaction:				
	Benzaldehyde condenses with malor forming cinnamic acid, Pyridine act as the		1		
	Torming chinamic acid, i yridine act as ti	ic basic catalyst.			
<u> </u>					
	kindly send me your key Answers to	our email id - padasalai.net@gmail.com			

	www.Padasalai.Net www.Trb Tnpsc.com			
	C_6H_5 — $CH = O + H_2$ $C \leftarrow COOH \longrightarrow C_6H_5$ $CH = C \leftarrow COOH \longrightarrow C_6H_5$ $CH = CH - COOH$ Benzaldehyde Malonic acid Cinnamic acid			
31.	Reaction of Primary amine with Carbon disulphide(CS ₂):			
31.	CH ₃ - N - H + C = S \longrightarrow CH ₃ - NH - C - SH \longrightarrow CH ₃ - N = C = S + HgS + 2HC1 N - methyl Methyl	3		
	dithiocarbamic acid isothiocyanate			
	Methylamine (Mustard oil smell)			
32.	Peptide bond: The carboxyl group of the first amino acid react with the amino group of the second amino acid to give an amide linkage between these amino acids. This amide linkage is called peptide bond			
	O H CH ₃ O O H CH ₃ O O O O O O O O O O O O O O O O O O O			
33.	(Mere attempt)	3		
	(Mere attempt)			
Q.N	SECTION - IV			
34.	i) Minerals and Ores:			
a)	SN Minerals Ores			
	Naturally occurring substances Minerals that contain high			
	obtained by mining which contain the percentage of metal from which	3		
	metals in free state or in the form of it can be extracted conveniently	3		
	compounds like oxides, sulphides, etc. and economically are called ores.			
	2 All the minerals are not ores All the ores are minerals 3 Mineral of Al is Bauxite Ore of Al is Bauxite			
	3 (Al ₂ O ₃ nH ₂ O) and China clay Ore of Al is Bauxite			
	(Al ₂ O ₃ SiO ₂ .2H ₂ O) (Al ₂ O ₃ nH ₂ O)			
	 ii) Role of Silica in the extraction of copper: In the extraction of copper, silica acts as an acidic flux to remove FeO as slag FeSiO₃. FeO_(s) + SiO_{2(s)} → FeSiO_{3(s)} Flux Slag 			
1.5	i) Uses of Boric acid :			
b)	Boric acid is used in the manufacture of pottery glases, enamels and pigments			
	• It is used as an antiseptic and as an eye lotion			
	• It is also used as a food preservative.			
	ii) Silicates :			
	The mineral which contains silicon and oxygen in tetrahedral [SiO ₄] ⁴⁻ units linked together in different patterns are called silicates.			


kindly send me your key Answers to our email id - padasalai.net@gmail.com

called lanthanoid of Consequences of 1 1) As we move from the decrease in the (covalent character 2) Because of this are quite similar. 3) The elements of	s 4f series, the atomic vith increase in atomic contraction. lanthanoid contraction Ce ³⁺ to Lu ³⁺ , the last size of Ln ³⁺ ions, the r increases) which re	ic number. This tion: basic character of	s decrease in ionic size is	2			
gradual decrease we called lanthanoid of Consequences of late 1) As we move from the decrease in the (covalent character 2) Because of this are quite similar. 3) The elements of	with increase in atom contraction. lanthanoid contraction Ce ³⁺ to Lu ³⁺ , the lasize of Ln ³⁺ ions, the r increases) which re	ic number. This tion: basic character of	s decrease in ionic size is	2			
called lanthanoid of Consequences of 1 1) As we move from the decrease in the (covalent character 2) Because of this are quite similar. 3) The elements of	contraction. lanthanoid contractor Ce ³⁺ to Lu ³⁺ , the last size of Ln ³⁺ ions, the increases) which re	tion: basic character (
Consequences of 1 1) As we move fro the decrease in the (covalent character 2) Because of this are quite similar. 3) The elements of	lanthanoid contract om Ce ³⁺ to Lu ³⁺ , the l size of Ln ³⁺ ions, th r increases) which re	basic character					
 As we move fro the decrease in the (covalent character Because of this are quite similar. The elements of 	om Ce ³⁺ to Lu ³⁺ , the l size of Ln ³⁺ ions, th r increases) which re	basic character					
the decrease in the (covalent character 2) Because of this are quite similar. 3) The elements of	size of Ln ³⁺ ions, the r increases) which re		Consequences of lanthanoid contraction:				
(covalent character2) Because of this are quite similar.3) The elements of	r increases) which re	a iania ahamaata	1) As we move from Ce ³⁺ to Lu ³⁺ , the basic character of Ln ³⁺ ions decreases. Due to				
2) Because of this are quite similar.3) The elements of		the decrease in the size of Ln ³⁺ ions, the ionic character of Ln-OH bond decreases					
2) Because of this are quite similar.3) The elements of		sults in the deci	rease in the basicity.	3			
are quite similar. 3) The elements of	2) Because of this very small change in radii of lanthanoids, their chemical properties						
3) The elements of							
, and the second	the second and third	d transition serie	es resemble each other more				
closely than the ele							
	closely than the elements of the first and second transition series. i) Double salts and Co-ordination compounds:						
S.n Double sa			on compounds				
	Double salts lose their identity They don't lose their identity in aqueous						
	solution by	_	ey do not ionize completely				
	dissociating in to		ion further doesnot get	3			
ions in the		ionized)	ion further doesnot get				
		,	how test for all their				
constituent	test for all the						
Constituent	10118		ns for example in				
			it does not show the test for				
		Fe ²⁺ and CN					
3 Example:		Example					
K2SO4.Al20	K ₂ SO ₄ .Al ₂ (SO ₄) ₃ .24H ₂ O : K ₄ [Fe(CN) ₆]						
coordination con	ii) Coordination compound used in medicine and a biologically important coordination compound: Coordination compound used in medicine: Ca-EDTA chelate radioactive poisoning removing lead and radioactive metal			1			
	ions from body.			•			
		1		•			
Cis- Platin	antitumour dru			1			
Vices all markets	antitumour dru	ug c	ons from body.	_			
Biologically important	coordination compounds:	ug c	cancer treatment USES	1			
Biologically important	coordination compounds:	ug c	USES Carrying oxygen from lungs to tissue,	_			
Biologically important COORDINATION O RBC COMPOSED O GROUP CHLOROPHYLL	coordination compounds:	ug c	uses Carrying oxygen from	_			
Biologically important COORDINATION O RBC COMPOSED O GROUP CHLOROPHYLL simple cubic arran	COMPLEX CENT F HEME Fe ²⁺ Mg ²⁺	ug c	USES Carrying oxygen from lungs to tissue, CO2 from tissue to lungs	_			
Biologically important COORDINATION OF RBC COMPOSED OF GROUP CHLOROPHYLL 36. simple cubic arran [Packing fraction] (or) efficiency Let us consider a	COMPLEX CENT OF HEME Fe ²⁺ Mg ²⁺ Igement, Total volume occ	upied by cell ×100 gth 'a' as shown in	USES Carrying oxygen from lungs to tissue, CO2 from tissue to lungs Photosynthesis	_			

	www.Padasalai.Net www.Trb Tnpsc.com	
	· Volume of the sphere with radius 'r'	
	4	
	$=\frac{\pi}{3}\pi r^3$	1
	$=\frac{4}{3}\pi\left(\frac{a}{2}\right)^3$	
	$=\frac{4}{3}\pi\left(\frac{a^3}{8}\right)$	
	$=\frac{\pi a^3}{}$	
	6 (1)	
	In a simple cubic arrangement, number of	
	spheres belongs to a unit cell is equal to one	1
	Total volume occupied by the spheres in sc unit cell $= 1 \times \left(\frac{\pi a^3}{6}\right)$	
	spheres in sc unit cell (6) (2)	,
	Dividing (2) by (3)	
	(πa^3)	
	Packing fraction $=\frac{\left(\frac{1}{6}\right)}{100} \times 100 = \frac{100 \pi}{100}$	4
	Packing fraction $= \frac{\left(\frac{\pi a^3}{6}\right)}{\left(a^3\right)} \times 100 = \frac{100 \pi}{6}$ $= 52.38\%$	1
	=52.38%	
b)	i) Integrated rate of law	
	A reaction in which the rate is independent of the concentration of the reactant	
	over a wide range of concentrations is called as zero order reactions. Such	
	reactions are rare. Let us consider the following hypothetical zero order	
	reaction.	
	Consider a general zero order reaction.A → Product	
	At t = 0 concentration of reactant = [A _o]	
	At time t, concentration of reactant left = [A]	
		1
	rate = k[A] ^o	
	102011	
	$-\frac{d[A]}{dA} = k$	
	dt	
	- d[A] = k dt	
	Integrate between limits of $[A_0]$ at $t=0$ and $[A]$ at time 't'.	
	(A)	
	$-\int_{[A_0]}^{(A)} d[A] = k \int_0^1 dt$	
	V V*	
	$-([A])_{[A_0]}^{[A]} = k(t)_0^t$	1
	$[A_0] - [A] = kt$	1
	$k = \frac{[A_0] - [A]}{t}$	
	Equation (2) is in the form of a straight line $y = my + a$	
	Equation (2) is in the form of a straight line $y = mx + c$	
	$[A] = -kt + [A_0]$	4
	\Rightarrow y = c + mx	1
	A plot of [A] Vs time gives a straight line with a slope of -k and y - intercept of [A0].	
	kindly send me your key Answers to our email id - padasalai.net@gmail.com	

www.Trb Tnpsc.com

ii) Buffer index:

It is defined as the number of gram equivalents of acid or base added to 1 litre of the buffer solution to change its pH by unity. (**OR**)

$$\beta = \frac{dB}{d(pH)}$$

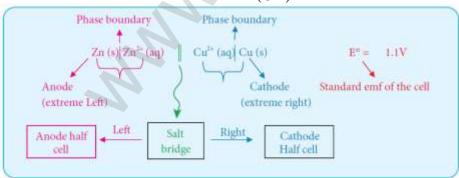
dB = **No.of** gram equivalents of acid / base added to one litre of **buffer** solution.

d(pH) = The change in the pH after the addition of acid / base.

37.a) i) Galvanic cell notation:

The galvanic cell is represented by a cell diagram, for example, Daniel cell is represented as

$$Zn(s) |Zn^{3+}(aq)||Cu^{2+}(aq)|Cu(s)$$


In the above notation, a single vertical bar (|) represents a phase boundary and the double vertical bar (||) represents the salt bridge.

The anode half cell is written on the left side of the salt bridge and the cathode half cell on the right side.

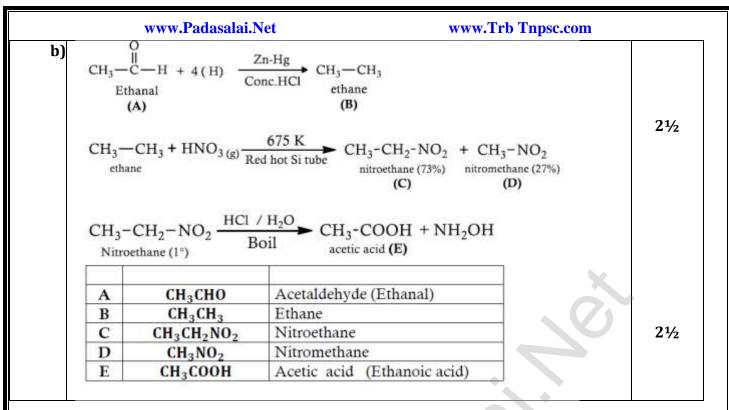
The anode and cathode are written on the extreme left and extreme right, respectively.

The emf of the cell is written on the right side after cell diagram.

(OR)

ii) Gold Number:

- ❖ Gold number is defined as the number of milligrams of hydrophilic colloid that will just prevent the precipitation of 10ml of gold sol on the addition of 1ml of 10% NaCl solution.
- ❖ Smaller the gold number greater the protective power.


2

2

3

kindly send me your key Answers to our email id - padasalai.net@gmail.com

	www.Padasalai.Net www.Trb Tnpsc.com		
b)	Lucas Test:		
	When alcohols are treated with Lucas agent (a mixture of concentrated HCl		
	and anhydrous ZnCl ₂) at room temperature, tertiary alcohols react immediately		
	to form a turbidity due to the formation of alkyl chloride which is insoluble in		
	the medium. Secondary alcohols react within 10 minutes to form a turbidity of		
	alkyl chloride where primary alcohols do not react at room temperature.		
	$\begin{array}{c} \text{CH}_3 & \text{anhydrous} & \text{CH}_3 \\ \text{CH}_3 - \text{C} - \text{OH} + \text{HCl} & \\ \hline & \text{CH}_3 \end{array} \xrightarrow{\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \end{array}} \text{CH}_3 - \text{C} - \text{C1} + \text{H}_2\text{O} \\ \text{CH}_3 \\ \text{2-methylpropan-2-ol} & \text{2-chloro-2-methylpropane} \\ & \text{(immediate appearance of turbidity)} \end{array}$	2	
	OH anhydrous		
	OH anhydrous $CH_3 - CH - CH_3 + HC1 \xrightarrow{ZnCl_2} CH_3 - CH - C1 + H_2O$		
	propan-2-ol 2 -chloropropane		
	propan-2-of 2 -chloropropane (slow appearance of turbidity)	1½	
	anhydrous ZnCl ₂ No reaction at react towards		
	CH_3 - CH_2 - OH + $HC1$ \longrightarrow No reaction at room temperature		
	ethanol (Turbidity appears only on heating)	11/2	
		, _	
38.	i) Grignard reagent:		
a)	Example		
	$C = O + CH_3MgBr \xrightarrow{dry} CH_3 - C - OMgBr \xrightarrow{H_2O} CH_3 - C - OH + Mg$ OH		
	Methyl Magnessium Acetic acid		
	bromide	2	
	(OR)	-	
	CH3M9I + C=0 -> CH3-C-OM9I -> CH3CH2-OH		
	H (6)		
	VH7 K211257		
	CH3 COOH		
	ii) Bio-degradable polymers:		
	The materials that are readily decomposed by microorganisms in the environment are	2	
	called biodegradable.	-	
	Examples:		
	Poly hydroxy butyrate (PHB)Polyglycolic acid (PGA)	1	
	◆ Polylactic acid (PLA)	1	
	kindly send me your key Answers to our email id - padasalai.net@gmail.com		

XII- CHEMISTRY PUBLIC QUESTION PAPER ANALYSIS (MARCH-2024)

11-14	1- Mark 2- Mark		2 14-4	5- Mark		Total
Unit		3- Mark	2- Mark #	3- Mark #		
ı	1	1*		1	1	8
П	1	1		1*	1*	8
111	1	1	1			6
IV			1		1	8
٧	1		1*(Comp)	1	1	9
VI	1		1		1	9
VII	1	1*(Comp)	1		1	9
VIII	1*	1		1*		5
IX	1	1			1*	6
Х	1*		1*	1*		6
XI	2*	1		1	*	9
VII			1.8	1*		
XII	1		1*		1	11
XIII	1		1*			4
XIV	1*	1	1			6
XV	1	1			1	6

*- Book Inside Questions	40 Marks out of 110)
book misiae daestions	TO IVIAINS OUT OF TTO

I- Volume	57
II- Volume	53

kindly send me your key Answers to our email id - padasalai.net@gmail.com

www.Padasalai.Net

www.Trb Tnpsc.com

Prepared By Department of Chemistry SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL

SAKKARAMPALAYAM, AGARAM (PO) ELACHIPALAYAM
TIRUCHENGODE(TK), NAMAKKAL (DT) PIN-637202

D. ANAND M.Sc., B.Ed., - 9750081714
R. SIVAKUMAR M.Sc., B.Ed., - 9976945543
S. SAKTHIVEL M.Sc., B.Ed., - 9361313101
INDHUMATHI M.Sc., B.Ed., - 9043882517

SVB நீட பயிற்சி மையம்

தமிழ் மற்றும் ஆங்கில வழி

சக்கராம்பாளையம், அகரம், திருச்செங்கோடு வட்டம், நாமக்கல் மாவட்டம் - 637 202.

தமிழ்வழியில் கடந்த ஆண்டுகளில் சாதனை

சந்தோஷ் M

சுனில்குமார் K

காவ்யா M

கலைவாணி A

சக்திநேகா R

ராம்æR R

கூர்வினி C

2024 - 2025 CRASH COURSE & Repeaters சிறப்பம்சங்கள்

2017-2018 ம் ஆண்டில் நடைபெற்ற முதல் மருத்துவ கலந்தாய்வில் நமது NEET Centre ல் பயின்ற மாணவி முதல் மாணவியாக தேர்ந்தெடுக்கப்பட்டார்.

- 🗹 15 ஆண்டுகள் அனுபவமிக்க ஆசிரியர்களைக் கொண்டு பயிற்சி அளிக்கப்படுகிறது.
- 🗹 அனைத்துப் பாடங்களுக்கும் முழுமையான பாடக்குறிப்புகள் தமிழிலும் வழங்கப்படும்.
- 🗹 தினந்தோறும் ஒரு பாடத்தில் Slip Test- ம் வாரம்தோறும் ஒரு Cumulative Test-ம் நடத்தப்படுகிறது.
- ✓ அனுபவமிக்க ஆசிரியர்களைக் கொண்டு தயாரிக்கப்பட்ட பயிற்சி ஏடுகள் Study Material மற்றும் Previous Year Question Bank தமிழிலேயே வழங்கப்படுகிறது.
- நீட் நுழைவுக் தேர்வில் குறைவான மதிப்பெண் பெற்ற மாணவர்களை அதிக மதிப்பெண் பெற ஒரு ஆண்டு சிறப்புப் பயிற்சி அளிக்கப்படும்.
- 🗹 ஆண், பெண் இருபாலருக்கும் தனித்தனி விடுதி வசதி உண்டு.

வித்ய

மைட்ளிக் மேல்நிலைப்பள்ளி (TM/EM)

CELL: 99655 31727, 94422 88402

கனவுகள் மெய்ப்படவேண்டும்.

தொடர்ந்து 14 ஆன்டுகளாக 42 வாதுக் தேர்வில் மாநில அளவில் சிறப்பிடம் வாற்ற ஒரே மவ்வி...

2022-2023 ஆம் ஆண்டில் ANNA UNIVERSITY & TOP 10 ENGG. கல்லூரியில் சேர்ந்த மாணவர்கள்

SRI RAM KUMARAN N MOUNEESWARAN S MIT CHENNAL

MIT CHENNAL

SURAJPRASAD P

RITHESH K PSG COLLEGE KOVAL

SANJAY K PARKARIYAMIALA SATHVAMANGAL AM

SANJAY M GLAMANGURU COLLEGE KOVAL

SUJITH G WELLAMMAL ENGINEERING COLLEGE CHEMNAI

GOKUL PRANESH K B SRM COLLEGE CHENNA

HARISHRAGAVAN 5

MONISH B COLLEGE COVA

SANJAY S VELLALAK COLLEGE, DINDAL

MEISHANTH R REGUNDHURALHONGU COLLEGE

MONISH V

KAMAL RAJ KONSU ENGINEERING COLLEGE COVA

PRAVEEN KARTHIKEYAN D PRAVEEN KUMAR N KONGU ENGINEERING COLLEGE SNS COLLEGE COVAL PERUNDHURAL

PRAVIN M KONGU ENGINEERING AEDS **PERBNDURA**

DEEPSHIKA S N SHM VALLHAMMAL COLLEGE ENGINEERING CHENNAL

SHAAJITH R PAUSARIYANMAN CATHVAMANGAI AM

GOKULPRASANTH MIKUMARASAMY COLLEGE OF HINDHUSTHAN COLLETE, COVA ENGINEERING KAALIA

VISHWAN S

NIKILESH KARTHICK P BHAVANBALJI G RAMAKRISHNA ENGINEERING COLLEGE COVAL

PALIFILIAL LINIVERSITY

NITIN P P STO KREHWA ENGINEERING COLLEGE COVA

NAVEENBALAJI S (WURUAL UNIVERSITY

SUDHARSAN J INDUSTAN ENGINEERING COLLEGE COVA

DHARSAN K M POLACHI MAGAUNGAN ENGINEERING COLLEGE

SREENATH S KONGU PERUNDURA

KABILESH P S COVAL

NIRESH KARTHIK N KARLINVA LIMIVERSITY COVA-

MANOJ N COLLEGE: COVAL

MANOJKUMAR K KARPAGAM ENGINEERING KARUNYA UNIVERSITY COVAL

KANISHKUMAR S KARPASAWI COLLEGE DE ENGINEERING. COVA

MANOJ S INDUSTAN ENGINEERING COLLEGE COVAL

LOGAMANYAN R KARUNYA UNIVERSITY COVAL

www.Trb Tnpsc.com

RAGUL S INDUSTAN ENGINEERING COLLEGE, COVAL

RANJITH D OT COLLEGE OF ENGINEERING COVAL

SHARVESH B VSB ENGINEERING COLLEGE COVA

SUJITH S INDUSTAN COLLEGE OF ENGINEERING, COVAL

YUVANSHANKAR S KONGU ENGINEERING COLLEGE PERUNDURAL

POOJA M KPR ENGINEERING COLLEGE COMMUTORE

SRI HARINI P KARPAGAM COLLEGE OF ENGINEERING COMBATORE

JEEVITHA G T VIVEKANANDA COLLEGE DE ENGINEERING **ELAYAMPALAYAM**

KANIKA S VIVEKANANDA COLLEGE OF ENGINEERING COLLEGE **ELAYAMPALAYAM**

SUBHASHREE HARINI N VELLALAR ENGINEERING COLLEGE THINDAL

PRAGADHI C MANGAMARIASI ENGRETTHIG COLLEGE, MADURNI

ELAKKIYA R PERLINDURAL KONGL ENGINEERING COLLEGE

DHARSHINI S KARPAGAM COLLEGE OF ENGINEERING COMMISSIONE

HARSHINI B KARPAGAM COLLEGE DE ENGINEERING, COMBATORE

KANISHKA M P **SNS ENGINEERING** COLLEGE COMBATORE

MADHU PRIYA P NGP COLLEGE CONVBATORE

MONIKA S SAM COLLEGE OF ENGINEERING TRICHY

CHARUMATHI A K JJ COLLEGE OF ENGINEERING THICHY

SHANCHITHA M M. NUMARASAMY COLLEGE OF ENGINEERING KARUR

VARSHA C KALAMAR KARUNANTHI INSTITUTE OF TECHNOLOG COMBATORS

KANISHKA L KUMARASURU COLLEGE OF ENGINEERING, COMMITTORE

SONIKA M KONGLI ENGINEERING COLLEGE: PERUMOURAL

SUNITHA B KARIPAKAM INSTITUTE DF (COMMEATOR)

NITHIKA H KUMRAAGERU COLLEGE OF ENGINEERING COMBATORS

SINDHUJA R

KONGO ENGINEERAN

COLLEGE, PERUNDONA

VARSHINI P KONGLI ENGINETRING COLLEGE PERUNDURAL

AKSHAYA A AVINASILINGAM COMBATORE

BHUMIKA S SALEM KARUPPOOR ENGINEERING

2022-2023 ஆம் ஆண்டில் PILOT & BDS & LAW கல்லூரியில் சேர்ந்த மாணவர்கள்

DEEPAKRAJ R THREWANANDHAPURAM

CARLINE MARY A BANGALORE CHRIST UNIVERSITY

NANDHA COLLEGE PERUNDURAL

THARUN A KALASALINGAM UNIVERSITY VIRUTHUNAGAR

SAKTHIKUMARAN S COUNCELLING

SUBASIVAVELAN K SALEM VINAYAGA MISSION

COLLEGE CHENNAL

மெட்ரிக் மேல்நிலைப்பள்ளி

கள்வுகள் வாய்ப்பட் வேல்கும். சக்கராம்பாளையும், எலச்சிபாளையும், தீருச்செங்கோடு (வ), நாமக்கல் (மா) – 637,202.

www.shrividhyabharathi.com

Email: vidhyabharathi.123@gmail.com

2024 - 2025 ஆம் கல்வியாண்டிற்கான KG முதல் XII வரை அட்மிஷன் நடைபெறுகிறது

- * FOUNDATION, NEET, JEE, UPSC ,OLYMPIAD (For VI to XII)
- 💠 குழந்தைகளுக்கு விளையாட்டு மூலம் கற்றல் கற்பித்தல் (Play Way Method)
- Montessori தரத்தில் கற்றல் கற்பித்தல் நடைபெறுகிறது.
- 💠 KG குழந்தைகளுக்கு தரமாகவும், சுவையாகவும் மதிய உணவு வழங்கப்படுகிறது.
- KG II Std வரை CBSE கற்பித்தல் முறை பின்பற்றப்படுகிறது.
- ் சிறந்த அழகிய கையெழுத்துப்பயிற்சி (தமிழ், ஆங்கிலம் மற்றும் ஹிந்தி) அளிக்கப்படுகிறது.
- 💠 சிறப்பாக ஆங்கிலத்தில் பேசும் பயிற்சி (Communicative English) அளிக்கப்படுகிறது.
- 💠 ஒவ்வொரு மாணவர் மீதும் கனிவான தனிகவனம் செலுத்தப்படுகிறது.
- 💠 கதை, கவிதை, கட்டுரை, ஓவியம் மற்றும் பேச்சாற்றலுக்கான சிறப்பு பயிற்சி அளிக்கப்படுகிறது
- 💠 தமிழ், ஆங்கிலம், ஹிந்தி வாசித்தல் திறனை மேம்படுத்தும் வகையில் பயிற்சிகள் அளிக்கப்படுகிறது.
- 💠 ஹிந்தீ தேர்வுகளுக்கு (ப்ராத்மிக், மத்யமா, ராஷப்ரபாஷா) தேர்வு மையமாக செயல்படுகிறது.
- 💠 ஒவ்வொரு வார இறுதீயிலும் புரிதல் தேர்வு (Understanding Test) நடைபெறுகிறது.
- பாடவாரியாக Club அமைத்து Activity நடைபெறுகிறது.
- சிலம்பம், வில்வித்தை, கராத்தே, பரதம், மேற்கத்திய நடனம், துப்பாக்கீச்சுடுதல் ஆகிய Extracurricular Activity வகுப்புகள் சிறந்த முறையில் நடைபெறுகிறது.
- Education Oriented Field Trip அழைத்துச் செல்லப்படுகிறது.
- Computer பயிற்சி சிறந்த முறையில் அளிக்கப்டுகிறது.
- 💠 மன அமைதி மற்றும் ஞாபக சக்தீயை மேம்படுத்துவதற்காக யோகா வகுப்புகள் நடத்தப்டுகிறது.
- 💠 மாணவர்கள் Chess ல் சிறந்து விளங்க Chess வகுப்புகள் சிறந்த முறையில் நடைபெறுகிறது.
- 🌣 ஒவ்வொரு பருவத் தேர்வு இறுதியிலும் School Level Achievement Survey Test நடத்<u>தப்படுகிறது.</u>
- 💠 மாணவர்களின் உடல் திறனை மேம்படுத்தும் வகையில் விளையாட்டுப் பயிற்சிகள்

(Indoor And Outdoor Games) அளிக்கப்படுகிறது.

Abradunichui Bari f hi aal abricus girgi Bari guirei 2 ari zradi Gurlaan grinci Saiched ang 2001 Bhra Sii Condlanh pyrani baichi

Proper moun is the record of the profession person on place Exemple of the rest of the Property of the Propert

डॉ. अब्दुल क्लाम विद्या देती नयी कत्मना , कत्मना लाती नये विपार । नये विपारों से मिले ज्ञान , ज्ञान बनाए आपको मुहान । । डॉ. अब्दुल कलाम

செல்: 99655 31727, 99655 35967, 94422 88402, 80726 68664