Choose the correct or the most suitable answer from the given four alternatives:

1. If $\mathrm{A}=\left[\begin{array}{cc}\frac{3}{5} & \frac{4}{5} \\ x & \frac{3}{5}\end{array}\right]$ and $\mathrm{A}^{\mathrm{T}}=\mathrm{A}^{-1}$, then the value of x is
(1) $\frac{-4}{5}$
(2) $\frac{-3}{5}$
(3) $\frac{3}{5}$
(4) $\frac{4}{5}$
2. If $\mathrm{x}^{\mathrm{a}} \mathrm{y}^{\mathrm{b}}=\mathrm{e}^{\mathrm{m}}, \mathrm{x}^{\mathrm{c}} \mathrm{y}^{\mathrm{d}}=\mathrm{e}^{\mathrm{n}}, \Delta_{1}=\left|\begin{array}{ll}m & b \\ n & d\end{array}\right|, \Delta_{2}=\left|\begin{array}{ll}a & m \\ c & n\end{array}\right|, \Delta_{3}=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$ then the values of x and y are respectively,
(1) $e^{\left(\Delta_{2} / \Delta_{1}\right.}, e^{\left(\Delta_{3} / \Delta_{1}\right)}$
(2) $\log \left(\Delta_{1} / \Delta_{3}\right), \log \left(\Delta_{2} / \Delta_{3}\right)$
(3) $\log \left(\Delta_{2} / \Delta_{1}\right), \log \left(\Delta_{3} / \Delta_{1}\right)$
(4) $e^{\left(\Delta_{1 / \Delta_{3}}\right.}, e^{\left(\Delta_{2} / \Delta_{3}\right)}$
3. The augmented matrix of a system of linear equations is $\left[\begin{array}{cccc}1 & 2 & 7 & 3 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & \lambda-7 & \mu+5\end{array}\right]$. The system has infinitely many solutions if
(1) $\lambda=7, \mu \neq-5$
(2) $\lambda=-7, \mu=5$
(3) $\lambda \neq 7, \mu \neq-5$
(4) $\lambda=7, \mu=-5$
4. If $A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]$ be such that $\lambda A^{-1}=A$, then λ is
(1)17
(2) 14
(3) 19
(4) 21
5. If $\mathrm{A}=\left[\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right], \mathrm{B}=\operatorname{adjA}$ and $\mathrm{C}=3 \mathrm{~A}$, then $\frac{|\operatorname{adj} \mathrm{B}|}{|C|}=$
(1) $\frac{1}{3}$
(2) $\frac{1}{9}$
(3) $\frac{1}{4}$
(4)1
6. If $z=\frac{(\sqrt{3}+i)^{2}(3 i+4)^{2}}{(8+6 i)^{2}}$ then $|z|$ is equal to
(1) 0
(2) 1
(3) 2
(4) 3
7. If $\frac{z-1}{z+1}$ is purely imaginary, then $|z|$ is
(1) $\frac{1}{2}$
(2) 1
(3) 2
(4) 3
8. If $(1+i)(1+2 i)(1+3 i) \cdots(1+n i)=(x+i y)$, then $2 \cdot 5 \cdot 20 \cdots\left(1+n^{2}\right)$
(1) 1
(2) i
(3) $x^{2}+y^{2}$
(4) $1+n^{2}$
9. The product of all four values of $\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{\frac{3}{4}}$ is
(1)-2
(2) -1
(3) 1
(4)2
10. The principal argument of $\left(\sin 40^{\circ}+i \cos 40^{\circ}\right)^{5}$ is
(1) -110°
(2) -70°
(3) 70°
(4) 110°
11. According to the rational root theorem, which number is not possible rational zero of $4 x^{7}+2 x^{4}-10 x^{3}-5$?
(1) -1
(2) $\frac{5}{4}$
(3) $\frac{4}{5}$
(4) 5
12. The polynomial $x^{3}+2 x+3$ has
(1) one negative and two imaginary zeros
(2) one positive and two imaginary zeros
(3) three real zeros
(4) no zeros
13. If $\sin ^{-1} x=2 \sin ^{-1} \alpha$ has a solution, then
(1) $|\alpha| \leq \frac{1}{\sqrt{2}}$
(2) $|\alpha| \geq \frac{1}{\sqrt{2}} \pi$
(3) $|\alpha|<\frac{1}{\sqrt{2}}$
(4) $|\alpha|>\frac{1}{\sqrt{2}}$
14. If $\cot ^{-1} x=\frac{2 \pi}{5}$ for some $x \in R$, the value of $\tan ^{-1} x$ is
(1) $-\frac{\pi}{10}$
(2) $\frac{\pi}{5}$
(3) $\frac{\pi}{10}$
(4) $-\frac{\pi}{5}$
kindly send me your key Answers to our email id - padasalai.net@gmail.com
15. If $|x| \leq 1$, then $\tan ^{\text {tan }}$ Padasalai. $\left.\mathrm{Net} 2 x\right)$ is equal to
(1) $\tan ^{-1} x$
(2) $\sin ^{-1} x$
(3) 0
(4) π
16. If $\sin ^{-1} x+\cot ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{2}$, then x is equal to
(1) $\frac{1}{2}$
(2) $\frac{1}{\sqrt{5}}$
(3) $\frac{2}{\sqrt{5}}$
(4) $\frac{\sqrt{3}}{2}$
17. The circle passing through $(1,-2)$ and touching the axis of x at $(3,0)$ passing through the point
(1) $(-5,2)$
(2) $(2,-5)$
(3) $(5,2)$
(4) $(-2,5)$
18. The eccentricity of the ellipse $(x-3)^{2}+(y-4)^{2}=\frac{y^{2}}{9}$ is
(1) $\frac{\sqrt{3}}{2}$
(2) $\frac{1}{3}$
(3) $\frac{1}{3 \sqrt{2}}$
(4) $\frac{1}{\sqrt{3}}$
19. If $x+y=k$ is a normal to the parabola $y^{2}=12 x$, then the value of k is
(1) 3
(2) -1
(3) 1
(4) 9
20. The area of quadrilateral formed with foci of the hyperbolas $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ is
(1) $4\left(a^{2}+b^{2}\right)$
(2) $2\left(a^{2}+b^{2}\right)$
(3) $\left(a^{2}+b^{2}\right)$
(4) $\frac{1}{2}\left(a^{2}+b^{2}\right)$
21. The circle $x^{2}+y^{2}=4 x+8 y+5$ intersects the line $3 x-4 y=m$ at two distinct points if
(1) $15<m<65$
(2) $35<m<85$
(3) $-85<m<-35$
(4) $-35<m<15$
22. Area of the greatest rectangle inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
(1) $2 a b$
(2) $a b$
(3) $\sqrt{a b}$
(4) $\frac{a}{b}$
23. If \vec{a} and \vec{b} are parallel vectors, then $[\vec{a}, \vec{c}, \vec{b}]$ is equal to
(1) 2
(2) -1
(3) 1
(4) $\overrightarrow{0}$
24. The volume of the parallelepiped with its edges represented by the vectors $\hat{\imath}+\hat{\jmath}, \hat{\imath}+2 \hat{\jmath}, \hat{\imath}+\hat{\jmath}+\pi \hat{k}$ is
(1) $\frac{\pi}{2}$
(2) $\frac{\pi}{3}$
(3) π
(4) $\frac{\pi}{4}$
25. If the volume of the parallelepiped with $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ as coterminous edges is 8 cubic units, then the volume of the parallelepiped with $(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c}),(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})$ and $(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})$ as coterminous edges is,
(1) 8 cubic units
(2) 512 cubic units
(3) 64 cubic units
(4) 24 cubic units
26. If the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3 y-\alpha z+\beta=0$, then (α, β) is
(1) $(-5,5)$
(2) $(-6,7)$
(3) $(5,-5)$
(4) $(6,-7)$
27. If the direction cosines of a line are $\frac{1}{c}, \frac{1}{c}, \frac{1}{c}$ then
(1) $c= \pm 3$
(2) $c= \pm \sqrt{3}$
(3) $c>0$
(4) $0<c<1$
28. The volume of a sphere is increasing in volume at the rate of $3 \pi \mathrm{~cm}^{3} / \mathrm{sec}$. The rate of change of its radius when radius is $\frac{1}{2} \mathrm{~cm}$
(1) $3 \mathrm{~cm} / \mathrm{s}$
(2) $2 \mathrm{~cm} / \mathrm{s}$
(3) $1 \mathrm{~cm} / \mathrm{s}$
(4) $\frac{1}{2} \mathrm{~cm} / \mathrm{s}$
29. The abscissa of the point on the curve $f(x)=\sqrt{8-2 x}$ at which the slope of the tangent is -0.25 ?
(1) -8
(2) -4
(3) -2
(4) 0
30. Angle between $y^{2}=x$ and $x^{2}=y$ at the origin is
(1) $\tan ^{-1} \frac{3}{4}$
(2) $\tan ^{-1} \frac{4}{3}$
(3) $\frac{\pi}{2}$
(4) $\frac{\pi}{4}$
31.4. If $V(x, y)=\log \left(e^{x}+e^{y}\right)$, then $\frac{\partial v}{\partial \mathrm{x}}+\frac{\partial v}{\partial \mathrm{y}}$ is equal to
(1) $e^{x}+e^{y}$
(2) $\frac{1}{e^{x}+}$
(3) 2
(4) 1
kindly send me your ${ }^{x}$ key Answers to our email id - padasalai.net @ gmail.com
31. If $(x, y)=x^{2}$, then $\frac{\text { Padasalai.Net }}{\partial \mathrm{x}}$ is equal to
(1) $x^{y} \log x$
(2) $y \log x$
(3) $y x^{y-1}$
(4) $x \log y$
32. If $f(x, y)=e^{x y}$, then $\frac{\partial^{2} f}{\partial \mathrm{x} \partial \mathrm{y}}$ is equal to
(1) $x y e^{x y}$
(2) $(1+x y) e^{x y}$
(3) $(1+y) e^{x y}$
(4) $(1+x) e^{x y}$
33. The value of $\int_{-1}^{2}|x| d x$ is
(1) $\frac{1}{2}$
(2) $\frac{3}{2}$
(3) $\frac{5}{2}$
(4) $\frac{7}{2}$
34. The value of $\left.\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{2 x^{7}-3 x^{5}+7 x^{3}-x+1}{\cos ^{2} x}\right) d x$ is
(1) 4
(2) 3
(3) 2
(4) 0
35. The value of $\int_{0}^{\pi} \frac{d x}{1+5^{\cos x}}$ is
(1) $\frac{\pi}{2}$
(2) π
(3) $\frac{3 \pi}{2}$
(4) 2π
36. The value of $\int_{0}^{1}\left(\sin ^{-1} x\right)^{2} d x$ is
(1) $\frac{\pi^{2}}{4}-1$
(2) $\frac{\pi^{2}}{4}+2$
(3) $\frac{\pi^{2}}{4}+1$
(4) $\frac{\pi^{2}}{4}-2$
37. A rod of length $2 l$ is broken into two pieces at random. The probability density function of the shorter of the two pieces is $f(x)=\left\{\begin{array}{cc}\frac{1}{l} & 0<x<l \\ l & l \leq x \leq 2 l\end{array}\right.$ The mean and variance of the shorter of the two pieces are respectively
(1) $\frac{l}{2}, \frac{l^{2}}{3}$
(2) $\frac{l}{2}, \frac{l^{2}}{6}$
(3) $l, \frac{l^{2}}{12}$
(4) $\frac{l}{2}, \frac{l^{2}}{12}$
38. Let X represent the difference between the number of heads and the number of tails obtained when
a coin is tossed n times. Then the possible values of X are
(1) $i+2 n, i=0,1,2 \ldots n$
(2) $2 i-n, i=0,1,2 \ldots n$
(3) $n-i, i=0,1,2 \ldots n$
(4) $2 i+2 n, i=0,1,2 \ldots n$
39. The random variable X has the probability density function $f(x)=\left\{\begin{array}{cc}a x+b, & 0<x<1 \\ 0, & \text { otherwise }\end{array}\right.$ and $E(X)=\frac{7}{12}, \quad$ then a and b are respectively
(1) 1 and $\frac{1}{2}$
(2) $\frac{1}{2}$ and 1
(3) 2 and 1
(4) 1 and 2
40. Which of the following is a discrete random variable?
I. The number of cars crossing a particular signal in a day.
II. The number of customers in a queue to buy train tickets at a moment.
III. The time taken to complete a telephone call.
(1) I and II
(2) II only
(3) III only
(4) II and III
41. In the set \mathbb{R} of real numbers '*' is defined as follows. Which one of the following is not a binary
operation on \mathbb{R} ?
(1) $a * b=\min (a \cdot b)$
(2) $a * b=\max (a, b)$
(3) $a * b=a$
(4) $a * b=a^{b}$
42. Which one of the following statements has truth value F ?
(1) Chennai is in India or $\sqrt{2}$ is an integer
(2) Chennai is in India or $\sqrt{2}$ is an irrational number
(3) Chennailiswin Padasalaider at an integer
(4) Chennai is in China or $\sqrt{2}$ is an irrational number
43. In the last column of the truth table for $\neg(p \vee \neg q)$ the number of final outcomes of the truth value ' F 'are
(1) 1
(2) 2
(3) 3
(4) 4
44. The dual of $\neg(p \vee q) \vee[(p \vee(p \wedge \neg r)]$ is
(1) $\neg(p \wedge q) \vee[(p \vee(p \wedge \neg r)]$
(2) $(p \wedge q) \wedge[(p \wedge(p \vee \neg r)]$
(3) $\neg(p \wedge q) \wedge[(p \wedge(p \wedge \neg r)]$
(4) $\neg(p \wedge q) \wedge[(p \wedge(p \vee \neg r)]$
45. If $\mathrm{f}(\mathrm{x})=x^{2}-3 x$, then the points at which $\mathrm{f}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{x})$ are
(1) both positive integers
(2)both negative integers
(3)both irrational
(4)one rational and another irrational
46. $\frac{d}{d x}\left(e^{x+5 \log x}\right)$ is
(1) $e^{x} \cdot x^{4}(x+5)$
(2) $e^{x} \cdot x(x+5)$
(3) $e^{x}+\frac{5}{x}$
(4) $e^{x}-\frac{5}{x}$
47. If $f(x)=x+2$, then $f(f(x))$ at $x=4$ is
(1) 8
(2) 1
(3) 4
(4)5
48. It is given that $\mathrm{f}^{\prime}(\mathrm{a})$ exists, then $\lim _{x \rightarrow a} \frac{x f(a)-a f(x)}{x-a}$ is
(1)f(a)-af'(a)
(2) $\mathrm{f}^{\prime}(\mathrm{a})$
(3) $-f^{\prime}(a)$
(4)f(a)+af(a)
49. The derivative of $\mathrm{f}(\mathrm{x})=\mathrm{x}|x|$ at $\mathrm{x}=-3$ is
(1)6
(2)-6
(3)does not exist
(4) 0

MURALIRAJA.M.Sc.,B.Ed., CELL NO: 9786760672

