www.Padasalai.Net MID TERM TEST WWW.Padasalai.Net WW.Padasalai.Net WW.Pada

TIME: 1.15 hours

PART - A

MARKS - 45

I. CHOOSE THE CORRECT ANSWER:

 $10 \times 1 = 10$

1. If adj
$$A = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}$$
 and adj $B = \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix}$ then adj (AB) is

(a)
$$\begin{bmatrix} -7 & -1 \\ 7 & -9 \end{bmatrix}$$
 (b) $\begin{bmatrix} -6 & 5 \\ -2 & -10 \end{bmatrix}$ (c) $\begin{bmatrix} -7 & 7 \\ -1 & -9 \end{bmatrix}$ (d) $\begin{bmatrix} -6 & -2 \\ 5 & -10 \end{bmatrix}$

(b)
$$\begin{bmatrix} -6 & 5 \\ -2 & -10 \end{bmatrix}$$

(c)
$$\begin{bmatrix} -7 & 7 \\ -1 & -9 \end{bmatrix}$$

2. The augmented matrix of a system of linear equation is infinitely many solutions if
$$\begin{bmatrix} 1 & 2 & 7 & 3 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & \lambda - 7 & \mu + 5 \end{bmatrix}$$
. The system has

(a)
$$\lambda = 7, \mu \neq -5$$
 (b) $\lambda = -7, \mu = 5$ (c) $\lambda = 7, \mu = -5$ (d) $\lambda \neq 7, \mu \neq -5$

(b)
$$\lambda = -7, \mu = 5$$

(c)
$$\lambda = 7, \mu = -5$$

(d)
$$\lambda \neq 7$$
, $\mu \neq -5$

3. The value of
$$\sum_{i=1}^{n} (i^n + i^{n-1}) =$$

(a)
$$1 + i$$

4. The principal argument of
$$\left[\sin 40^{\circ} + i\cos 40^{\circ}\right]^5$$
 is

5. If
$$w \ne 1$$
 is a cubic root of unity and $(1 + w^2)^{11} = a + bw + cw^2$, then (a, b, c) equals

6. If
$$\alpha$$
, β and δ are the zeros of $x^3 + px^2 + qx + t$ then $\sum \frac{1}{\alpha}$ is

(a)
$$\frac{-q}{r}$$

(b)
$$\frac{-p}{r}$$

(c)
$$\frac{q}{r}$$

(d)
$$\frac{-q}{p}$$

7. If p and q are roots of
$$x^2 + px + q = 0$$
 then

(a)
$$p = 1$$

(b)
$$p = 1 \text{ or } 0$$

(c)
$$p = -2$$

(d)
$$p = -2 \text{ or } 0$$

8. If
$$x = \frac{1}{5}$$
, the value of $\cos \left[\cos^{-1} x + 2\sin^{-1} x\right]$

(a)
$$-\sqrt{\frac{24}{25}}$$

(b)
$$\sqrt{\frac{24}{25}}$$

(c)
$$\frac{1}{5}$$

(d)
$$\frac{-1}{5}$$

- 9. If $\sin^{-1}\frac{x}{5} + \cos ec^{-1}\frac{5}{4} = \frac{\pi}{2}$, then the value of x is

(d) 3

- 10. The principal value of $\tan^{-1} \left[\cot \frac{43\pi}{4}\right]$ is
 - (a) $\frac{-3\pi}{4}$ (b) $\frac{3\pi}{4}$

II. Answer FOUR questions, Q.No. 16 is compulsory:

- 11. If adj $A = \begin{bmatrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, find A^{-1} .
- 12. Find the inverse of $\begin{bmatrix} 2 & -1 \\ 5 & -2 \end{bmatrix}$ by Gauss Jordan method.
- 13. The complex numbers u, v and w are related by $\frac{1}{u} = \frac{1}{v} + \frac{1}{w}$. If v = 3 4i and w = 4 + 3i find "u" in rectangular form.
- 14. Simplify: $\sin \frac{\pi}{6} + i \cos \frac{\pi}{6} \right]^{18}$
- 15. If α , β , and δ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\sum \frac{1}{\beta r}$ in terms of the co - efficients.
- 16. Find the value of $\cos \left[\cos^{-1}(4/5) + \sin^{-1}(4/5)\right]$.

Answer FOUR questions: Q.No. 22 is compulsory:

- 17. Find the rank of $\begin{vmatrix} 3 & -1 & 2 \\ 1 & -2 & 3 \end{vmatrix}$ by row reduction method.
- . 18. If z = x + iy is a complex number such that $\left| \frac{z 4i}{z + 4i} \right| = 1$, show that the locus of z is real axis.

T

- 19. Solve: (x-5)(x-7)(x+6)(x+4) = 504.
- 20. Find the value of $\sec^{-1} \left[\frac{-2\sqrt{3}}{3} \right]$.
- 21. If $\begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then find the matrix A.
- 22. Solve the equation $z^3 + 27 = 0$.

PART - D

IV. Answer ALL the Questions:

 $3 \times 5 = 15$

23. In a competitive examination, one mark is awarded for every correct answer while $\frac{1}{4}$ mark is deducted for every wrong answer. A student answered 100 questions and got 80 marks. How many questions did he answer correctly? [Use Cramer's rule to solve].

(OR)

If $ax^2 + bx + c$ is divided by x + 3, x - 5 and x - 1, the remainders are 21, 61 and 9 respectively. Find a, b and c [Use Gaussian elimination method]

24. If z = x + iy and $\arg \left[\frac{z - i}{z + 2} \right] = \frac{\pi}{4}$ then show that $x^2 + y^2 + 3x - 3y + 2 = 0$.

If $2\cos \alpha = x + \frac{1}{x}$ and $2\cos \beta = y + \frac{1}{y}$ show that

- (i) $x^m y^n + \frac{1}{x^m y^n} = 2\cos(m\alpha + n\beta)$
- (ii) $\frac{x^m}{y^n} \frac{y^n}{x^m} = 2i\sin(m\alpha n\beta)$
- 25. If α , β , and δ are the roots of the polynomial equation $ax^3 + bx^2 + cx + d = 0$, find the value of $\sum \frac{\alpha}{\beta \delta}$ in terms of the co efficients.

(OR)

Prove that $\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \tan^{-1}\left[\frac{x+y+z-xyz}{1-xy-yz-zx}\right]$.

SIVAKUMAR, M., STIRAM Matric. HSS, Vallam.