Choose the correct or the most suitable answer from the given four alternatives:

1. If $|\operatorname{adj}(\operatorname{adj} A)|=|A|^{9}$, then the order of the square matrix A is
(1)3
(2) 4
(3)2
(4)5
2. If $\mathrm{A}\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]=\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]$, then $\mathrm{A}=$
(1) $\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]$
(2) $\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$
(3) $\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$
(4) $\left[\begin{array}{cc}4 & -1 \\ 2 & 1\end{array}\right]$
(1) $\frac{2 \pi}{3}$
(2) $\frac{3 \pi}{4}$
(3) $\frac{5 \pi}{6}$
(4) $\frac{\pi}{4}$
3. If $(\mathrm{AB})^{-1}=\left[\begin{array}{cc}12 & -17 \\ -19 & 27\end{array}\right]$ and $\mathrm{A}^{-1}=\left[\begin{array}{cc}1 & -1 \\ -2 & 3\end{array}\right]$, then $\mathrm{B}^{-1}=$
(1) $\left[\begin{array}{cc}2 & -5 \\ -3 & 8\end{array}\right]$
(2) $\left[\begin{array}{ll}8 & 5 \\ 3 & 2\end{array}\right]$
(3) $\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$
(4) $\left[\begin{array}{cc}8 & -5 \\ -3 & 2\end{array}\right]$
4. If $\mathrm{A}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ and $\mathrm{A}(\operatorname{adj} \mathrm{A})=\left[\begin{array}{cc}k & 0 \\ 0 & k\end{array}\right]$, then k is
(1) 0
(2) $\sin \theta$
(3) $\cos \theta$
(4) 1
5. Let $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and $4 B=\left[\begin{array}{ccc}3 & 1 & -4 \\ 1 & 3 & x \\ -1 & 1 & 3\end{array}\right]$.If B is the inverse of A. then the value of x is
(1) 2
(2) 4
(3) 3
(4) 1
6. $i^{n}+i^{n+1}+i^{n+2}+i^{n+3}$ is
(1) 0
(2) 1
(3) -1
(4) i
7. If z is a non zero complex number, such that $2 i z^{2}=\bar{z}$, then $|z|$ is
(1) $1 / 2$
(2) 1
(3) 2
(4) 3
8. If z is a complex number such that $z \in \mathbb{C} \backslash \mathbb{R}$ and $z+\frac{1}{z} \in \mathbb{R}$, then $|z|$ is
(1) 0
(2) 1
(3) 2
(4) 3
9. The principal argument of $\frac{3}{-1+i}$ is
(1) $\frac{-5 \pi}{6}$
(2) $\frac{-2 \pi}{3}$
(3) $\frac{-3 \pi}{4}$
(4) $\frac{-\pi}{2}$
10. The value of $\left(\frac{1+\sqrt{3} i}{1-\sqrt{3} i}\right)^{10}$ is
(1) $\operatorname{cis} \frac{2 \pi}{3}$
(2) cis $\frac{4 \pi}{3}$
(3)-cis $\frac{2 \pi}{3}$
(4)-cis $\frac{4 \pi}{3}$
11. If f and g are polynomials of degrees m and n respectively, and if $h(x)=(f \circ g)(x)$, then the degree of h is
(1) $m n$
(2) $m+n$
(3) m^{n}
(4) n^{m}
12. The polynomial $x^{3}-k x^{2}+9 x$ has three real zeros if and only if, k satisfies
(1) $|k| \leq 6$
(2) $k=0$
(3) $|k|>6$
(4) $|k| \geq 6$
13. If $=\frac{1}{5}$, the value of $\cos \left(\cos ^{-1} x+2 \sin ^{-1} x\right)$ is
(1) $-\sqrt{\frac{24}{25}}$
Net
$(2) \sqrt{\frac{24}{25}}$
(3) $\frac{1}{5} \quad$ www.Trb Tnpsc.com $(4)-\frac{1}{5}$
14. If $\cot ^{-1} 2$ and $\cot ^{-1} 3$ are two angles of a triangle, then the third angle is
(1) $\frac{\pi}{4}$
(2) $\frac{3 \pi}{4}$
(3) $\frac{\pi}{6}$
(4) $\frac{\pi}{3}$
15. $\sin \left(\tan ^{-1} x\right),|x|<1$ is equal to
(1) $\frac{x}{\sqrt{1-x^{2}}}$
(2) $\frac{1}{\sqrt{1-x^{2}}}$
(3) $\frac{1}{\sqrt{1+x^{2}}}$
(4) $\frac{x}{\sqrt{1+x^{2}}}$
16. $\sin ^{-1} \frac{3}{5}-\cos ^{-1} \frac{12}{13}+\sec ^{-1} \frac{5}{3}-\operatorname{cosec}^{-1} \frac{13}{12}$ is equal to
(1) 2π
(2) π
(3) 0
(4) $\tan ^{-1} \frac{12}{65}$
17. The radius of the circle $3 x^{2}+b y^{2}+4 b x-6 b y+b^{2}$ is
(1) 1
(2) 3
(3) $\sqrt{10}$
(4) $\sqrt{11}$
18. The radius of the circle passing through the point $(6,2)$ two of whose diameter are $x+y=6$ and $x+2 y=4$ is
(1) 10
(2) $2 \sqrt{5}$
(3) 6
(4) 4
19. The equation of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ having centre at $(0,3)$ is
(1) $x^{2}+y^{2}-6 y-7=0$
(2) $x^{2}+y^{2}-6 y+7=0$
(3) $x^{2}+y^{2}-6 y-5=0$
(4) $x^{2}+y^{2}-6 y+5=0$
20. The eccentricity of the ellipse $(x-3)^{2}+(y-4)^{2}=\frac{y^{2}}{9}$ is
(1) $\frac{\sqrt{3}}{2}$
(2) $\frac{1}{3}$
(3) $\frac{1}{3 \sqrt{2}}$
(4) $\frac{1}{\sqrt{3}}$
21. If the coordinates at one end of a diameter of the circle $x^{2}+y^{2}-8 x-4 y+c$ are $(11,2)$, the coordinates of the other end are
(1) $(-5,2)$
(2) $(2,-5)$
(3) $(5,-2)$
(4) $(-2,5)$
22. If the planes $\vec{r} \cdot(2 \hat{\imath}-\lambda \hat{\jmath}+\hat{k})=3$ and $\vec{r} \cdot(4 \hat{\imath}+\hat{\jmath}-\mu \hat{k})=5$ are parallel, then the value of λ and μ are
(1) $\frac{1}{2},-2$
(2) $-\frac{1}{2}, 2$
(3) $-\frac{1}{2},-2$
(4) $\frac{1}{2}, 2$
23. Distance from the origin to the plane $3 x-6 y+2 z+7=0$ is
(1) 0
(2) 1
(3) 2
(4) 3
24. If $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}-\hat{k}, \vec{b}=\hat{\imath}+2 \hat{\jmath}-5 \hat{k}, \vec{c}=3 \hat{\imath}+5 \hat{\jmath}-\hat{k}$ then a vector perpendicular to \vec{a} and lies in The plane containing \vec{b} and \vec{c} is
(1) $-17 \hat{\imath}+21 \hat{\jmath}-97 \hat{k}$
(2) $-17 \hat{\imath}+21 \hat{\jmath}-123 \hat{k}$
(3) $-17 \hat{\imath}+21 \hat{\jmath}+97 \hat{k}$
(4) $-17 \hat{\imath}-21 \hat{\jmath}-97 \hat{k}$
25. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar, non-zero vectors such that $[\vec{a}, \vec{b}, \vec{c}]=3$, then $\{[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]\}^{2}$ is equal to
kindly send me your key Answers to our email id - padasalai.net@gmail.com
(1) 81
www.Padasalai. ${ }^{(2)} 9$
(3) 27 www.Trb Tnpseqypgn
26. If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that \vec{a} is perpendicular to \vec{b}, and is parallel to \vec{c} then $\vec{a} \times(\vec{b} \times \vec{c})$ is equal to
(1) \vec{a}
(2) \vec{b}
(3) \vec{c}
(4) $\overrightarrow{0}$
27. The number given by the Rolle's theorem for the function $x^{3}-3 x^{2}, x \in[0,3]$ is
(1) 1
(2) $\sqrt{2}$
(3) $\frac{3}{2}$
(4) 2
28. The tangent to the curve $y^{2}-x y+9=0$ is vertical when
(1) $y=0$
(2) $y= \pm \sqrt{3}$
(3) $y=\frac{1}{2}$
(4) $y= \pm 3$
29. The function $\sin ^{4} x+\cos ^{4} x$ is increasing in the interval
(1) $\left[\frac{5 \pi}{8}, \frac{3 \pi}{4}\right]$
(2) $\left[\frac{\pi}{2}, \frac{5 \pi}{8}\right]$
(3) $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
(4) $\left[0, \frac{\pi}{4}\right]$
30. The minimum value of the function $|3-x|+9$ is
(1) 0
(2) 3
(3) 6
(4) 9
31. Linear approximation for $g(x)=\cos x$ at $x=\frac{\pi}{2}$ is
(1) $x+\frac{\pi}{2}$
(2) $-x+\frac{\pi}{2}$
(3) $x-\frac{\pi}{2}$
(4) $-x-\frac{\pi}{2}$
32. If $W(x, y, z)=x^{2}(y-z)+y^{2}(z-x)+z^{2}(x-y)$, then $\frac{\partial w}{\partial \mathrm{x}}+\frac{\partial w}{\partial y}+\frac{\partial w}{\partial z}$ is
(1) $x y+y z+z x$
(2) $x(y+z)$
(3) $y(z+x)$
(4) 0
33. If $(x, y, z)=x y+y z+z x$, then $f_{x}-f_{z}$ is equal to
(1) $z-x$
(2) $y-z$
(3) $x-z$
(4) $y-z$
34. The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x \cos x d x$ is
(1) $\frac{3}{2}$
(2) $\frac{1}{2}$
(3) 0
(4) $\frac{2}{3}$
35. The area between $y^{2}=4 x$ and its latus rectum is
(1) $\frac{2}{3}$
(2) $\frac{4}{3}$
(3) $\frac{8}{3}$
(4) $\frac{5}{3}$
36. The value of $\int_{0}^{\infty} e^{-3 x} x^{2} d x$ is
(1) $\frac{7}{27}$
(2) $\frac{5}{27}$
(3) $\frac{4}{27}$
(4) $\frac{2}{27}$
37. If $\int_{0}^{x} f(t) d t=x+\int_{x}^{1} t f(t) d t$, then the value of $f(1)$ is
(1) $\frac{1}{2}$
(2) 2
(3) 1
(4) $\frac{3}{4}$
38. A computer salesperson knows from his past experience that he sells computers to one in every twenty customers who enter the showroom. What is the probability that he will sell a computer to exactly two of the next three customers?
(1) $\frac{57}{20^{3}}$
(2) $\frac{57}{20^{2}}$
(3) $\frac{19^{3}}{20^{3}}$
(4) $\frac{57}{20}$
39. Two coins are to be flipped. The first coin will land on heads with probability 0.6 , the second with
number of headswher Pesafalaireftue of $E[X]$ is
(1) 0.11
(2) 1.1
(3) 11
(4) 1
40. The probability function of a random variable is defined as:

x	-2	-1	0	1	2
$F(x)$	k	$2 k$	$3 k$	$4 k$	5

Then $E(X)$ is equal to:
(1) $\frac{1}{15}$
(2) $\frac{1}{10}$
(3) $\frac{1}{3}$
(4) $\frac{2}{3}$
41. If in 6 trials, X is a binomial variate which follows the relation $9 P(X=4)=P(X=2)$, then the probability of success is
(1) 0.125
(2) 0.25
(3) 0.375
(4) 0.75
42. A binary operation on a set S is a function from
(1) $S \rightarrow S$
(2) $(S \times S) \rightarrow S$
(3) $S \rightarrow(S \times S)$
(4) $(S \times S) \rightarrow(S \times S)$
43. The operation * defined by $a * b=\frac{a b}{7}$ is not a binary operation on
(1) \mathbb{Q}^{+}
(2) \mathbb{Z}
(3) \mathbb{R}
(4) ©
44. Which one is the inverse of the statement $(p \vee q) \rightarrow(p \wedge q)$?
(1) $(p \wedge q) \rightarrow(p \vee q)$
(2) $\neg(p \vee q) \rightarrow(p \wedge q)$
(3) $(\neg p \vee \neg q) \rightarrow(\neg p \wedge \neg q)$
(4) $(\neg p \wedge \neg q) \rightarrow(\neg p \vee \neg q)$
45. The proposition $p \wedge(\neg p \vee q)$ is
(1) a tautology
(2) a contradiction
(3) logically equivalent to $p \wedge q$
(4) logically equivalent to $p \vee q$
46. If $y=\cos \left(\sin x^{2}\right)$, then $\frac{d y}{d x}$ at $x=\sqrt{\frac{\pi}{2}}$ is
(1)-2
(2)2
(3) $-2 \sqrt{\frac{\pi}{2}}$
(4) 0
47. If $f(x)=x \tan ^{-1} x$, then $\mathrm{f}^{\prime}(1)$ is
(1) $1+\frac{\pi}{4}$
(2) $\frac{1}{2}+\frac{\pi}{4}$
(3) $\frac{1}{2}-\frac{\pi}{4}$
(4) 2
48. If $y=\frac{(1-x)^{2}}{x^{2}}$, then $\frac{d y}{d x}$ is
(1) $\frac{2}{x^{2}}+\frac{2}{x^{3}}$
(2) $-\frac{2}{x^{2}}+\frac{2}{x^{3}}$
(3) $-\frac{2}{x^{2}}-\frac{2}{x^{3}}$
(4) $\frac{2}{x^{2}}-\frac{2}{x^{3}}$
49. If $\mathrm{g}(\mathrm{x})=\left(x^{2}+2 x+3\right) \mathrm{f}(\mathrm{x})$ and $\mathrm{f}(0)=5$ and $\lim _{x \rightarrow 0} \frac{f(x)-5}{x}=4$, then $\mathrm{g}^{\prime}(0)$ is
(1)20
(2)14
(3) 18
(4) 12
50. The number of points in R in which the function $\mathrm{f}(\mathrm{x})=|x-1|+|x-3|+\sin x$ is not differentiable is
(1)2
(2)2
(3)1
(4) 4 s

