Choose the correct or the most suitable answer from the given four alternatives:

1. If A, B and C are invertible mat	rices of some order, tl	nen which one of the f	following is not true?	
(1) adj $A = A A^{-1}$			(2) $adj(AB) = (adjA)(adjB)$	
(3) $det A^{-1} = (det A)^{-1}$		(4) $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$		
2. If $A = \begin{bmatrix} 1 & \tan\frac{\theta}{2} \\ -\tan\frac{\theta}{2} & 1 \end{bmatrix}$ and $AB = \frac{1}{2}$	= I ₂ , then B =			
$(1) (\cos^2 \frac{\theta}{2}) A$	$(2) (\cos^2\frac{\theta}{2})A^T$	$(3) (\cos^2 \theta)$ I	$(4) \left(\sin^2\frac{\theta}{2}\right)$ A	
3. If $0 \le \theta \le \pi$ and the syst				
$0, (\sin \theta)x + y - z = 0 \text{ has}$				
$(1)^{\frac{2\pi}{3}}$	$(2)\frac{3\pi}{4}$	$(3)\frac{5\pi}{6}$	$(4)^{\frac{\pi}{-}}$	
4. If $A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$, then $9I_2 - A =$	4	6	$(4)\frac{\pi}{4}$	
(1) A ⁻¹	$(2)\frac{A^{-1}}{2}$	(3) 3A ⁻¹	(4) 2A ⁻¹	
5. If A is a 3 x 3 non-singular matrix such that $AA^T = A^TA$ and $B = A^{-1}A^T$, then $BB^T =$				
(1) A	(2)B	$(3)I_3$	(4)B ^T	
6. The conjugate of a complex number is $\frac{1}{i-2}$. Then, the complex number is				
	$(2)\frac{-1}{i+2}$		$(4) \frac{1}{1}$	
7. z_1 , z_2 and z_3 are complex numb	· · -		v <u>-</u>	
$z_1^2 + z_2^2 + z_3^2$ is	1 . 2		21 1 31	
(1) 3	(2) 2	(3) 1	(4) 0	
8. If α and β are the roots of x^2 +	$x + 1 = 0$, then α^{2020}	$+\beta^{2020}$ is		
(1)-2	(2)-1	(3)1	(4)2	
9. If $ z-2+i \le 2$, then the greatest value of $ z $ is				
$(1)\sqrt{3}-2$	$(2)\sqrt{3} + 2$	$(3)\sqrt{5} - 2$	$(4)\sqrt{5} + 2$	
10. The solution of the equation				
$(1)\frac{3}{2}-2i$	$(2) - \frac{3}{2} + 2i$	$(3)2 - \frac{3}{2}i$	$(4)2 + \frac{3}{2}i$	
11. A polynomial equation in x of	degree n always has			
(1) n distinct roots			ts (4) at most one root	
12. The number of real numbers i				
(1) 2	(2) 4		(4) ∞	
13. The value of $sin^{-1}(cos)$, $0 \le x$ (1) $\pi - x$	$x \le \pi$ is	σ π		
14. If $sin^{-1}x + sin^{-1}y + sin^{-1}z$	$=\frac{3\pi}{2}$, the value of x	$^{2017}+y^{2018}+z^{2019}-$	$-\frac{9}{x^{101}+y^{101}+z^{101}}$ is	
(1) 0	. ,		(4) 3	
15. $sin^{-1}\left(\tan\frac{\pi}{4}\right) - sin^{-1}\left(\sqrt{\frac{3}{x}}\right)$,	Γhen x is a root of the	equation		
$(1) x^2 - x - 6 = 0$	$(2) x^2 - x - 12 = 0$	$(3) x^2 + x - 12 = 0$	$(4) x^2 + x - 6 = 0$	
16. $sin^{-1}(2cos^{-1}x - 1) + cos^{-1}($		_	_	
(1) $\frac{\pi}{2}$	$(2)\frac{\pi}{3}$	$(3)\frac{\pi}{4}$	$(4)\frac{\pi}{6}$	
17. The eccentricity of the hyperb	ola whose latus rectu	m is 8 and conjugate	axis is equal to half the	

distance between the foci is kindly send me your key Answers to our email id - padasalai.net@gmail.com

$(1)\frac{4}{3}$ www.Padasa	alai.Net <u>4</u>	$(3)\frac{2}{\sqrt{3}}$ www.Trb Tnpsc.25cm		
18. The equation of the normal	γS	, -	-	
2x + 4y = 3 is		•	-	
	(2) x + 2y + 3 = 0			
19. The ellipse $E_1: \frac{x^2}{9} + \frac{y^2}{4} = 1$	is inscribed in a rectan	gle R whose sides are	e parallel to the coordinate	
axes. Another ellipse E_2 pas				
eccentricity of the ellipse is				
$(1)\frac{\sqrt{2}}{2}$	$(2)\frac{\sqrt{3}}{2}$	$(3)^{\frac{1}{2}}$	$(4)^{\frac{3}{4}}1.$	
20. Consider an ellipse whose	-	_	ong x-axis. If its eccentricity	
is $\frac{3}{5}$ and the distance between	een its foci is 6, then the	area of the quadrilate	eral inscribed in the ellipse	
with diagonals as major an				
(1) 8	(2) 32		(4) 40	
21. The locus of a point whose	distance from $(-2,0)$ is	$\frac{2}{3}$ times its distance f	from the line $x = \frac{-9}{2}$ is	
(1) a parabola	(2) a hyperbola		(4) a circle	
22. If a vector $\vec{\alpha}$ lies in the plan	ne of \vec{eta} and $\vec{\gamma}$, then	*		
$(1) \left[\vec{\alpha}, \vec{\beta}, \vec{\gamma} \right] = 1$	$(2)\left[\vec{\alpha},\vec{\beta},\vec{\gamma}\right] = -1$	$(3) \left[\vec{\alpha}, \vec{\beta}, \vec{\gamma} \right] = 0$	$(4) [[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 2$	
23. If \vec{a} and \vec{b} are unit vectors s	such that $[\vec{a}, \vec{b}, \vec{a} \times \vec{b}] =$	$\frac{\pi}{4}$, then the angle bet	ween $ec{a}$ and $ec{b}$ is	
$(1) \frac{\pi}{\epsilon}$		$(3)\frac{\pi}{3}$		
24. Consider the vectors \vec{a} , \vec{b} , \vec{c}	· .		=	
determined by the pairs of				
(1) 0°	(2) 45°		(4) 90°	
25. The angle between the line			• •	
(1) 0°	(2) 30°		(4) 90°	
26. The vector equation $\vec{r} = (\hat{\imath}$	$(2-2\hat{\jmath}-\hat{k})+t(6\hat{\imath}-\hat{k})$ r	epresents a straight	ine passing through the	
points				
(1) (0,6,-1) and $(1,-2,-1)$		(2) (0,6,-1) and (-1,-4,-2)		
(3) $(1,-2,-1)$ and $(1,4,-2)$ (4) $(1,-2,-1)$ and $(0,-6,1)$ 27. A balloon rises straight up at 10 m/s. An observer is 40 m away from the spot where the balloon				
left the ground. The rate of			=	
balloon is 30 metres above		ingle of elevation in i	adian per second when the	
	$(2)\frac{4}{25}$ radians/sec	$(3)^{\frac{1}{5}}$ radians/sec	$(4)^{\frac{1}{2}}$ radians/sec	
28. The slope of the line norma	20	5	3	
$(1) - 4\sqrt{3}$	(2) -4	$(3)\frac{\sqrt{3}}{12}$	$(4) 4\sqrt{3}$	
29. The maximum value of the		12		
is	product of two positive	mambers, when then	sum of the squares 200,	
(1) 100	(2) $25\sqrt{7}$	(3) 28	$(4) 24\sqrt{14}$	
30. The curve $y = ax^4 + bx^2$ with	h ab > 0			
(1) has no horizontal tangent		(2) is concave up		
(3) is concave down		(4) has no points of inflection		
31. If we measure the side of a Calculation of the volume		n error of 0.1 cm, ther	tne error in our	
		(3) 2.cu.cm	(4) 4.8.cu.cm	
(1) 0.4 cu.cm kindly send me yo	our key Answers to our o	email id - pädasalai.n	et@gmail.com	

46. $\frac{d}{dx} \left(\frac{2}{\pi} sinx^{\circ} \right)$ is **www.Padasalai.Net**

www.Trb Tnpsc.com

(1) $\frac{\pi}{180} \cos x^{\circ}$

 $(2)\frac{1}{90}\cos x^{\circ} \qquad (3)\frac{\pi}{90}\cos x^{\circ}$

 $(4)\frac{2}{\pi}\cos x^{\circ}$

47. If pv = 81, then $\frac{dp}{dv}$ at v=9 is

(1)1

(2)-1

(3)2

(4)-2

48. If y = mx + c and f(0) = f'(0) = 1, then f(2) is

(1)1

(2)2

(3)3

(4)-3

49. The differential coefficient of $\log_{10} x$ with respect to $\log_x 10$ is

 $(2) - (\log_{10} x)^2 \qquad (3) (\log_x 10)^2$

50. If $f(x) = \begin{cases} 2a - x & |for - a < x < a \\ 3x - 2a & |for x \ge a \end{cases}$, then which one of the following is true?

(1) f(x) is not differentiable at x = a

(2) f(x) is discontinuous at x = a

(3)f(x) is continuous for all x in R

(4) f(x) is differentiable for all $x \ge a$

MURALIRAJA. M.Sc., B.Ed., CELL NO. 9786760672