~1	1		1	c .1		r alternatives:
ι ηρυσο της	COPPACE OF EN	a mact cilitan	IA ancwar	trom tho	σινώς τοιιι	r alfarnafiwac•
CHOOSE LIE	COLLECT OF THE	c most suitan	ic answei	H VIII LIIC	ZIVCII IUUI	aitei natives.

1. If
$$A = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ x & \frac{3}{5} \end{bmatrix}$$
 and $A^{T} = A^{-1}$, then the value of x is
$$(1) \frac{-4}{5} \qquad (2) \frac{-3}{5} \qquad (3) \frac{3}{5} \qquad (4) \frac{4}{5}$$

2. If $x^a y^b = e^m$, $x^c y^d = e^n$, $\Delta_1 = \begin{vmatrix} m & b \\ n & d \end{vmatrix}$, $\Delta_2 = \begin{vmatrix} a & m \\ c & n \end{vmatrix}$, $\Delta_3 = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$ then the values of x and y are respectively,

(1)
$$e^{(\Delta_2/\Delta_1)}$$
, $e^{(\Delta_3/\Delta_1)}$ (2) $\log(\Delta_1/\Delta_3)$, $\log(\Delta_2/\Delta_3)$ (3) $\log(\Delta_2/\Delta_1)$, $\log(\Delta_3/\Delta_1)$ (4) $e^{(\Delta_1/\Delta_3)}$, $e^{(\Delta_2/\Delta_3)}$

3. The augmented matrix of a system of linear equations is $\begin{bmatrix} 1 & 2 & 7 & 3 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & \lambda - 7 & \mu + 5 \end{bmatrix}$. The system has

infinitely many solutions if

(1)
$$\lambda = 7, \mu \neq -5$$
 (2) $\lambda = -7, \mu = 5$ (3) $\lambda \neq 7, \mu \neq -5$ (4) $\lambda = 7, \mu = -5$

4. If
$$A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$$
 be such that $\lambda A^{-1} = A$, then λ is (1)17 (2) 14 (3) 19 (4) 21

5. If
$$A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$$
, $B = adjA$ and $C = 3A$, then $\frac{|adjB|}{|c|} = (1)\frac{1}{3}$ $(2)\frac{1}{9}$ $(3)\frac{1}{4}$ $(4)1$

6. If
$$z = \frac{(\sqrt{3}+i)^2(3i+4)^2}{(8+6i)^2}$$
 then $|z|$ is equal to
(1) 0 (2) 1 (3) 2 (4) 3

7. If $\frac{z-1}{z+1}$ is purely imaginary, then |z| is

$$(1)\frac{1}{2} \qquad (2) 1 \qquad (3) 2 \qquad (4) 3$$

8. If
$$(1+i)(1+2i)(1+3i)\cdots(1+ni) = (x+iy)$$
, then $2\cdot 5\cdot 20\cdots(1+n^2)$
(1) 1 (2) i (3) x^2+y^2 (4) $1+n^2$

9. The product of all four values of $\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{\frac{1}{4}}$ is

(1)-2 (2)-1 (3)1 (4)2
10. The principal argument of
$$(\sin 40^{\circ} + i \cos 40^{\circ})^{5}$$
 is

(1) -110° (2) -70° (3) 70° (4) 110°

11. According to the rational root theorem, which number is not possible rational zero of $4x^7 + 2x^4 - 10x^3 - 5$?

$$(1) -1 (2) \frac{5}{4} (3) \frac{4}{5} (4) 5$$

12. The polynomial $x^3 + 2x + 3$ has

(1) one negative and two imaginary zeros (2) one positive and two imaginary zeros (3) three real zeros (4) no zeros

13. If $sin^{-1}x = 2sin^{-1}\alpha$ has a solution, then

(1)
$$|\alpha| \le \frac{1}{\sqrt{2}}$$
 (2) $|\alpha| \ge \frac{1}{\sqrt{2}}\pi$ (3) $|\alpha| < \frac{1}{\sqrt{2}}$ (4) $|\alpha| > \frac{1}{\sqrt{2}}$

14. If $\cot^{-1} x = \frac{2\pi}{5}$ for some $x \in R$, the value of $\tan^{-1} x$ is

$$(1) - \frac{\pi}{10} \qquad (2) \frac{\pi}{5} \qquad (3) \frac{\pi}{10} \qquad (4) - \frac{\pi}{5}$$

32.	If $(x, y) = x^2$, then $\frac{\partial x}{\partial x}$	dasalai.Net is equal to	www.Trb Tnpsc.com					
	$(1) x^y \log x$		(3) yx^{y-1}	(4) x log y				
33.	If $f(x, y) = e^{xy}$, then	$\frac{\partial^2 f}{\partial x_i \partial x_j}$ is equal to						
		$(2) (1 + xy) e^{xy}$	(3) $(1 + y) e^{xy}$	$(4) (1+x) e^{xy}$				
34.	The value of $\int_{-1}^{2} x dx$ is							
	- C42 1	co. 3	co. 5	7				
	$(1)\frac{1}{2}$	L	$(3)\frac{5}{2}$	$(4)\frac{7}{2}$				
35.	The value of $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left(\frac{2x^7 - 3x^7}{4} \right)^{\frac{\pi}{4}}$	$\left(\frac{x^5+7x^3-x+1}{\cos^2 x}\right) dx$ is						
	(1) 4		(3) 2	(4) 0				
36.	6. The value of $\int_0^\pi \frac{dx}{1+5\cos x}$ is							
	$(1)^{\pi}$	(2) -	3π	(4) 2-				
	$(1)^{\frac{n}{2}}$		$(3)\frac{3\pi}{2}$	$(4) 2\pi$				
37.	The value of $\int_0^1 (\sin^{-1} x)^{-1}$		_2	_2				
	$(1)\frac{\pi^{2}}{4}-1$	$(2)\frac{\pi^2}{4}+2$	$(3)\frac{\pi^{-}}{4}+1$	$(4)\frac{\pi^2}{4}-2$				
38.	A rod of length 2 <i>l</i> is brown	oken into two pieces	at random. The proba	bility density function of the				
i	shorter of the two pieces is $f(x) = \begin{cases} \frac{1}{l} & 0 < x < l \\ 0 & l \le x \le 2l \end{cases}$ The mean and variance of the shorter of the two							
	pieces are respectively	2		2				
	$(1)\frac{l}{2},\frac{l^2}{3}$	$(2)\frac{l}{2},\frac{l^2}{6}$	(3) $l, \frac{l^2}{12}$	$(4)\frac{l}{2},\frac{l^2}{12}$				
	_	ference between the r	number of heads and	the number of tails obtained				
wh	en a coin is tossed n times. '	Then the possible val	ues of X are					
	(1) i + 2n, i = 0,1,3	2n	(2) 2i - n, i = 0,1,2.	n				
	(3) n-i, i = 0,1,2		(4) 2i + 2n, i = 0,1					
40.	The random variable <i>X</i>	has the probability of	lensity function $f(x)$	$= \begin{cases} ax + b, & 0 < x < 1 \\ 0, & otherwise \end{cases}$ and				
	-			(0 , otherwise				
	$E(X) = \frac{7}{12}, \text{then } C$			(4) 4 10				
4.1	(1) 1 and $\frac{1}{2}$	2	(3) 2 and 1	(4) 1 and 2				
41.	Which of the following	is a discrete random rs crossing a particul						
		istomers in a queue to	-	a moment.				
		o complete a telephoi						
	(1) <i>I</i> and <i>II</i>	• •	(3) III only					
42.	In the set \mathbb{R} of real number 1.	nbers '* ' is defined as	s follows. Which one o	of the following is not a binary				
0	peration on \mathbb{R} ? (1) a	*b = min(a.b)		* b = max(a, b)				
	(3) a * b = a		(4) a * b =	a^b				
43.	Which one of the follow	ving statements has t	ruth value F?					
	(1) Chennai is in Inc	dia or $\sqrt{2}$ is an integer						

 $kindly\ send\ me\ your\ key\ Answers\ to\ our\ email\ id\ -\ padasalai.net@gmail.com$

(2) Chennai is in India or $\sqrt{2}$ is an irrational number

	www Padasalai	Not		
(3) Chennai <mark>www.Padasala</mark> i	V 2 15	an i	nteger

www.Trb Tnpsc.com

- (4) Chennai is in China or $\sqrt{2}$ is an irrational number
- 44. In the last column of the truth table for $\neg (p \lor \neg q)$ the number of final outcomes of the truth

value 'F' are

(1) 1

(2)2

(3)3

(4)4

45. The dual of $\neg (p \lor q) \lor [(p \lor (p \land \neg r)]$ is

 $(1) \neg (p \land q) \lor [(p \lor (p \land \neg r)]$

(2) $(p \land q) \land [(p \land (p \lor \neg r)]$

 $(3) \neg (p \land q) \land [(p \land (p \land \neg r)]$

 $(4) \neg (p \land q) \land [(p \land (p \lor \neg r)]$

46. If $f(x) = x^2 - 3x$, then the points at which f(x) = f'(x) are

(1) both positive integers

(2)both negative integers

(3)both irrational

(4) one rational and another irrational

47. $\frac{d}{dx}(e^{x+5logx})$ is

(1) e^x . $x^4(x+5)$

(2) $e^x \cdot x(x+5)$ (3) $e^x + \frac{5}{x}$

48. If f(x) = x+2, then f'(f(x)) at x = 4 is

(1)8

(2)1

(3)4

(4)5

49. It is given that f'(a) exists , then $\lim_{x\to a} \frac{xf(a)-af(x)}{x-a}$ is

(1)f(a)-af'(a)

(2)f'(a)

(3)-f'(a)

(4)f(a)+af'(a)

50. The derivative of f(x) = x |x| at x = -3 is

(1)6

(2)-6

(3)does not exist

(4)0

MURALIRAJA.M.Sc., B.Ed., CELL NO: 9786760672