Choose the correct or the most suitable answer from the given four alternatives: 1. If $|adj(adjA)| = |A|^9$, then the order of the square matrix A is

(1)3	(2)4	(3)2	(4)5		
2. If A $\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$, then A =					
$(1)\begin{bmatrix}1 & -2\\1 & 4\end{bmatrix}$	$(2)\begin{bmatrix}1&2\\-1&4\end{bmatrix}$	$(3)\begin{bmatrix}4&2\\-1&1\end{bmatrix}$	$(4)\begin{bmatrix}4 & -1\\2 & 1\end{bmatrix}$		
$(1)\frac{2\pi}{3}$	$(2)\frac{3\pi}{4}$	$(3)\frac{5\pi}{6}$	$(4)\frac{\pi}{4}$		
3. If (AB) ⁻¹ = $\begin{bmatrix} 12 & -17 \\ -19 & 27 \end{bmatrix}$ and A ⁻¹ =	$\begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$, then B ⁻¹	=	×		
$(1)\begin{bmatrix}2 & -5\\-3 & 8\end{bmatrix}$	$(2)\begin{bmatrix} 8 & 5\\ 3 & 2 \end{bmatrix}$	$(3)\begin{bmatrix}3&1\\2&1\end{bmatrix}$	$(4)\begin{bmatrix} 8 & -5\\ -3 & 2 \end{bmatrix}$		
4. If $A = \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix}$ and $A(ad)A$	A) = $\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then k is	5			
(1) 0	(2) $\sin\theta$	(3) cosθ	(4) 1		
5. Let $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and $4B$	$= \begin{bmatrix} 3 & 1 & -4 \\ 1 & 3 & x \\ -1 & 1 & 3 \end{bmatrix}.$ If B	is the inverse of A. th	the value of x is		
(1) 2	(2) 4	(3) 3	(4) 1		
6. $i^n + i^{n+1} + i^{n+2} + i^{n+3}$ is		2			
(1) 0	(2) 1	(3) - 1	(4) <i>i</i>		
7. If z is a non zero complex number, such that $2iz^2 = \overline{z}$, then $ z $ is					
(1) 1/2	(2) 1	(3) 2	(4) 3		
8. If <i>z</i> is a complex number such th	at $z \in \mathbb{C} \setminus \mathbb{R}$ and $z + \frac{1}{z}$	$\in \mathbb{R}$, then $ z $ is			
(1) 0	(2) 1	(3) 2	(4) 3		
9. The principal argument of $\frac{3}{-1+i}$ is					
$(1)\frac{-5\pi}{6}$	$(2)\frac{-2\pi}{3}$	$(3)\frac{-3\pi}{4}$	$(4)\frac{-\pi}{2}$		
10. The value of $\left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{10}$ is					
(1) cis $\frac{2\pi}{3}$	(2) <i>cis</i> $\frac{4\pi}{3}$	(3)-cis $\frac{2\pi}{3}$	(4)-cis $\frac{4\pi}{3}$		
11. If f and g are polynomials of d	egrees <i>m</i> and <i>n</i> respe	ectively, and if $h(x) =$	$= (f \circ g)(x)$, then the		
degree of <i>h</i> is					
(1) <i>mn</i>	(2) $m + n$	(3) <i>mⁿ</i>	(4) n^m		
12. The polynomial $x^3 - kx^2 + 9x$ has three real zeros if and only if, k satisfies					
$(1) k \leq 6$	(2) k = 0	(3) k > 6	$(4) k \ge 6$		
13. If $=\frac{1}{5}$, the value of $cos(cos^{-1}x + 2sin^{-1}x)$ is					

kindly send me your key Answers to our email id - padasalai.net@gmail.com

$(1) - \sqrt{\frac{24}{25}}$ www.Padasalai	(2) $\sqrt{\frac{24}{25}}$	(3) $\frac{1}{5}$ www.Trb Tn	$\frac{\mathbf{psc.com}}{(4) - \frac{1}{5}}$		
14. If $\cot^{-1} 2$ and $\cot^{-1} 3$ are two angles of a triangle, then the third angle is					
$(1)^{\frac{\pi}{2}}$	$(2)\frac{3\pi}{2}$	$(3)^{\frac{\pi}{2}}$	$(4)^{\frac{\pi}{2}}$		
15. $\sin(tan^{-1}x) x < 1$ is equ	4	6			
$(1)\frac{x}{\sqrt{2}}$	$(2) \frac{1}{2}$	$(3)\frac{1}{\sqrt{3}}$	$(4) \frac{x}{\sqrt{x}}$		
$16 \sin^{-1}\frac{3}{2} - \cos^{-1}\frac{12}{2} + \sin^{-1}\frac{5}{2} - \frac{16}{2} + \sin^{-1}\frac{5}{2} - \frac{16}{2} + \sin^{-1}\frac{5}{2} - \frac{16}{2} + $	$\sqrt{1-x^2}$	$\sqrt{1+x^2}$	$\sqrt{1+x^2}$		
$10.5in \frac{1}{5} cos \frac{1}{13} + sec \frac{1}{3}$	$\frac{12}{12}$ is equal to		(1) = -1 12		
(1) 2π	(2) π	(3) 0	(4) $tan^{-1}{65}$		
17. The radius of the circle $3x^2 + b$	$by^2 + 4bx - 6by + b^2$	² is			
(1) 1	(2) 3	(3) $\sqrt{10}$	$(4)\sqrt{11}$		
18. The radius of the circle passing through the point (6,2) two of whose diameter are $x + y = 6$ and					
x + 2y = 4 is		*			
(1) 10	(2) $2\sqrt{5}$	(3) 6	(4) 4		
19. The equation of the circle passing through the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ having centre at (0,3)					
is		$\mathbf{\hat{n}}$			
$(1) x^2 + y^2 - 6y - 7 = 0$		(2) $x^2 + y^2 - 6y + y^2$	7 = 0		
$(3) x^2 + y^2 - 6y - 5 = 0$		$(4) x^2 + y^2 - 6y + $	5 = 0		
20. The eccentricity of the ellipse $(x - 3)^2 + (y - 4)^2 = \frac{y^2}{9}$ is					
$(1)\frac{\sqrt{3}}{2}$	$(2)\frac{1}{3}$	$(3)\frac{1}{3\sqrt{2}}$	$(4)\frac{1}{\sqrt{3}}$		
21. If the coordinates at one end o	f a diameter of the cir	cle $x^2 + y^2 - 8x - 4$	y + c are (11,2), the		
coordinates of the other end are					
(1) (-5,2)	(2) (2, -5)	(3) (5, -2)	(4) (-2,5)		
22. If the planes $\vec{r} \cdot (2\hat{\iota} - \lambda\hat{j} + \hat{k}) =$	= 3 and $\vec{r} \cdot (4\hat{\imath} + \hat{\jmath} - \beta)$	$u\hat{k}) = 5$ are parallel,	then the value of λ and μ		
are					
$(1)\frac{1}{2},-2$	$(2) - \frac{1}{2}, 2$	$(3) - \frac{1}{2}, -2$	$(4)\frac{1}{2}, 2$		
23. Distance from the origin to the plane $3x - 6y + 2z + 7 = 0$ is					
(1) 0	(2) 1	(3) 2	(4) 3		
24. If $\vec{a} = 2\hat{\imath} + 3\hat{\jmath} - \hat{k}$, $\vec{b} = \hat{\imath} + 2\hat{\jmath} - 5\hat{k}$, $\vec{c} = 3\hat{\imath} + 5\hat{\jmath} - \hat{k}$ then a vector perpendicular to \vec{a} and lies in					
The plane containing $ec{b}$ and $ec{c}$	is				
$(1) - 17\hat{\imath} + 21\hat{\jmath} - 97\hat{k}$		$(2) - 17\hat{\iota} + 21\hat{j} - 1\hat{\iota}$	23 <i>ƙ</i>		
$(3) - 17\hat{\imath} + 21\hat{\jmath} + 97\hat{k}$		$(4) - 17\hat{\iota} - 21\hat{j} - 9$	7 <i>ƙ</i>		
25. If \vec{a} , \vec{b} , \vec{c} are non-coplanar, non-zero vectors such that $[\vec{a}, \vec{b}, \vec{c}] = 3$, then $\{[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]\}^2$ is					
equal to					

kindly send me your key Answers to our email id - padasalai.net@gmail.com

(1) 81 www.Padasalai.Net 9

(3) 27 www.Trb Tnpsq.ppgn

26. If \vec{a} , \vec{b} , \vec{c} are three unit vectors such that \vec{a} is perpendicular to \vec{b} , and is parallel to \vec{c} then $\vec{a} \times (\vec{b} \times \vec{c})$						
is equal to						
(1) <i>ā</i>	(2) \vec{b}	(3) <i>c</i>	(4) 0			
27. The number given by the Rolle's theorem for the function $x^3 - 3x^2$, $x \in [0,3]$ is						
(1) 1	(2) $\sqrt{2}$	$(3)\frac{3}{2}$	(4) 2			
28. The tangent to the curve $y^2-xy+9=0$ is vertical when						
(1) $y = 0$	(2) y = $\pm \sqrt{3}$	(3) $y = \frac{1}{2}$	(4) $y = \pm 3$			
29. The function $\sin^4 x + \cos^4 x$ is i	29. The function $\sin^4 x + \cos^4 x$ is increasing in the interval					
$(1)\left[\frac{5\pi}{8},\frac{3\pi}{4}\right]$	$(2)\left[\frac{\pi}{2},\frac{5\pi}{8}\right]$	$(3)\left[\frac{\pi}{4},\frac{\pi}{2}\right]$	$(4)\left[0,\frac{\pi}{4}\right]$			
30. The minimum value of the function $ 3 - x + 9$ is						
(1) 0	(2) 3	(3) 6	(4) 9			
31. Linear approximation for $g(x) = \cos x$ at $x = \frac{\pi}{2}$ is						
(1) $x + \frac{\pi}{2}$	$(2) - x + \frac{\pi}{2}$	(3) $x - \frac{\pi}{2}$	$(4) - x - \frac{\pi}{2}$			
32. If $W(x, y, z) = x^2(y - z) + y^2(z - x) + z^2(x - y)$, then $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z}$ is						
(1) $xy + yz + zx$	(2) $x(y + z)$	(3) $y(z + x)$	(4) 0			
33. If $(x, y, z) = xy + yz + zx$, then $f_x - f_z$ is equal to						
(1) $z - x$	(2) $y - z$	(3) $x - z$	(4) $y - z$			
34. The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} sin^2 x \cos x dx$ is						
$(1)\frac{3}{2}$	$(2)\frac{1}{2}$	(3) 0	$(4)\frac{2}{3}$			
35. The area between $y^2 = 4x$ and its latus rectum is						
$(1)\frac{2}{3}$	$(2)\frac{4}{3}$	$(3)\frac{8}{3}$	$(4)\frac{5}{3}$			
36. The value of $\int_0^\infty e^{-3x} x^2 dx$ is						
$(1)\frac{7}{27}$	$(2)\frac{5}{27}$	$(3)\frac{4}{27}$	$(4)\frac{2}{27}$			
37. If $\int_0^x f(t) dt = x + \int_x^1 t f(t) dt$, then the value of $f(1)$ is						
$(1)\frac{1}{2}$	(2) 2	(3) 1	$(4)\frac{3}{4}$			
38. A computer salesperson knows from his past experience that he sells computers to one in every						
twenty customers who enter the showroom. What is the probability that he will sell a computer to						
exactly two of the next three customers?						

- $(1)\frac{57}{20^3} \qquad (2)\frac{57}{20^2} \qquad (3)\frac{19^3}{20^3} \qquad (4)\frac{57}{20}$
- 39. Two coins are to be flipped. The first coin will land on heads with probability 0.6, the second with Probabilit**y indly southethet of the second with the second with and the second with the second with and the second with the second w**

www.Trb Tnpsc.com number of heads that Pesana his Notalue of E[X] is (2) 1.1 (1) 0.11(3) 11 (4)140. The probability function of a random variable is defined as: х -2 -1 0 2 1 2k 3k 4k F(x)k 5 Then E(X) is equal to: $(2)\frac{1}{10}$ $(1)\frac{1}{15}$ $(3)\frac{1}{2}$ $(4)^{\frac{2}{2}}$ 41. If in 6 trials, X is a binomial variate which follows the relation 9P(X = 4) = P(X = 2), then the probability of success is (1) 0.125(4) 0.75 (2) 0.25(3) 0.37542. A binary operation on a set S is a function from $(2) (S \times S) \to S \qquad (3) S \to (S \times S) \qquad (4) (S \times S) \to (S \times S)$ (1) $S \rightarrow S$ 43. The operation * defined by $a * b = \frac{ab}{7}$ is not a binary operation on (4) C (1) **ℚ**⁺ (2) Z **(3)** ℝ 44. Which one is the inverse of the statement $(p \lor q) \rightarrow (p \land q)$? $(2) \neg (p \lor q) \rightarrow (p \land q)$ $(1) (p \land q) \rightarrow (p \lor q)$ $(3) (\neg p \lor \neg q) \to (\neg p \land \neg q)$ $(4) (\neg p \land \neg q) \rightarrow (\neg p \lor \neg q)$ 45. The proposition $p \land (\neg p \lor q)$ is (2) a contradiction (1) a tautology (3) logically equivalent to $p \wedge q$ (4) logically equivalent to $p \lor q$ 46. If y= cos(sinx²), then $\frac{dy}{dx}$ at x = $\sqrt{\frac{\pi}{2}}$ is $(3)-2\sqrt{\frac{\pi}{2}}$ (1)-2(4)047. If $f(x) = xtan^{-1}x$, then f'(1) is $(2)\frac{1}{2} + \frac{\pi}{4}$ $(3)\frac{1}{2}-\frac{\pi}{4}$ $(1)1 + \frac{\pi}{4}$ (4)248. If $y = \frac{(1-x)^2}{x^2}$, then $\frac{dy}{dx}$ is $(2) - \frac{2}{r^2} + \frac{2}{r^3}$ $(3) - \frac{2}{r^2} - \frac{2}{r^3}$ $(4) \frac{2}{r^2} - \frac{2}{r^3}$ $(1)\frac{2}{r^2} + \frac{2}{r^3}$ 49. If $g(x) = (x^2 + 2x + 3)f(x)$ and f(0) = 5 and $\lim_{x\to 0} \frac{f(x)-5}{x} = 4$, then g'(0) is (1)20(2)14(3)18(4)1250. The number of points in R in which the function f(x) = |x - 1| + |x - 3| + sinx is not differentiable is

(1)2 (2)2 (3)1 (4)4s

MURALIRAJA .M.Sc., B.Ed., CELL NO. 9786760672