CLASS : XII www.Padasalai.Negjective type questionwww.Trb Tnpsuppmmathematics

Choose the correct or the most suitable answer from the given four alternatives: **1.** If $A = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 4 \\ 2 & 0 \end{bmatrix}$, then |adj(AB)| =(3) – 60 (2) - 80(4) - 20(1) - 402. If A is a non-singular matrix such that $A^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$, then $(A^{T})^{-1} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 \end{bmatrix}$ (1) $\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$ (2) $\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$ (3) $\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix}$ (4) $\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$ 3. The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4 \end{bmatrix}$ is (1)1(3) 4(4) 3 **4.** If $\rho(A) = \rho([A|B])$, then the system AX=B of linear equations is (1) consistent and has a unique solution (2) consistent (3) consistent and has infinitely many solution (4) inconsistent **5.** If $A^{T}A^{-1}$ is symmetric, then $A^{2} =$ (4) (A⁻¹)² (1) A⁻¹ $(2) (A^{T})^{2}$ (3) A^T **6.** The area of the triangle formed by the complex numbers z, i z and z + i z in the Argand's diagram is $(3)\frac{3}{2}|z|^2$ $(1)\frac{1}{2}|z|^2$ $(2)|z|^2$ $(4)2|z|^2$ 7. If |z| = 1, then the value of $\frac{1+z}{1+\overline{z}}$ is $(3) \frac{1}{\pi}$ (1) z $(2) \overline{z}$ (4)1**8.** If $|z_1| = 1$, $|z_2| = 2$, $|z_3| = 3$ and $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 12$, then the value $|z_1 + z_2 + z_3|$ is (1) 1 (2) 2 (3) 3 (4) 4 **9.** The principal argument of the complex number $\frac{(1+i\sqrt{3})^2}{4i(1-i\sqrt{3})}$ is 9. The prime-r $(1)\frac{2\pi}{3}$ $(2)\frac{\pi}{6}$ $(3)\sqrt{3}i$ $(4)-\sqrt{6}$ $(2)\frac{\pi}{6}$ $(2)\frac{\pi}{6}$ $(2)\frac{\pi}{6}$ $(2)\frac{\pi}{6}$ $(2)\frac{\pi}{6}$ $(2)\frac{\pi}{6}$ $(2)\frac{\pi}{6}$ $(3)\sqrt{3}i$ $(4)-\sqrt{6}$ $(2)\frac{\pi}{6}$ $(2)\frac{\pi}{6}$ $(2)\frac{\pi}{6}$ $(2)\frac{\pi}{6}$ $(2)\frac{\pi}{6}$ $(2)\frac{\pi}{6}$ $(2)\frac{\pi}{6}$ $(2)\frac{\pi}{6}$ $(2)\frac{\pi}{6}$ $(3)\sqrt{3}i$ $(4)-\sqrt{6}$ $(2)\frac{\pi}{6}$ $(3)\frac{\pi}{6}$ $(4)-\sqrt{6}$ $(3)\frac{\pi}{6}$ $(2)\frac{\pi}{6}$ $(3)\frac{\pi}{6}$ $(4)-\sqrt{6}$ $(3)\frac{\pi}{6}$ $(4)-\sqrt{6}$ $(3)\frac{\pi}{6}$ $(4)-\sqrt{6}$ $(4)\frac{\pi}{6}$ $(4)-\sqrt{6}$ $(4)-\sqrt{6}$ (4) $(4) - \sqrt{3}i$ (2) 4(3) 4*i* (1) 0(4) - 4**12.** If $x^3 + 12x^2 + 10ax + 1999$ definitely has a positive zero, if and only if (3) a < 0(2) a > 0 $(4) a \leq 0$ $(1) a \ge 0$ **13.** If $sin^{-1}x + sin^{-1}y = \frac{2\pi}{3}$; then $cos^{-1}x + cos^{-1}y$ is equal to (1) $\frac{2\pi}{3}$ (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{6}$ $(4) \pi$ **14.** The domain of the function defined by $f(x) = sin^{-1}\sqrt{x-1}$ is (2)[-1,1](1)[1,2](3) [0,1] (4)[-1,0]**15.** $tan^{-1}\left(\frac{1}{4}\right) + tan^{-1}\left(\frac{2}{9}\right)$ is equal to $(1)\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right) \qquad (2)\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right) \qquad (3)\frac{1}{2}\tan^{-1}\left(\frac{3}{5}\right) \qquad (4)\tan^{-1}\left(\frac{1}{2}\right)$ **16.** The equation $\tan^{-1}x - \cot^{-1}x = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$ has (2) unique solution (1) no solution (4) infinite number of solutions (3) two solutions **17.** The equation of the circle passing through (1,5) and (4,1) and touching y -axis is

kindly send me your key Answers to our email id - padasalai.net@gmail.com

$x^2 + y^2 - 5x - 8y + \beta ada(a x + N s + 19) = 0$, where λ is equal to Trb Theorem				
(1) 0, $-\frac{40}{9}$	(2) 0	$(3)\frac{40}{9}$	$(4) - \frac{40}{9}$	
18. The centre of the circle inscribed in a square formed by the lines $x^2 - 8x - 12 = 0$ and				
$y^2 - 14y + 45 = 0$ is				
(1) (4,7)	(2) (7,4)	(3) (9,4)	(4) (4,9)	
19. If the normals of the parabola $y^2 = 4x$ drawn at the end points of its latus rectum are tangents to				
the circle $(x - 3)^2 + (y + 2)^2 =$	$= r^2$, then the value c	r^2 IS	(4) 4	
(1) 2 20 Let C be the circle with centre	(2) 5 at (1 1) and radius =1	If T is the circle cent	(4) 4 tered at $(0, y)$ passing	
through the origin and touching the circleC externally, then the radius of T is equal to				
$(1)\frac{\sqrt{3}}{\sqrt{2}}$	$(2)\frac{\sqrt{3}}{2}$	$(3)\frac{1}{2}$	$(4)\frac{3}{4}$	
21. If the two tangents drawn from	n a point P to the para	bola $y^2 = 4x$ are at r	ight angles then the locus	
of P is				
(1) $2x + 1 = 0$	(2) $x = -1$	(3) $2x - 1 = 0$	(4) $x = 1$	
22. If the length of the perpendicu	lar from the origin to	the plane $2x + 3y + 3y$	$\lambda z = 1$, $\lambda > 0$ is $\frac{1}{5}$, then	
the value of λ is		*		
(1) $2\sqrt{3}$	(2) $3\sqrt{2}$	(3) 0	(4) 1	
23. The distance between the plan	es x + 2y + 3z + 7 =	0 and 2x + 4y + 6z	+7 = 0 is	
$(1)\frac{\sqrt{7}}{2\sqrt{2}}$	$(2)\frac{7}{2}$	$(3)\frac{\sqrt{7}}{2}$	$(4)\frac{7}{2\sqrt{2}}$	
24. The angle between the lines $\frac{x-x}{3}$	$\frac{y^2}{z} = \frac{y+1}{-2} = z = 2$, and	$\frac{x-1}{1} = \frac{2y+3}{3} = \frac{z+5}{2}$ is		
(1) $\frac{\pi}{6}$	$(2)\frac{\pi}{4}$	$(3)\frac{\pi}{3}$	$(4)\frac{\pi}{2}$	
25. If \vec{a} , \vec{b} , \vec{c} are three non-coplanar vectors such that $\vec{a} \cdot (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$, then the angle between \vec{a} and				
\vec{b} is				
$(1)\frac{\pi}{2}$	$(2)\frac{3\pi}{4}$	$(3)\frac{\pi}{4}$	(4) π	
26. If $[\vec{a}, \vec{b}, \vec{c}] = 1$ then the value of	$\frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{c} \times \vec{a})}{(\vec{a} \times \vec{b}) \cdot \vec{c}} + \frac{\vec{c} \cdot (\vec{a} \times \vec{a})}{(\vec{c} \times \vec{a})}$	$(\vec{b} \times \vec{b}) (\vec{b}) \cdot \vec{a}$ is		
(1) 1	(2) -1	(3) 2	(4) 3	
27. A stone is thrown up vertically. The height it reaches at time t seconds is given by $x = 80t - 16t^2$.				
The stone reaches the maximu	m height in time t sec	onds is given by		
(1) 2	(2) 2.5	(3) 3	(4) 3.5	
28. The point on the curve $6y = x^3$	+ 2 at which y-coordi	nate changes 8 times	as fast as x-coordinate is	
(1) (4,11) (2) (4,-11) (3) (-4,11) (4) (-4,-11) 20. The maximum alone of the tengent to the survey $= e^{X} ainty = C [0, 2=]$ is at				
29. The maximum slope of the tang	gent to the curve $y = e^{\pi}$	x^{n} Sinx, $x \in [0, 2\pi]$ is a	3π	
$(1) X = \frac{1}{4}$	(2) $X = \frac{1}{2}$	$(3) X = \pi$	(4) $X = \frac{1}{2}$	
30. The maximum value of the fund $\frac{1}{1}$	ction $x^2 e^{-2x}$, x > 0 is	1	4	
$(1)\frac{1}{e}$	$(2)\frac{1}{2e}$	$(3)\frac{1}{e^2}$	$(4)\frac{1}{e^4}$	
31. A circular template has a radius of 10 cm. The measurement of radius has an approximate error of				
0.02 cm. Then the percentage er	rror in calculating are	a of this template is		
(1) 0.2%	(2) 0.4%	(3) 0.04%	(4) 0.08%	
32. The percentage error of firth root of 31 is approximately now many times the percentage error in 31?				
$(1)\frac{1}{2}$	$(2)\frac{1}{2}$	(3) 5	(4) 31	
(*) 31	(-) ₅			

kindly send me your key Answers to our email id - padasalai.net@gmail.com

33. If $U(x, y) = e^{y \cdot y \cdot y}$, then $\frac{\partial y}{\partial y}$	ai.Net Is equal to	al to www.Trb Tnpsc.com			
$(1) e^{x^2 + y^2}$	(2) 2 <i>xu</i>	(3) $x^2 u$	(4) $y^2 u$		
34. The value of $\int_0^{\frac{2}{3}} \frac{dx}{\sqrt{4-9x^2}}$ is					
$(1)\frac{\pi}{6}$	$(2)\frac{\pi}{2}$	$(3)\frac{\pi}{4}$	(4) π		
35. The value of $\int_{-4}^{4} \left[tan^{-1} \left(\frac{x^2}{x^4 + 1} \right) + tan^{-1} \left(\frac{x^4 + 1}{x^2} \right) \right] dx$ is					
(1) π	(2) 2π	(3) 3π	(4) 4π		
36. The value of $\int_0^1 x (1-x)^{99} dx$ is					
$(1)\frac{1}{11000}$	$(2)\frac{1}{101000}$	$(3)\frac{1}{10010}$	$(4)\frac{1}{10001}$		
37. The value of $\int_0^{\pi} \sin^4 x dx$ is					
$(1)\frac{3\pi}{10}$	$(2)\frac{3\pi}{8}$	$(3)\frac{3\pi}{4}$	(4) $\frac{3\pi}{2}$		
38. The volume of solid of revolution of the region bounded by $y^2 = x(a - x)$ about $x - axis$ is					
(1) πa^3	$(2)\frac{\pi a^{3}}{4}$	$(3)\frac{\pi a^{3}}{5}$	$(4)\frac{\pi a^3}{6}$		
38. Let X be random variable with probability density function $f(x) = \begin{cases} \frac{2}{x^3} & x \ge 1 \\ 0 & x < 1 \end{cases}$ Which of the					
(1) both mean and variance exist (2) mean exists but variance does not exist (3) both mean and variance do not exist (4) variance exists but Mean does not exist. 39. Four buses carrying 160 students from the same school arrive at a football stadium. The buses carry, respectively, 42, 36, 34, and 48 students. One of the students is randomly selected. Let X denote the number of students that were on the bus carrying the randomly selected student. One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on that bus. Then E[X] and E[Y] respectively are (1) 50,40 (2) 40,50 (3) 40,75,40 (4) 41,41 40. If $P\{X = 0\} = 1 - P\{X = 1\}$. If $E[X] = 3Var(X)$, then $P\{X = 0\}$. (1) $\frac{2}{2}$ (2) $\frac{2}{5}$ (3) $\frac{1}{5}$ (4) $\frac{1}{2}$					
41. Let X have a Bernoulli distribution with mean 0.4, then the variance of $(2X - 3)$ is					
(1) 0.24	2) 0.48	(3) 0.6	(4) 0.96		
 42. If a * b = √a² + b² on the real numbers then * is (1) commutative but not associative (2) associative but not commutative (3) both commutative and associative (4) neither commutative nor associative 43. If a compound statement involves 3 simple statements, then the number of rows in the truth table 					
(1) 9	(2) 8	(3) 6	(4) 3		
44.					
	$p q (p \land q) \lor \neg$	p			
	T T a				
	F T C				

Which one of the following is correct for the truth value of $(p \land q) \lor \neg p$? (1) T T T T (2) F T T (3) F F T T (4) T T T F kindly send me your key Answers to our email id - padasalai.net@gmail.com

d

F F

45. Which one of the following is hot the following is the following in the following is th

www.Trb Tnpsc.com

(1) Negation of a negation of a statement is the statement itself.

(2) If the last column of the truth table contains only T then it is a tautology.

(3) If the last column of its truth table contains only F then it is a contradiction

(4) If *p* and *q* are any two statements then $p \leftrightarrow q$ is a tautology.

46. If
$$y = f(x^2 + 2)$$
 and $f'(3) = 5$, then $\frac{dy}{dx}$ at $x = 1$ is
(1)5 (2)25 (3)15 (4)10
47. If $y = \frac{1}{a-z}$, then $\frac{dz}{dy}$ is
(1) $(a-z)^2$ (2) $-(z-a)^2$ (3) $(z+a)^2$ (4) $-(z+a)^2$
48. If $x = a \sin \theta$ and $y = b \cos \theta$, then $\frac{d^2y}{dx^2}$ is
(1) $\frac{a}{b^2} \sec^2 \theta$ (2) $-\frac{b}{a} \sec^2 \theta$ (3) $-\frac{b}{a^2} \sec^3 \theta$ (4) $-\frac{b^2}{a^2} \sec^3 \theta$
49. If $f(x) = \left\{ \frac{x+1}{2x-1} | \frac{when}{x} x \ge 2}{2x-1} \right\}$, then f(2) is
(1)0 (2)1 (3)2 (4) does not exists
50. If $f(x) = \left\{ \frac{x+2}{5} | \frac{-1 < x < 3}{x > 3} \right\}$, then at $x = 3$, f(x) is
(1)1 (2)-1 (3)0 (4) does not exists
MURALIRAJA.M.Sc., B.Ed., CELL NO; 9786760672