

V.M.G.R.R SRI SARADA SAKTHI MAT. HR. SEC. SCHOOL MATHEMATICS

Standard: XII - A

b) n, n + 1

15. If α and β are the roots of $x^2 + x + 1 = 0$, then $\alpha^{2020} + \beta^{2020}$ is

a) n - 1, n

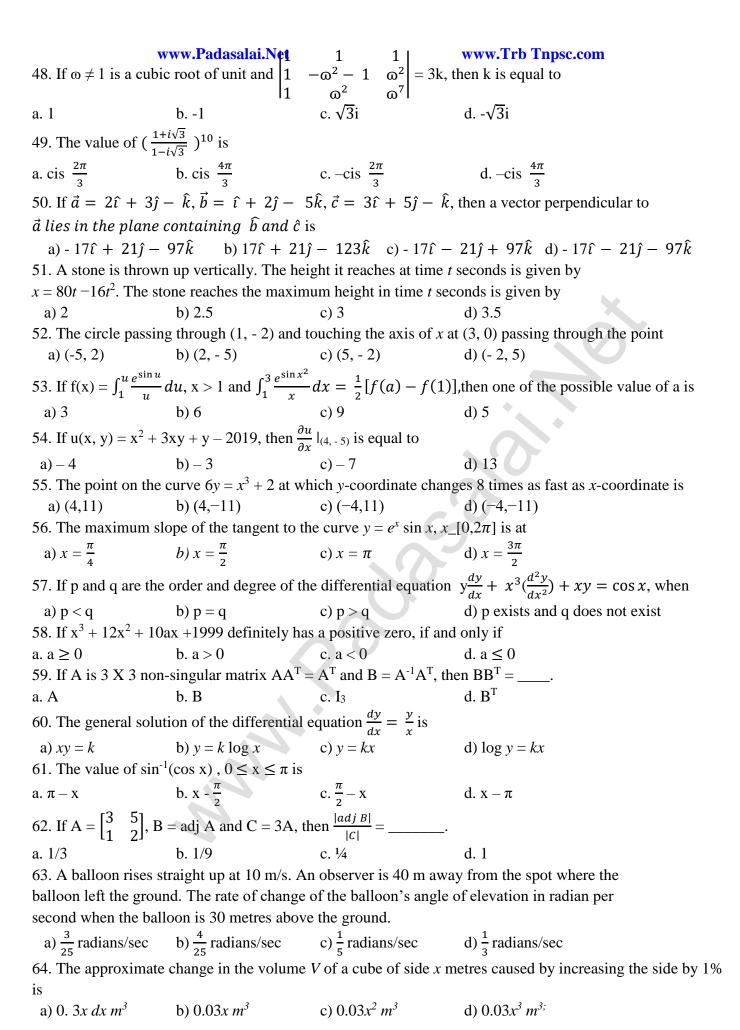
a. -2

ONEWORD TEST

MARKS: 250

CHOOSE THE CORRECT ANSWER:

CHOOSE THE		LIK.	
1. If $z = x + iy$ is a co	omplex number such that	at $ z + 2 = z - 2 $, th	nen the locus of z is
a. real axis	b. imaginary axis	c. ellipse	d. circle
2. The polynomial x^3	+2x + 3 has		
a. one negative and tv	wo imaginary roots	b. one positive and tw	o imaginary roots
c. three real roots	_	d. no zeros	*
3. If $\sin^{-1}x + \sin^{-1}y =$	$\frac{2\pi}{3}$; then $\cos^{-1}x + \cos^{-1}y$	is equal to	
a. $\frac{2\pi}{3}$	b. $\frac{\pi}{3}$	c. $\frac{\pi}{6}$	d. π
4. If the coordinates a	at one end of a diameter	r of the circle $x^2 + y^2 -$	-8x - 4y + c = 0 are
(11, 2), the coordinat	es of the other end are		
a)(- 5,2)	b) (2, - 5)	c) (5, -2)	d) (- 2, 5)
5. Tangents are draw	n to the hyperbola $\frac{x^2}{9}$ —	$\frac{y^2}{4} = 1$ parallel to the	straight line $2x - y = 1$. One of the points
of contact of tangents	s on the hyperbola is		
a) $(\frac{9}{2\sqrt{2}}, \frac{-1}{\sqrt{2}})$	b) $(\frac{-9}{2\sqrt{2}}, \frac{1}{\sqrt{2}})$	c) $(\frac{9}{2\sqrt{2}}, \frac{1}{\sqrt{2}})$	d) $(3\sqrt{3}, -2\sqrt{2})$
6. If $[\vec{a}, \vec{b}, \vec{c}] = 1$, then	the value of $\frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{(\vec{c} \times \vec{b}) \cdot \vec{b}}$	$+ \frac{\vec{b} \cdot (\vec{c} \times \vec{a})}{(\vec{a} \times \vec{b}) \cdot \vec{c}} + \frac{\vec{a} \cdot (\vec{a} \times \vec{b})}{(\vec{c} \times \vec{b}) \cdot \vec{a}}$	is
a) 1	b) -1	c) 2	d) 3
7. If $w(x, y) = x^y, x > 0$	0, then $\frac{\partial w}{\partial x}$ is equal to		
	b) y log x	c) y x ^{y-1}	d) x log y
8. The value of the li	$\min_{x \to 0} (\cot x - \frac{1}{x}) \text{ is}$		
a) 0	b) 1	c) 2	d) ∞
9. The value of $\int_0^{\frac{\pi}{6}} co$	$s^3 3x dx$ is		
a) $\frac{2}{3}$	b) $\frac{2}{9}$	c) $\frac{1}{9}$	d) $\frac{1}{3}$
10. The slope at any	point of a curve $y = f(x)$	(e) is given by $\frac{dy}{dx} = 3x^2$	and it passes through
(-1,1). Then the equa			
a) $y = x^3 + 2$	b) $y = 3x^2 + 4$	c) $y = 3x^3 + 4$	d) $y = x^3 + 5$
11. The solution of the	ne differential equation	$\frac{dy}{dx} = 2xy$ is	
a) $y = Ce^{x^2}$	b) $y = 2x^2 + C$	c) $y = Ce^{-x^2} + C$	$d) y = x^2 + C$
12. If $P(X = 0) = 1$	P(X = 1). If $E(X) = 3V$	ar(X), then $P(X = 0)$ is	
a) $\frac{2}{3}$	b) $\frac{2}{5}$	c) $\frac{1}{5}$	d) $\frac{1}{3}$
13. The equation of t	he normal to the circle	$x^2 + y^2 - 2x - 2y +$	1 = 0 = which is parallel to the line
2x + 4y = 3 3 is			
a) $x + 2y = 3$	b) $x + 2y + 3 = 0$	c) $2x + 4y + 3 = 0$	d) $x - 2y + 3 = 0$
14. The number of ar	bitrary constants in the	general solutions of or	rder n and $n + 1$ are respectively


c) n + 1, n + 2

kindly send me your key Answers to our email id - padasalai.net@gmail.com

d) n + 1, n

16. If z is a complex number such that $z \in C \setminus \mathbb{R}$ and $z + \frac{1}{z} \in \mathbb{R}$, then $ z $ is					
a. 0	b. 1	c. 2	d. 3		
17. If $\sin^{-1}x + \sin^{-1}y$	$+\sin^{-1}z = \frac{3\pi}{2}$; the value	of $x^{2017} + y^{2018} + z^{2019}$	$-\frac{9}{r^{101}+v^{101}+z^{101}}$ is		
a. 0	b. 1	c. 2	d. 3		
18. The area of quadr	ilateral formed with fo	ci of the hyperbolas $\frac{x^2}{a^2}$	$-\frac{y^2}{b^2} = 1$ and $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ is		
a) $4(a^2 + b^2)$	b) $2(a^2 + b^2)$	c) $(a^2 + b^2)$	d) $\frac{1}{2}(a^2 + b^2)$		
19. The principal argu	ument of $\frac{3}{-1+i}$ is		-		
a. $-\frac{5\pi}{6}$	b. $-\frac{2\pi}{3}$	$c\frac{3\pi}{4}$	d. $-\frac{\pi}{2}$		
0	3	4	= 3, then $\{ [\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] \}^2$ is		
equal to	1	. , ,]			
a) 81	b) 9	c) 27	d) 18		
21. The value of $\int_{-1}^{2} $	$x \mid dx$ is				
a) $\frac{1}{2}$	b) $\frac{3}{2}$	c) $\frac{5}{2}$	d) $\frac{7}{2}$		
22. The position of a	particle moving along	a horizontal line of any	t time t is given by		
$s(t) = 3t^2 - 2t - 8$. The	time at which the part	cicle is at rest is			
a) $t = 0$	b) $t = \frac{1}{3}$	c) $t = 1$	d) $t = 3$		
23. The order and deg	gree of the differential	equation $\frac{d^2y}{dx^2} + (\frac{dy}{dx})^{1/3}$	$+ x^{1/4} = 0$ are respectively		
a) 2, 3	b) 3, 3	c) 2, 6	d) 2, 4		
24. Suppose that <i>X</i> tal	kes on one of the value	es 0, 1, and 2. If for son	ne constant k,		
P(X=i) = k P(X=i -	-1) for $i = 1, 2$ and $P(X)$	= 0) = 1/7, then the va	alue of k is		
a) 1	b) 2	c) 3	d) 4		
		equation $\frac{dy}{dx} + y = \frac{1+y}{x}$	is is		
a) $\frac{x}{e^{\lambda}}$	b) $\frac{e^{\lambda}}{x}$	c) λe^x	d) e^x		
26. If the distance of	the point $(1,1,1)$ from		distance from the plane		
x + y + z + k = 0, then	n the values of k are				
a) ± 3		c) - 3, 9	d) 3, - 9		
27. The number giver	n by the Rolle's theorem	m for the function x^3 -	$3x^2, x \in [0,3]$ is		
a) 1	b) $\sqrt{2}$	c) $\frac{3}{2}$	d) 2		
28. If the function $f(x)$	$a(x) = \frac{1}{12} a < x < b \text{ for, reg}$	presents a probability o	lensity function of a continuous random		
variable X , then which	h of the following canr	not be the value of a an	d <i>b</i> ?		
a) 0 and 12	b) 5 and 17	c) 7 and 19	d) 16 and 24		
29. According to the	rational root theorem, v	which number is not po	ossible rational zero of		
$4x^7 + 2x^4 - 10x^3 - 5?$					
a1	b. $\frac{5}{4}$	c. $\frac{4}{5}$	d. 5		
30. Which one is the	inverse of the statemen	at $(p \lor q) \to (p \land _q)$?			
a) $(p \land q) \rightarrow (p \lor \underline{q})$	q)	b) $\neg (p \lor q) \rightarrow (p \land q)$			
c) $(\neg p \lor \neg q) \to (\neg p)$	$\wedge \neg q)$	$\mathbf{d}) (\neg p \land \neg q) \to (\neg p \lor \neg q)$	$\neg q)$		
31. The locus of a poi	int whose distance from	m(-2, 0) is $2/3$ times it	s distance from the line $x = -\frac{9}{2}$ is		
a) a parabola	b) a hyperbola	c) an ellipse	d) a circle		

32. The percentage	ervor Fradanaloid Vet 31	is approximately how	manyvither the percentage error in 31?
a) $\frac{1}{31}$	b) $\frac{1}{5}$	c) 5	d) 31
33. If the direction c	osines of a line are $\frac{1}{c}$, $\frac{1}{c}$	$\frac{1}{c}$ then	
	b) $c = \pm \sqrt{3}$	•	d) $0 < c < 1$
34. If $g(x, y) = 3x^2$ -	$5y + 2y^2, \ x(t) = e^t \text{ an}$	and $y(t) = \cos t$, then $\frac{dg}{dt}$	is equal to
a) $6e^{2t} + 5\sin t - 4e^{2t}$			$\ln t + 4\cos t \sin t$
c) $3e^{2t} + 5\sin t + 4$	$\cos t \sin t$		$\sin t + 4\cos t \sin t$
35. Which one of the	e following statements	has truth value F ?	
a) Chennai is in Ind	ia or $\sqrt{2}$ is an integer	b) Chennai i	s in India or $\sqrt{2}$ is an irrational number
c) Chennai is in Chi	ina or $\sqrt{2}$ is an integer	d) Chennai i	s in China or $\sqrt{2}$ is an irrational number
36. If $\int_0^a \frac{1}{4+x^2} dx =$	$\frac{\pi}{8}$ then a is		×
a) 4	b) 1	c) 3	d) 2
37. If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$	be such that $\lambda A^{-1} = A$,	then λ is	
a. 17	b. 14	c. 19	d. 21
38. If z_1 , z_2 and z_3 a	re complex numbers su	uch that $z_1 + z_2 + z_3$ and	and $ z_1 = z_2 = z_3 = 1$ then
$z_1^2 + z_2^2 + z_3^2$ is			
a. 3	b. 2	c. 1	d. 0
39. Consider an ellip	ose whose centre is of the	he origin and its majo	r axis is along x-axis. If its eccentrity is $\frac{3}{5}$
and the distance bety	ween its foci is 6, then	the area of the quadril	ateral inscribed in the ellipse with diagonals
as major and minor a			
a) 8	b) 32	c) 80	d) 40
	$= A ^9$, then the order o		
a. 3	b. 4	c. 2	d. 5
	ne curve $y^2 - xy + 9 = 0$	4	
	b) $y = \pm \sqrt{3}$	L	
			rate of evaporation of the
	ional to the amount rem		I) D. G
a) $P = Ce^{\kappa t}$	b) $P = Ce^{-Rt}$	c) $P = Ckt$	d) Pt = C
43. The value of \int_0^{π}	$\frac{cs}{1 + 5\cos x}$ is		
a) $\frac{\pi}{2}$	b) $P = Ce^{-kt}$ $\frac{dx}{1 + 5\cos x}$ is b) $\frac{3\pi}{2}$	c) π	d) 2π
	c root of unit and (1 +		o, then (A, B) equals
a. (1, 0)	b. (-1, 1)	c. (0, 1)	
45. If $0 \le \theta \le \pi$ and	the system of equations	$\sin x + (\sin \theta) y - (\cos \theta)$	θ) $z = 0$,
$(\cos\theta)x-y+z=0,$	$(\sin \theta)x + y - z = 0 \text{ ha}$	as a non-trivial solutio	n then θ is
a. $\frac{2\pi}{3}$	b. $\frac{3\pi}{4}$	c. $\frac{5\pi}{6}$	d. $\frac{\pi}{4}$
46. Four buses carry	ing 160 students from t	the same school arrive	e at a football stadium. The buses carry,
- · · · ·			andomly selected. Let <i>X</i> denote the number
			tudent. One of the 4 bus drivers is also
			us. Then $E(X)$ and $E(Y)$ respectively are
a) 50, 40	b) 40,50	c) 40.75, 40	d) 41,41
47. The product of a	Il four values of $(\cos \frac{\pi}{3})$	$(1+i\sin\frac{\pi}{3})^{\frac{1}{4}}$ is	
a2	b1	c. 1	d. 2
kindly	send me your key An	nswers to our email i	d - padasalai.net@gmail.com

65.	sin ⁻¹ (cos	$(x) = \frac{\pi}{2} - x^{2}$	w. <mark>Padasa</mark>	lai.Net
	,	2		

www.Trb Tnpsc.com

a.
$$-\pi \le x \le 0$$

b.
$$0 \le x \le \pi$$

$$c. - \frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$d. - \frac{\pi}{4} \le x \le \frac{3\pi}{4}$$

a.
$$-\pi \le x \le 0$$
 b. $0 \le x \le \pi$ c. $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ d. $-\frac{\pi}{4} \le x \le \frac{3\pi}{4}$ 66. If adj $A = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}$ and adj $B = \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix}$ then adj(AB) is _____.

a. $\begin{bmatrix} -7 & -1 \\ 7 & -9 \end{bmatrix}$ b. $\begin{bmatrix} -6 & 5 \\ -2 & -10 \end{bmatrix}$ c. $\begin{bmatrix} -7 & 7 \\ -1 & -9 \end{bmatrix}$ d. $\begin{bmatrix} -6 & -2 \\ 5 & -10 \end{bmatrix}$

c.
$$\begin{bmatrix} -7 & 7 \\ -1 & -9 \end{bmatrix}$$

d.
$$\begin{bmatrix} -6 & -2 \\ 5 & -10 \end{bmatrix}$$

a) 0

67. If
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\vec{b} = \hat{i} + \hat{j}$, $\hat{c} = \hat{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$, then the value of $\lambda + \mu$ is

$$\overrightarrow{a} \times \overrightarrow{a} \times \overrightarrow{a}$$

d.
$$\begin{bmatrix} -6 & -2 \\ 5 & -10 \end{bmatrix}$$

68. A circular template has a radius of 10 cm. The measurement of radius has an approximate error of 0.02 cm. Then the percentage error in calculating area of this template is

69. If $x = \frac{1}{5}$, the value of $\cos(\cos^{-1}x + 2\sin^{-1}x)$ is

a. -
$$\sqrt{\frac{24}{25}}$$

b.
$$\sqrt{\frac{24}{25}}$$

c.
$$\frac{1}{5}$$

d. -
$$\frac{1}{6}$$

70. If $a * b = \sqrt{a^2 + b^2}$ on the real numbers then * is

a) commutative but not associative

b) associative but not commutative

c) both commutative and associative

d) neither commutative nor associative

71. The differential equation representing the family of curves $y = A \cos(x + B)$, where A and B are parameters, is

a)
$$\frac{d^2y}{dx^2} - y = 0$$

a)
$$\frac{d^2y}{dx^2} - y = 0$$
 b) $\frac{d^2y}{dx^2} + y = 0$ c) $\frac{d^2y}{dx^2} = 0$

c)
$$\frac{d^2y}{dx^2} = 0$$

$$d)\frac{d^2x}{dv^2} = 0$$

72. Which one of the following is not true?

(1) Negation of a negation of a statement is the statement itself.

(2) If the last column of the truth table contains only T then it is a tautology.

(3) If the last column of its truth table contains only F then it is a contradiction

(4) If p and q are any two statements then $p \leftrightarrow q$ is a tautology

73. The order and degree of the differential equation $\sqrt{\sin x} (dx + dy) = \sqrt{\cos x} (dx - dy)$ is

74. Area of the greatest rectangle inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

c)
$$\sqrt{ab}$$

d)
$$\frac{a}{b}$$

a) 2ab b) ab c) \sqrt{ab} d) $\frac{a}{b}$ 75. If the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) is a) (-5, 5) b) (-6, 7) c) (5, -5) d) (6, -7)

$$c) (5, -5)$$

76. The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos x \, dx$ is a) $\frac{3}{2}$ b) $\frac{1}{2}$

a)
$$\frac{3}{2}$$

b)
$$\frac{1}{2}$$

d)
$$\frac{2}{3}$$

77. The distance between the planes x + 2y + 3z + 7 = 0 and 2x + 4y + 6z + 7 = 0 is

a)
$$\frac{\sqrt{7}}{2\sqrt{2}}$$

b)
$$\frac{7}{2}$$

c)
$$\frac{\sqrt{7}}{2}$$

d)
$$\frac{7}{2\sqrt{2}}$$

78. Distance from the origin to the plane 3x-6y+2z+7=0 is

79. The value of $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left(\frac{2x^7 - 3x^5 + 7x^3 - x + 1}{\cos^2 x} \right) dx$ is

80. $\sin(\tan^{-1}x)$, |x| < 1 is equal to

a.
$$\frac{x}{\sqrt{1-x^2}}$$

b.
$$\frac{1}{\sqrt{1-x^2}}$$

c.
$$\frac{1}{\sqrt{1+v^2}}$$

d.
$$\frac{x}{\sqrt{1+x^2}}$$

$x^2 + y^2 - 5x - 6y + 9 + \lambda(4x + 3y - 19) = 0$ where λ is equal to					
a) $0, -\frac{40}{9}$ b) 0 c) $\frac{40}{9}$ d) $-\frac{40}{9}$					
82. If a compound statement involves 3 simple statements, then the number of rows in the truth table is					
a) 9 b) 8 c) 6 d) 3					
83. If $f(x) = \int_0^x t \cos t dt$, then $\frac{df}{dx} =$					
a) $\cos x - x \sin x$ b) $\sin x + x \cos x$ c) $x \cos x$ d) $x \sin x$					
84. The length of the diameter of the circle which touches the x -axis at the point (1, 0) and passes through					
the point $(2,3)$					
a) $\frac{6}{5}$ b) $\frac{5}{3}$ c) $\frac{10}{3}$ d) $\frac{3}{5}$					
85. The probability mass function of a random variable is defined as:					
x -2 -1 0 1 2					
f(x) k $2k$ $3k$ $4k$ $5k$					
Then $E(X)$ is equal to:					
a) $\frac{1}{15}$ b) $\frac{1}{10}$ c) $\frac{1}{3}$ d) $\frac{2}{3}$					
86. The centre of the circle inscribed in a square formed by the lines $x^2 - 8x - 12 = 0$ and					
$y^2 - 14y + 15 = 0$ is					
a) (4, 7) b) (7, 4) c) (9, 4) d) (4, 9)					
a) $(4, 7)$ b) $(7, 4)$ c) $(9, 4)$ d) $(4, 9)$ 87. If $A = \begin{bmatrix} \frac{3}{5} & \frac{2}{5} \\ x & \frac{3}{5} \end{bmatrix}$ and $A^{T} = A^{-1}$, then the value of x is					
a. $\frac{-4}{5}$ b. $\frac{-3}{5}$ c. $\frac{3}{5}$ d. $\frac{4}{5}$					
88. If $P(x, y)$ be any point on $16x^2 + 25y^2 = 400 = \text{with foci } F_1(3, 0)$ and $F_2(-3, 0)$ then					
$PF_1 + PF_2$ is					
a) 8 b) 6 c) 10 d) 12					
89. If $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$ where \vec{a} , \vec{b} , \vec{c} are any three vectors such that \vec{b} . $\vec{c} \neq 0$					
and $\vec{a} \cdot \vec{b} \neq 0$, then \vec{a} and \vec{c} are					
and $\vec{a} \cdot \vec{b} \neq 0$, then \vec{a} and \vec{c} are a) perpendicular b) parallel c) inclined at an angle $\frac{\pi}{3}$ d) inclined at an angle $\frac{\pi}{6}$ 90. The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4 \end{bmatrix}$ is					
90. The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 9 \end{bmatrix}$ is					
$\begin{bmatrix} 2 & 4 & 0 & 8 \\ -1 & -2 & -3 & -4 \end{bmatrix}$ is					
d. 1 0. 2 C. 4 d. 3					
91. If $\sin^{-1}x = 2\sin^{-1}\alpha$ has a solution, then					
a. $ \alpha \le \frac{1}{\sqrt{2}}$ b. $ \alpha \ge \frac{1}{\sqrt{2}}$ c. $ \alpha < \frac{1}{\sqrt{2}}$ d. $ \alpha > \frac{1}{\sqrt{2}}$					
92. Two coins are to be flipped. The first coin will land on heads with probability 0.6, the second with					
Probability 0.5. Assume that the results of the flips are independent, and let X equal the total number of					
heads that result. The value of $E(X)$ is					
a) 0.11 b) 1.1 c)11 d)1					
93. The circle $x^2 + y^2 = 4x + 8y + 5$ intersects the line $3x - 4y = m$ at two distinct points if a) $15 < m < 65$ b) $35 < m < 85$ c) $-85 < m < -35$ d) $-35 < m < 15$					
94. If $A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$, then $9I_2 - A = \underline{\qquad}$.					
94. If $A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$, then $9I_2 - A = \phantom{00000000000000000000000000000000000$					

81. The equation of www.iFad pastain Natrough (1, 5) and (4, 1) and www.iTgty Taxas com

95. If $\frac{z-1}{z+1}$ is purely in	yww. <mark>Padasalai Net</mark> naginary, then z is		www.Trb Tnpsc.com
a. ½	b. 1	c. 2	d. 3
			he circle centered at (0, y) passing through
=	ng the circle C externa	lly, then the radius of T	is equal to
a) $\frac{\sqrt{3}}{\sqrt{2}}$	b) $\frac{\sqrt{3}}{2}$	c) $\frac{1}{2}$	d) $\frac{1}{4}$
97. $\sin^{-1}\frac{3}{5} - \cos^{-1}\frac{12}{13} + \frac{1}{13}$	$\sec^{-1}\frac{5}{3} - \csc^{-1}\frac{13}{12}$ is	2	•
a. 2π	b. π	c. 0	d. $\tan^{-1}\frac{12}{65}$
98. The number of re	eal numbers in $[0, 2\pi]$ s	satisfying $\sin^4 x - 2\sin^2 x$	x + 1 is
a. 2	b. 4	c. 1	d. ∞
99. An ellipse has Ol eccentricity of the ell		F and F' its foci and the	e angle FBF' is a right angle. Then the
a) $\frac{1}{\sqrt{2}}$	b) $\frac{1}{2}$	c) $\frac{1}{4}$	d) $\frac{1}{\sqrt{3}}$
V 2	$f(x) = \sin^{-1}x(x^2 - 3)$ then	4	V3
a. [-1, 1]		$\begin{bmatrix} 2 & \sqrt{2} \end{bmatrix} \cdots \begin{bmatrix} \sqrt{2} & 2 \end{bmatrix}$	d. $[-2, -\sqrt{2}]$
	value of the function x^2	e^{-2x} , $x > 0$ is	
a) 1/e	b) 1/2e	c) $\frac{1}{a^2}$	d. $[-2, -\sqrt{2}]$ d) $\frac{4}{e^4}$
102. If f and g are po		and n respectively, and	d if $h(x) = (f \circ g)(x)$, then the degree of h is
a. mn	b. m + n	c. m ⁿ	d. n ^m
103. If z is a non zero	o complex number, suc	th that $2i z^2 = \bar{z}$ then $ z $	r is
a. ½	b. 1	c. 2	d. 3
104. The values of m	a for which the line $y =$	$= mx + 2\sqrt{5}$ touches the	hyperbola $16x^2 - 9y^2 = 144$ are the roots
of $x^2 - (a + b)x - 4 =$	0, then the value of (a	(a+b) is	
a) 2	b) 4	c) 0	d) -2
			tions p and q , we have
$a) \neg (p \lor q) \equiv \neg p \land $		$b) \neg (p \land q) \equiv \neg p \lor \neg q$	$\neg q$
$c) \neg (p \lor q) \equiv \neg p \lor$	*	$\mathbf{d}) \neg (\neg p) \equiv p$	
	gument of the complex	10(2 0(0)	
a. $\frac{2\pi}{3}$	b. $\frac{\pi}{6}$	c. $\frac{5\pi}{6}$	d. $\frac{\pi}{2}$
107. If a vector $\vec{\alpha}$ lies	s in the plane of $\vec{\beta}$ and	$\vec{\nu}$, then	2
	b) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = -1$		d) $[\vec{\alpha}, \vec{\beta}, \vec{v}] = 2$
- · · -	$n^{-1}\left[\frac{\sqrt{3}}{x}\right] = \frac{\pi}{6}$. Then x is a	- · · · -	/ [// //]
	b. $x^2 - x - 12 = 0$		d. $x^2 + x - 6 = 0$
			\vec{b} and is parallel to \vec{c} then $\vec{a} \times (\vec{b} \times \vec{c})$
is equal to		F F	a man so Francisco e messo man (com e)
a) \vec{a}	b) \vec{b}	c) \vec{c}	d) $\vec{0}$
*	the parallelepiped with	its edges represented b	by the vectors $\hat{i} + \hat{j}$, $\hat{i} + 2\hat{j}$, $\hat{i} + \hat{j} + \pi \hat{k}$ is
. π	b) $\frac{\pi}{2}$	c) π	d) $\frac{\pi}{4}$
2	$+ \tan^{-1}(\sqrt{\sin \alpha}) = u, th$	nen cos 2u is equal to	4
a. $tan^2\alpha$	b. 0	c1	d. $\tan 2\alpha$
	$x \in \mathbb{R}$, the value		
a. $-\frac{\pi}{10}$	b. $\frac{\pi}{5}$	$c.\frac{\pi}{10}$	d. $-\frac{\pi}{2}$
	5	10	- padasalai.net@gmail.com
-	<i>y</i>		•

113. Which of the f	nwwiRgdasalai Netct?		www.Trb Tnpsc.com
	netric matrix is also a s	ymmetric matrix	-
•	onal matrix is also a di		
(iii)If A is a square m	natrix of order n and λ i	s a scalar, then adj(λA	$(a) = \lambda^n adj(A)$
(iv) $A(adj A) = (adj A)$	A)A = A I		
a. only (i)		c. (iii) and (iv)	
	ree non-coplanar vector	rs such that $\vec{a} \times (\vec{b} \times \vec{b})$	$(\vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$, then the angle between
\vec{a} and \vec{b} is			
a) $\frac{\pi}{2}$	b) $\frac{3\pi}{4}$	c) π	d) $\frac{\pi}{4}$
115. If $A = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$ a	b) $\frac{3\pi}{4}$ and $B = \begin{bmatrix} 1 & 4 \\ 2 & 0 \end{bmatrix}$ then $ a $	adj (AB) =	
a40	b80	c60	a20
116. If the volume of	the parallelepiped with	\vec{b} , $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{c}$	\vec{a} as coterminous edges is
8 cubic units, then th	e volume of the paralle	lepiped with $(\vec{a} \times \vec{b})$	$\times (\vec{b} \times \vec{c}),$
$(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})$	as coterminous edges i	S,	
	b) 512 cubic units	c)64 cubic units	d) 24 cubic units
	$+\cos^{-1}(1-2\sin^2 x) =$	_	
a. $\frac{\pi}{2}$	b. $\frac{\pi}{3}$	c. $\frac{\pi}{4}$ d.	$\frac{\pi}{6}$
118. If $x + y = k$ is a	normal to the parabola	$y^2 = 12x$, then the value	e of k is
a) 3	b) -1	c) 1	d) 9
119. If $\omega = \operatorname{cis} \frac{2\pi}{3}$, th	en the number of distir		$\begin{vmatrix} \omega & \omega^{2} \\ + \omega^{2} & 1 \\ 1 & z + \omega \end{vmatrix} = 0 \text{ is}$ $\begin{vmatrix} d & 4 \\ \frac{z+3}{3} &= \frac{z+5}{2} \text{ is} \\ d) \frac{\pi}{2} $ the angle between \vec{a} and \vec{b} is
a. 1	b. 2	c. 3	d. 4
120. The angle between	een the lines $\frac{x-2}{3} = \frac{y+1}{-2}$	$\frac{1}{1}$, $z = 2$ and $\frac{x-1}{1} = \frac{2y}{1}$	$\frac{z+3}{3} = \frac{z+5}{2}$ is
a) $\frac{\pi}{6}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{3}$	d) $\frac{\pi}{2}$
121. If \vec{a} and \vec{b} are u	init vectors such that [ā	$[\vec{b}, \vec{b}, \vec{a} \times \vec{b}] = \frac{\pi}{4}$, then the	he angle between \vec{a} and \vec{b} is
a) $\frac{\pi}{6}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{3}$	d) $\frac{\pi}{2}$
122. The number of p	positive zeros of the po	lynomial $\sum_{j=0}^{n} nc_r$ (-:	$(1)^r x^r$ is
a. 0	b. n	c. < n	d. r
123. The ellipse E_1 : $\frac{\lambda}{2}$	$\frac{x^2}{9} + \frac{y^2}{4} = 1$ is inscribe	ed in a rectangle R who	ose sides are parallel to the coordinate
axes. Another ellipse	E ₂ passing through the	e point (0, 4) circumscr	ribes the rectangle R. The eccentricity of
the ellipse is	N		
a) $\frac{\sqrt{2}}{2}$	b) $\frac{\sqrt{3}}{2}$	c) $\frac{1}{2}$	d) $\frac{3}{4}$

124. If $\sin^{-1} x + \cot^{-1}(\frac{1}{2}) = \frac{\pi}{2}$, then x is equal to

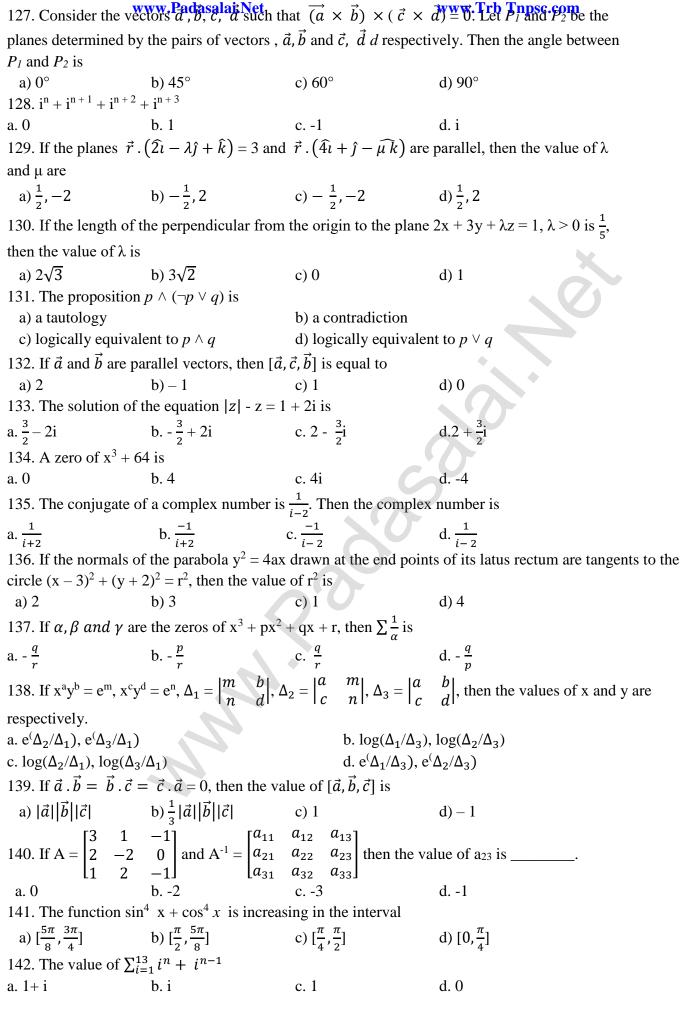
a. $\frac{1}{2}$

d. $\frac{\sqrt{3}}{2}$

125. The equation $\tan^{-1}x - \cot^{-1}x = \tan^{-1}(\frac{1}{\sqrt{3}})$ has

a. no solution

b. unique solution


c. two solutions

d. infinite number of solutions

126. If $\left|z - \frac{3}{z}\right| = 2$, then the least value of |z| is

a. 1

d. 5

143. The number gi	ww. <mark>Padasalai.Net</mark> en by the Mean value t	heorem for the function	$\operatorname{on} \frac{\mathbf{w} \mathbf{w} \mathbf{w}}{\frac{r}{r}} \mathbf{f} \mathbf{r}, \mathbf{y} \mathbf{f} \mathbf{T} \mathbf{n} \mathbf{p} \mathbf{s} \mathbf{c}. \mathbf{com}$
a) 2	b) 2.5	c) 3	d) 3.5
144. The dual of \neg ($p \lor q) \lor [p \lor (p \land \neg r)]$] is	,
a) $\neg (p \land q) \land [p \lor q]$	$(p \land \neg r)]$	b) $(p \wedge q) \wedge [p \wedge (p \wedge q)]$	
c) \neg ($p \land q$) \land [$p \land q$]	$(p \wedge r)$	$\mathrm{d}) \neg (p \wedge q) \wedge [p \wedge$	$(p \lor \neg r)]$
145. The polynomial	$x^3 - kx^2 + 9x$ has three	e real zeros if and only	if, k satisfies
a. $ k \le 6$	b. $k = 0$	c. $ k > 0$	$d. k \ge 6$
146. The abscissa of	the point on the curve j	f(x) = 8 - 2x at which	the slope of the tangent is
-0.25?			
a) -8	b) –4	c) -2	d) 0
	est points on the curve		
a) (2,0)	, , , , ,	c) $(3, \sqrt{5})$	
			when their sum of the squares is 200, is
a) 100	b) $25\sqrt{7}$	c) 28	d) $24\sqrt{14}$
140. The exemple of	matrix of a system of l		2 7 3]
149. The augmented	matrix of a system of i	inear equations is $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1 4 6 . The system has $0, \lambda = 7, \mu + 5$
infinitaly many calut	ion if		
a. $\lambda = 7$, $\mu \neq -5$	b. $\lambda = -7$, $\mu = 5$	c. $\lambda \neq 7$, $\mu \neq -5$	d. $\lambda = 7, \mu = -5$
150. The point of inf	lection of the curve $y =$	$(x-1)^3$ is	.0
a) (0,0)	b) (0,1)	c) (1,0)	d) (1,1)
151. The domain of t	he function defined by	$f(x) = \sin^{-1}\sqrt{x-1} is$	
a. [1, 2]	b. [-1, 1]	c. [0, 1]	d. [-1, 0]
152. If $ z - 2 + i \le$	2, then the greatest val	ue of $ z $ is	
a. $\sqrt{3} - 2$	b. $\sqrt{3} + 2$	c. $\sqrt{5} - 2$	d. $\sqrt{5} + 2$
153. If $u(x, y) = e^{x^2 + x^2}$	$\frac{\partial u}{\partial x}$, then $\frac{\partial u}{\partial x}$ is equal to		
a) $e^{x^2 + y^2}$	b) 2xu	c) x^2u	d) y ² u
154. The slope of the	e line normal to the curv	$ve f(x) = 2\cos 4x \text{ at } x = 1$	$=\frac{\pi}{12}$ is
a) $-4\sqrt{3}$	b) -4	$c)\frac{\sqrt{3}}{12}$	d) $4\sqrt{3}$
μ) .γο Γ1 γ	0.1	12	4) 170
155. If $P = \begin{bmatrix} 1 & x \\ 1 & 3 \\ 2 & 4 \end{bmatrix}$	b) -4 $\begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix}$ is the adjoint of 3 $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ b. 12	X 3 matrix A and $ A $ =	= 4, then x is
a. 15	b. 12	c. 14	d. 11
156. If $f(x, y) = e^{xy}$, t	hen $\frac{\partial^2 f}{\partial x \partial y}$ is equal to		
a) xy e^{xy}	b) $(1 + xy) e^{xy}$	c) $(1 + y) e^{xy}$	$d) (1 + x) e^{xy}$
157. If we measure the	ne side of a cube to be	4 cm with an error of (0.1 cm, then the error in our
calculation of the vol	ume is		
a) 0.4 cu.cm	b) 0.45 cu.cm		d) 4.8 cu.cm
158. The change in the	he surface area $S = 6x^2$	of a cube when the ed	ge length varies from x_0 to
$X_0 + dx$ is			
·	b) $12 x_0 dx$		d) $6 x_0 + dx$
	$tion \vec{r} = (\hat{\imath} - 2\hat{\jmath} - k)$	$+ t(2\hat{\imath} - k)$ represents	s a straight line passing
through the points			
a) (0, 6, -1) and (1,		, , , , , , ,	and (-1, -4, -2)
c) (1, -2, -1) and (1, 4, - 2)	d) (1, - 2,- 1)	and (0, - 6,1)

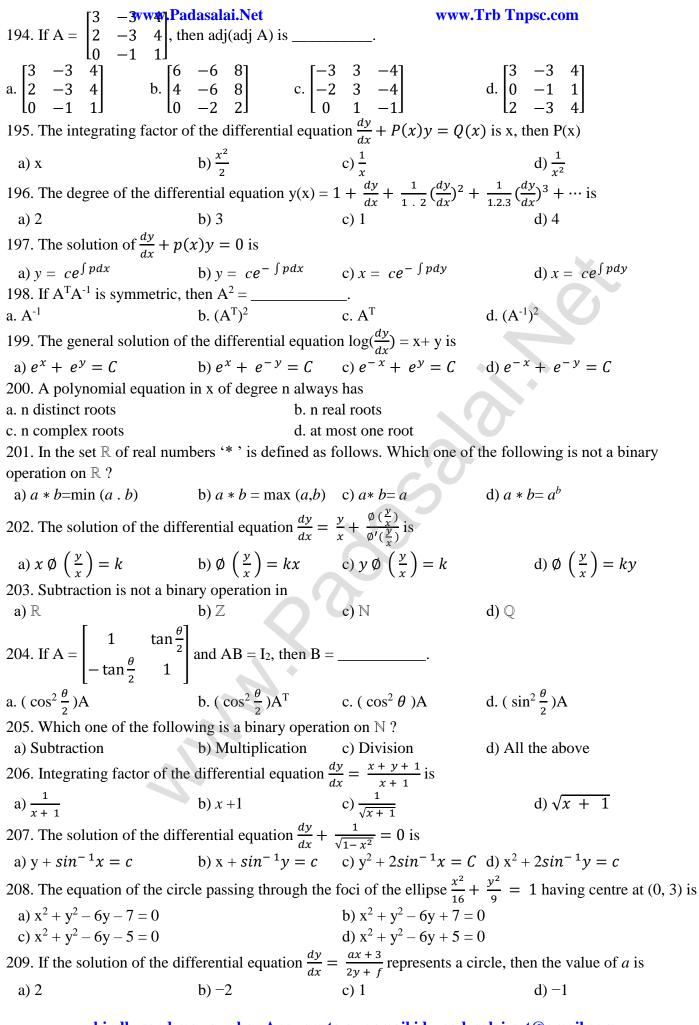
171. If $\sin^{-1}(\frac{x}{5}) + \cot^{-1}(\frac{5}{4}) = \frac{\pi}{2}$, then the value of x is

172. The principal argument of $(\sin 40^{\circ} + i \cos 40^{\circ})^{5}$ is

b. -70° d. 110°

173. The area between $y^2 = 4x$ and its latus rectum is

d) $\frac{5}{2}$


174. The value of $\int_0^1 x(1-x)^{99} dx$ is

b) $\frac{1}{10100}$ 175. If (1+i)(1+2i)(1+3i)...(1+ni) = x + iy, then 2.5.10.... $(1+n^2)$ is

c. $x^2 + v^2$ d. $1 + n^2$ a. 1

d. 3

176. If $v(x, y) = \log(e^{x})$	$(x, y, Padasalai. Diet + e^y)$, then $\frac{\partial e}{\partial x}$ +	$\frac{\partial v}{\partial x}$ is equal to	www.Trb Tnpsc.com
a) $e^x + e^y$	b) $\frac{1}{a^x + a^y}$	c) 2	d) 1
177. If A, B and C ar	e invertible matrices	of some order, then which	ch one of the following is not true?
a. adj $A = A A^{-1}$		b. $adj(AB) = (adj A)$	(adj B)
c. $\det A^{-1} = (\det A)^{-1}$		d. $(ABC)^{-1} = C^{-1}B^{-1}A$	-1
178. The value of \int_0^{π}	$\cos^4 x dx$ is		
a) $\frac{3\pi}{10}$	b) $\frac{3\pi}{9}$	$c)\frac{3\pi}{4}$	d) $\frac{3\pi}{2}$
10	O	4	2
179. The value of \int_0^∞	_	4.	2
a) $\frac{7}{27}$	27	c) $\frac{4}{27}$	d) $\frac{2}{27}$
180. If $ z_1 = 1$, $ z_2 = 1$	$=2$, $ z_3 =9$ and $ 9z_1 $	$ z_1 z_2 + 4 z_1 z_3 + z_3 z_2 $	= 12, then the value of
$ z_1 + z_2 + z_3 $ is			
a. 1	b. 2	c. 3	d. 4
181. The volume of s	0		$^{2} = x(a - x)$ about x-axis is
a) πa^3	b) $\frac{\pi a^3}{4}$	c) $\frac{\pi a^3}{5}$	d) $\frac{\pi a^3}{6}$
182. If $\frac{\Gamma(n+2)}{\Gamma(n)} = 90$	then n is	-	
a) 10	b) 5	c) 8	d) 9
183. The value of \int_0^1			
a) $\frac{\pi^2}{4} - 1$	T	c) $\frac{\pi^2}{4} + 1$	d) $\frac{\pi^2}{4}$ – 2
184. The value of \int_0^a	$(\sqrt{a^2-x^2})^3$ dx is		
	b) $\frac{3\pi a^4}{16}$	c) $\frac{3\pi a^2}{8}$	$d)\frac{3\pi a^4}{8}$
185. If $\int_{0}^{x} f(t)dt = 2$	$x + \int_{x}^{1} t f(t) dt$, then	the value of $f(1)$ is	
a) ½	b) 2	c) 1	d) ³ ⁄ ₄
186. The curve $y = ax$	$x^4 + bx^2$ with $ab > 0$		
a) has no horizontal	l tangent	b) is concave up	
c) is concave down		d) has no points of in	
188. If $w(x, y, z) = x^2$	$(2^2(y-z) + y^2(z-x) + z^2$	$z^2(x - y)$, then $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y}$	$+\frac{\partial w}{\partial z}$ is
a) $xy + yz + zx$	b) $x(y+z)$	c) $y(z + x)$	d) 0
189. The order of the	differential equation	of all circles with centre	e at (h, k) and radius 'a' is
a) 2	b) 3	c) 4	d) 1
190. The differential	equation of the famil	y of curves $y = Ae^x + Be$	e ^{-x} , where A and B are arbitrary constants
is 12.	12.	4.	
0070	0070	$c)\frac{dy}{dx} + y = 0$	an
		te line $\vec{r} = (6\hat{\imath} - \hat{\jmath} - 3\hat{k})$	$+t(-\hat{\imath}+4\hat{k})$ meets the
plane \vec{r} . $(\hat{\imath} + \hat{\jmath} - \hat{k})$	= 3 are		
		c) (1,2, - 6)	
192. The solution of	the differential equati	on $2x \frac{dy}{dx} - y = 3$ represe	ents
			d) ellipse
193. Angle between y	$y^2 = x$ and $x^2 = y$ at the	e origin is	
a) $\tan^{-1} \frac{3}{4}$		π	d) $\frac{\pi}{4}$
4	3	· 2	4

210. If (AB)	$-1 = \begin{bmatrix} 12 & 0 \\ -19 \end{bmatrix}$	\mathbf{v} . $\mathbf{P}_{\mathbf{a}}$	$\begin{bmatrix} -1 \\ 2 \end{bmatrix}$, then B ⁻¹ = $\frac{\mathbf{w}\mathbf{w}\mathbf{v}}{\mathbf{w}\mathbf{v}}$	v.Trb Tnpsc.com
a. $\begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix}$]	b. $\begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix}$	c. $\begin{bmatrix} -1\\ 2 \end{bmatrix}$, then $B^{-1} = \frac{\mathbf{w} \mathbf{w} \mathbf{v}}{\mathbf{c}}$	$d. \begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix}$
211. Let X b	e random v	ariable with probabi	lity density function $(x) =$	$\begin{cases} \frac{2}{x^3} & x \ge 1\\ 0 & x < 1 \end{cases}$. Which of the
following sta			b) mean exists but variance	a door not avist
a) both meac) both mea		ince exist	'	
ŕ			·	pility density function of the shorter
of the two pi	eces is (x)	$= \begin{cases} \frac{1}{l} & 0 < x < \\ 0 & l \le x < \end{cases}$	$\frac{1}{2l}$. The mean and variance	e of the shorter of the two pieces are
respectively				
a) $\frac{l}{2}, \frac{l^2}{3}$		b) $\frac{l}{2}$, $\frac{l^2}{6}$	c) $l, \frac{l^2}{12}$	d) $\frac{l}{2}$, $\frac{l^2}{12}$
213. The pop	pulation P i	n any year t is such t	hat the rate of increase in th	ne population is proportional to the
population.				
a) $P = Ce^{kt}$			c) $P = Ckt$	
				3, 4 of a four-sided die is rolled and the number of elements in the
inverse imag		Let the fandom varia	ole A denote this sum. Then	the number of elements in the
a) 1	C 01 7 15	b) 2	c) 3	d) 4
	th table for	$(p \land q) \rightarrow \neg q \text{ is giv}$		
		$(p \wedge q) \vee (\neg q)$	6	
p	q		.0.	
T	T	(a)	20	
T	F	(b)		
F	T	(c)		
F	F	(d)		
Which one o	of the follow	ving is true?		
(a) (b) (c)				
(1) T T T				
$\begin{array}{ccccc} (2) T & F & T \\ (3) T & T & F \end{array}$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
` '		where the player tosse	es a six-sided fair die. If the	face that comes up is 6, the player
wins Rs. 36,	otherwise l	ne loses $Rs.k^2$, wher	e k is the face that comes up	p
	$4, 5$ }. The ϵ		vin at this game in `is	3
a) $\frac{19}{6}$	0.1	b) $-\frac{19}{6}$	c) $\frac{3}{2}$	d) $-\frac{3}{2}$
a. $\frac{1}{2} z ^2$		b. $ z ^2$	c. $\frac{3}{2} z ^2$	$z + iz$ in the Argand's diagram is d. $2 z ^2$
218. If $A = \int_{-\infty}^{\infty} $	$\cos \theta$ s	$\begin{bmatrix} \ln \theta \\ \cos \theta \end{bmatrix}$ and A(adj A) =	$= \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}, \text{ then } k = \underline{\qquad}.$	
a. 0	. 3111 <i>0</i> C	b. $\sin \theta$	$c. \cos \theta$	d. 1
			05 1	
a) 6	om variable	X has binomial distr b) 4	c) 3 and $p = 25$ and $p = 6$	= 0.8 then standard deviation of <i>X</i> is d) 2

220. On a multiple-choice exam with 3 possible destructives for each of the 5 questions, the kindly send me your key Answers to our email id - padasalai.net@gmail.com

probability that a student want	asalaion filore correct	answers just by weeks i	ngbis Tnpsc.com
a) $\frac{11}{243}$ 221. If A is non-singular matr	b) $\frac{3}{8}$	c) $\frac{1}{243}$	d) $\frac{5}{243}$
221. If A is non-singular matr	rix such that $A^{-1} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$, then $(A^T)^{-1} = 1$	·
a. $\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$ 222. If <i>X</i> is a binomial randor $P(X = 5)$ is	b. $\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$	c. $\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix}$	d. $\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$
a) $\binom{10}{5} \left(\frac{3}{5}\right)^6 \left(\frac{2}{5}\right)^4$	(0)	(0)	d) $\binom{10}{5} \left(\frac{3}{5}\right)^5 \left(\frac{2}{5}\right)^5$ number of tails obtained when a
coin is tossed n times. Then the			(man) 01 01 01 01 0 0 0 0 0 0 0 0 0 0 0 0 0
a) $i + 2n$, $i = 0,1,2n$ c) $n - i$, $i = 0,1,2n$		b) $2i - n$, $i = 0,1,2n$ d) $2i + 2n$, $i = 0,1,2n$	n
224. Let $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } 4B = \begin{bmatrix} 3 & 1 \\ 1 & 3 \\ -1 & 1 \end{bmatrix}$	$\begin{bmatrix} -1 \\ x \\ 3 \end{bmatrix}$. If B is the invers	se of A, then the value of x is
a. 2	b. 4	c. 3	d. 1
225. Which of the following is			
I. The number of cars crossin		•	
II. The number of customers : III. The time taken to comple		tickets at a moment.	
a) I and II	b) II only	c) III only	d) II and III
226. If $f(x) = \begin{cases} 2x & 0 \le x \\ 0 & other \end{cases}$	wise is a probability c	lensity function of a ra	ndom variable, then the value of a
1S a) 1	b) 2	c) 3	d) 4
227. The operation * defined	· _		<i>-</i> , .
a) \mathbb{Q}^+	b) Z	c) R	d) C
228. Let <i>X</i> have a Bernoulli d	,		,
a) 0.24	b) 0.48	c) 0.6	d) 0.96
229. If in 6 trials, <i>X</i> is a binor	nial variable which fol	llows the relation $9P(X)$	(=4) = P(X=2), then the probability
of success is			
a)0.125	b) 0.25	c) 0.375	d) 0.75
customers who enter the show	-	-	computers to one in every twenty ll a computer to exactly two of the
next three customers?	57	1 Q ³	57
a) $\frac{57}{20^3}$		c) $\frac{19^3}{20^3}$	
231. In the last column of the	truth table for \neg ($p \lor$	$\neg q$) the number of fina	al outcomes of the truth value F'
are		\	10.4
	b) 2	c) 3	d) 4
232. If $\sin x$ is the integrating			
a) logsin x	b) $\cos x$	c) tan x	d) $\cot x$
a) 3	constants in the partic b) 2	ular solution of a differ	rential equation of third order is d) 0
234. The eccentricity of the h distance between the foci is	,	· ·	,
	b) $\frac{4}{\sqrt{5}}$	c) $\frac{2}{\sqrt{5}}$	d) $\frac{3}{2}$
a) $\frac{4}{3}$ 235. If A $\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$, a. $\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$	then $A = \underline{\hspace{1cm}}$	√3 _••	2
a. $\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$	b. $\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$	c. $\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$	d. $\begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$
236. In the set \mathbb{Q} define $a \odot b$	b = a + b + ab. For wha		=7 ?

a) $y = \frac{2}{3}$		www.I	Padasalai. <u>Ne</u> t	c) $y = -\frac{3}{2}$	www.Trb Tnpsc.com
237. tan ⁻¹ ($(\frac{1}{4})$ + tai	$n^{-1}(\frac{2}{9})$ is	equal to	2	
a. $\frac{1}{2}\cos^{-1}($	$\frac{3}{5}$)		b. $\frac{1}{3} \sin^{-1}(\frac{3}{5})$	c. $\frac{1}{2} \tan^{-1}(\frac{3}{5})$	d. $\tan^{-1}(\frac{1}{2})$
4	5		owing statements ha	2 3	L
a) sin x is			_		
b) Every	square 1	matrix is	non-singular		
		_	x number and its con	ijugate is purely ima	aginary
d) $\sqrt{5}$ is a				^>	^
			$e line \vec{r} = (\hat{\imath} + 2\hat{\jmath} -$	$3k$) + $t(2\hat{\imath} + \hat{\jmath} -$	2k) and the plane
$\vec{r} \cdot (\hat{\imath} + \hat{\jmath} -$	$-\hat{k})=3$	3 are			
a) 0°	1		b) 30°	c) 45°	d) 90°
			X has the probability 1 7		X
$f(x) = \big\{$	0	otherw	< 1 and $E(X) = \frac{7}{12}$,	then a and b are res	pectively
a) 1 and	1/2		b) ½ and 1	c) 2 and 1	d) 1 and 2
241. If z =	$=\frac{(\sqrt{3}+i)^3}{(3+i)^3}$	$\frac{(3i+4)^2}{(3i+4)^2}$, 1	then $ z $ is equal to		
a ()	(0.0	,,,	h 1	c. 2	d. 3
242. Whic	h one is	the cont	trapositive of the stat	tem tvent $(p \lor q)$ =	r?
a) $\neg r \rightarrow 0$	$(\neg p \land \neg q)$	·)	trapositive of the state $p \land r \rightarrow (p \lor q)$	c) $r \rightarrow (p \land q)$	$d) p \to (q \vee r)$
243. The s	solution	of $\frac{dy}{dx} = 2$	2^{y-x} is		
a) $2^{x} +$		ux	b) $2^x - 2^y = C$	c) $\frac{1}{1} - \frac{1}{1} = 1$	C d) $x + y = C$
,			n a set S is a function		3)11 : 3
a) $S \rightarrow S$	iary ope	iunon or		c) $S \rightarrow (S \times S)$	$d)(S \times S) \to (S \times S)$
	adius of	the circ	$le 3x^2 + by^2 + 4bx$		
a) 1			b) 3	c) $\sqrt{10}$	d) $\sqrt{11}$
246.	p	q	$(p \land q) \rightarrow \neg p$		
	T	T	(a)		
	T	F	(b)	,0	
	F	T	(c)		
	F	F	(d)		
Which on	a of the	followin	g is correct for the tr	with value of $(n \land a)$	$\rightarrow \neg n$?
(a) (b)		IOIIO W III	g is correct for the tr	uni value of $(p \wedge q)$)
(1) T T					
(2) F T	T T				
(3) F F T					
(4) T T T		1	64h - C4i 12	1 . 0 :-	
a) 0	nınımur	n value (of the function $ 3-x $ b) 3	c) 6	d) 9
	volume o	of a sphe	,	,	$3 \pi \text{cm}^3$ / sec. The rate of change of its
radius who				31 01110 00 0110 1000 01	or the same of the same of the same of the
a) 3 cm/s	3		b) 2 cm/s	c) 1 cm/s	d) ½ cm/s
249. If $ x $	≤ 1 , the	en 2tan ⁻¹	$x - \sin^{-1}\frac{2x}{1-x^2}$ is equal	al to	
a. tan ⁻¹ x			b. $\sin^{-1}x$	c. 0	d. π
	$t^{-1}2$ and θ	cot ⁻¹ 3 are	e two angles of a tria		
a. $\frac{\pi}{4}$			b. $\frac{3\pi}{4}$	c. $\frac{\pi}{6}$	d. $\frac{\pi}{3}$