HTM HALF YEARLY EXAMINATION - 2023
 12-Std
 MATHEMATICS
 Marks : 90

I Choose the correct answer.
$20 \times 1=20$

1. $(A B)^{-1}=\left[\begin{array}{cc}12 & -17 \\ -19 & 27\end{array}\right]$ and $A^{-1}=\left[\begin{array}{cc}1 & -1 \\ -2 & 3\end{array}\right]$ then $B^{-1}=$
a) $\left[\begin{array}{cc}2 & -5 \\ -3 & 8\end{array}\right]$
b) $\left[\begin{array}{ll}8 & 5 \\ 3 & 2\end{array}\right]$
c) $\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$
d) $\left[\begin{array}{cc}8 & -5 \\ -3 & 2\end{array}\right]$
2. $A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]$ be such that $\lambda \cdot A^{-1}=A$ then λ is
a) 17
b) 14
c) 19
d) 21
3. The value of $\sum_{n=1}^{13}\left(i^{n}+i^{n-1}\right)$ is
a) $1+i$
b) i .
c) 1
d) 0
4. $|Z|=1$ then the value of $\frac{1+z}{1-z}$ is a) $Z \quad$ b) \bar{Z} c) $\frac{1}{z} \quad$ d) 1
5. If α, β and γ are the zeros of $x^{3}+p x^{2}+q x+r$, then $\sum \frac{1}{\alpha}$ is
a) $\frac{-q}{r}$
b) $\frac{-p}{r}$
c) $\frac{q}{r}$
d) $\frac{-q}{p}$
6. If $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)$ is equal to
a) $\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right)$
b) $\frac{1}{2} \sin ^{-1}\left(\frac{3}{5}\right)$
c) $\frac{1}{2} \tan ^{-1}\left(\frac{3}{5}\right)$
d) $\tan ^{-1}\left(\frac{1}{2}\right)$
7. The radius of the circle $3 x^{2}+b y^{2}+4 b x-6 b y+b^{2}=0$ is
a) 1
b) 3
c) $\sqrt{10}$
d) $\sqrt{11}$
8. The volume of the parallelepiped with its edges represented by the vectors $\hat{i}+\hat{j}, \hat{i}+2 \hat{j}, \hat{i}+\hat{j}+\pi \hat{k}$ is
a) $\frac{\pi}{2}$
b) $\frac{\pi}{3}$
c) π
d) $\frac{\pi}{4}$.
9. The distance between the planes $x+2 y+3 z+7=0$ and $2 x+4 y+6 z+7=0$
is a) $\frac{\sqrt{7}}{2 \sqrt{2}}$
b) $\frac{7}{2}$
c) $\frac{\sqrt{7}}{2}$
d) $\frac{7}{2 \sqrt{2}}$
10. A stone is thrown up vertically. The height it reaches at time t seconds is given by $x=80 t-16 t^{2}$. The stone reaches the maximum height in time t seconds is given by
a) 2
b) 2.5
c) 3
d) 3.5
11. The maximum value of the function $x^{2} e^{-2 x}, x>0$ is
a) $\frac{1}{e}$
b) $\frac{1}{2 e}$
c) $\frac{1}{e^{2}}$
d) $\frac{4}{e^{4}}$
12. If $W(x, y)=x y, x>0$ then $\frac{\partial w}{\partial x}$ is equal to
a) $x^{y} \log x$
b) $y \log x$
c) $y x y-1$
d) $x \log y$
13. The value of $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x \cos x d x$ is
a) $\frac{3}{2}$
b) $\frac{1}{2}$
c) 0
d) $\frac{2}{3}$
14. The value of $\int_{0}^{1} x(1-x)^{99} d x$ is
a) $\frac{1}{11000}$
b) $\frac{1}{10100}$
c) $\frac{1}{10010}$
d) $\frac{1}{10001}$
15. The order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{1 / 3}+x^{1 / 4}=0$ are
respectively
a) 2,3
b) 3,3
c) 2,6
d) 2,4
16. The solution of the differential equation $\frac{d y}{d x}=2 x y$ is
a) $y=c e^{x^{2}}+c$
b) $y=2 x^{2}+c$
c) $y=c e^{-x^{2}}+c$
d) $y=x^{2}+c$
17. The random variable x has binomial distribution with $n=25$ and $p=0.8$ then the standard deviation of x is
a) 6
b) 4
c) 3
d) 2
18. If $f(x)=\left\{\begin{array}{l}2 x, 0 \leq x \leq a \\ 0, \text { other wise }\end{array}\right.$ is a probability density function of a random
vaniable, then the value of a is
a) 1
b) 2
c) 3
d) 4
19. If a compound statement involves 3 simple statements then the number of rows in the truth table is
a) 9
b) 8
c) 6
d) 3
20. The operation * defined by $a^{*} b=\frac{a b}{7}$ is not a binary operation on?
a) Q^{+}
b) z
c) R
d) C

SECTION - B

II Answer any 7 questions. Q.No. 30 is compulsory.
21. If $\operatorname{adj}(A)=\left[\begin{array}{ccc}0 & -2 & 0 \\ 6 & 2 & 6 \\ -3 & 0 & 6\end{array}\right]$ then, find A^{-1}.
22. Obtain the Cartesian form of the locus of $z=x+|y \ln z+1|=|z-1|$.
23. Find the principal value of $\tan ^{-1}(\sqrt{3})$.
24. Show that the three vectors $2 \hat{i}+3 \hat{j}+\hat{k}, \hat{i}-2 \hat{j}+2 \hat{k}$ and $3 \hat{i}+\hat{j}+3 \hat{k}$ are coplanar.
25. Find a polynomial equation of minimum degree with rational coefficients having $2-\sqrt{3}$ as a root.
26. Solve : $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}$,
27. A random variable x has the following probability mass function
$\begin{array}{lllllll}x & 1 & 2 & 3 & 4 & 5 & 6 \\ P(X=x) & k & 2 k & 6 k & 5 k & 6 k & 10 k\end{array}$
then find $P(2<x<6)$.
28. Evaluate the limit: $\lim _{x \rightarrow 0} \frac{\sin m x}{x}$.
29. Find the equation of the hyperbola with vertices $(0, \pm 4)$ and $(0, \pm 6)$.
30. Show that the differential equation corresponding to $y=A \sin x$ (where A is an arbitrary constant) is $y=y^{1} \tan x$.

SECTION - C

III Answer any 7 questions. Q.No. 40 is compulsory.
31. If $\mathrm{U}=\log \left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}\right)$ then find $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$.
32. If $A=\left[\begin{array}{cc}8 & -4 \\ -5 & 3\end{array}\right]$ verify that $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$.
33. Prove that the equation of the parabola with focus $(4,0)$ and directrix $x=-4$ is $y^{2}=16 x$.
34. Which one of the points $10-8 i, 11+6 i$ is closest to $1+i$?
35. Evaluate : $\lim _{x \rightarrow \infty}\left(\frac{2 x^{2}-3}{x^{2}-5 x+3}\right)$.
36. A cirçular plate expands uniformly under the influence of heat. If its radius increases from 10.50 cm to 10.75 cm , then find an approximate change in the area.
37. Show that $p \rightarrow q$ and $q \rightarrow p$ are not equivalent.
38. Find the acute angle between the lines

$$
\vec{r}=(4 \hat{i}-\hat{j})+t(\hat{i}+2 \hat{j}-2 \hat{k}), \vec{r}=(\hat{i}-2 \hat{j}+4 \hat{k})+s(-\hat{i}-2 \hat{j}+2 \hat{k}) .
$$

39. Find the centre and radius of the circle $x^{2}+y^{2}+6 x-4 y+4=0$.
40. Show that $\int_{0}^{1} \frac{\sqrt{x}}{\sqrt{1-x+\sqrt{x}}} d x=\frac{1}{2}$.

SECTION - D

IV Answer all questions.

41. a) solve the system of linear equations by Crammer's rule
$3 x+3 y-z=11,2 x-y+2 z=9,4 x+3 y+2 z=25$. (OR)
b) A particle is fired straight up from the ground to reach a height of s feet in t seconds where $s(t)=128 t-16 t^{2}$.
i) Compute the maximum height of the particle reached.
ii) What is the velocity when the particle hits the ground?
42. a) Show that $(2+i \sqrt{3})^{10}-(2-i \sqrt{3})^{10}$ is purely imaginary. (OR)
b) Find the area of the region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ using integration.
43. a) Find the parametric form of vector equation and Cartesian equation of the plane containing the line $\vec{r}=(\hat{i}-\hat{j}+3 \hat{k})+t(2 \hat{i}-\hat{j}+4 \hat{k})$ and perpendicular to the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}+\hat{k})=8$. (OR) b) Solve the equation
$6 x^{4}-5 x^{3}-38 x^{2}-5 x+6=0$ if it is known that $\frac{1}{3}$ is a solution.
44. a) show that $\int_{0}^{1}\left(\tan ^{-1} x+\tan ^{-1}(1-x)\right) d x=\frac{\pi}{2}-\log 2$. (OR) b) Find the area of the region bounded by the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ and its latus rectum.
45. a) On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4 m when it is 6 m away from the point of projection. Finally it reaches the ground 12 m away from the starting point. Show that the angle of projection is $\tan ^{-1}\left(\frac{4}{3}\right)$. (OR) b) A random variable x has the following probability mass function. x

1	2	3	4	5	
$F(x)$	k^{2}	$2 k^{2}$	$3 k^{2}$	$2 k$	$3 k$

Find (i) the value of k (ii) $P(2 \leq x \leq 5)$ (iii) $P(3<x)$
46. a) Using vector method, prove that $\cos (A-B)=\operatorname{Cos} A \cos B+\sin A \sin B$. (OR)
b) Find two positive numbers whose product is 20 and their sum is minimum.
47. a) Solve the differential equation $\frac{d y}{d x}+\frac{y}{x}=\sin x$, (OR)
b) Verify whether the following compound proposition is tautology or contradiction or contingency : $(p \rightarrow q) \leftrightarrow(\neg p \rightarrow q)$.

22	$\begin{aligned} \text { www.Padasalai,Net } & x+i y \\ \|z+i\| & =\|z-1\| \\ \|x+i y+i\| & =\|x+i y-1\| \\ \|x+i(y+1)\| & =\|x-1+i y\| \\ \sqrt{x^{2}+(y+1)^{2}} & =\sqrt{(x-1)^{2}+y^{2}} \end{aligned}$ www.Trb Tnpsc.com Squaring on both sides $\begin{aligned} x^{2}+(y+1)^{2} & =(x-1)^{2}+y^{2} \\ x^{2}+y^{2}+2 y+1 & =x^{2}+2 x+1+y^{2} \\ 2 y & =-2 x \\ 2 x+2 y & =0 \\ 2(x+y) & =0 \Rightarrow x+y=0 \end{aligned}$
23	Let $\tan ^{-1}(\sqrt{3})=y$. Then, $\tan y=\sqrt{3}$. Thus, $y=\pi / 3$. Since $\pi / 3 \in(-\pi / 2, \pi / 2)$. Thus, the principal value of $\tan ^{-1}(\sqrt{ } 3)$ is $\pi / 3$.
24	Here, $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+2 \hat{k}, \vec{c}=3 \hat{i}+\hat{j}-\hat{k}$ We know that $\vec{a}, \vec{b}, \vec{c}$ are coplanar if and only if $[\vec{a}, \vec{b}, \vec{c}]=0$. Now, $[\vec{a}, \vec{b}, \vec{c}]=\left\|\begin{array}{ccc}1 & 2 & -3 \\ 2 & -1 & 2 \\ 3 & 1 & -1\end{array}\right\|=0$.
25	Since $2-\sqrt{3}$ is a root and the coefficients are rational numbers, $2+$ is also a root. A required polynomial equation is given by x^{2} - (Sum of the roots) $x+$ Product of the roots $=0$ and hence $x^{2}-4 x+1=0$ is a required equation.
26	(i) $\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$ The equation can be written as $\frac{d y}{\sqrt{1-y^{2}}}=\frac{d x}{\sqrt{1-x^{2}}}$ Taking Integration on both sides, we get $\begin{aligned} \int \frac{d y}{\sqrt{1-y^{2}}} & =\int \frac{d x}{\sqrt{1-x^{2}}} \\ \sin ^{-1} y & =\sin ^{-1} x+C \end{aligned}$
27	Since the given function is a probability mass function, the total probability is one. That is $\sum \mathrm{x} f(x)=$ 1. From the given data $k+2 k+6 k+5 k+6 k+10 k=1$ $30 k=1$

Therefore the probability mass function is

x	1	2	3	4	5	6
$f(x)$	$\frac{1}{30}$	$\frac{2}{30}$	$\frac{6}{30}$	$\frac{5}{30}$	$\frac{6}{30}$	$\frac{10}{30}$

$P(2<X<6)=f(3)+f(4)+f(5)=\frac{6}{30}+\frac{5}{30}+\frac{6}{30}=\frac{17}{30}$
28 If we directly substitute $x=0$ we get an indeterminate form $0 / 0$ and hence we apply the l'Hôpital's rule to evaluate the limit as,

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(\frac{\sin m x}{x}\right) & =\lim _{x \rightarrow 0}\left(\frac{m \times \cos m x}{1}\right) \\
& =m
\end{aligned}
$$

The next example tells that the limit does not exist.
29 From Fig. 5.38, the midpoint of line joining foci is the centre $\mathrm{C}(0,0)$.

Transverse axis is y-axis
$A A^{\prime}=2 a \Rightarrow 2 a=8$,
$\mathrm{SS}^{\prime}=2 c=12, c=6$
$a=4$
$b^{2}=c^{2}-a^{2}=36-16=20$.

$$
\frac{y^{2}}{16}-\frac{x^{2}}{20}=1 .
$$

Hence the equation of the required hyperbola is $=$
$30 y=A \sin x$
$y^{\prime}=A \cos x$
$y / y^{\prime}=\tan x$
$y=y^{\prime} \tan x$
31

$$
U(x, y, z)=\log \left(x^{3}+y^{3}+z^{3}\right)
$$

$$
\frac{\partial U}{\partial x}=\frac{3 x^{2}}{x^{3}+y^{3}+z^{3}}
$$

$$
\frac{\partial U}{\partial y}=\frac{3 y^{2}}{x^{3}+y^{3}+z^{3}}
$$

$$
\frac{\partial U}{\partial z}=\frac{3 z^{2}}{x^{3}+y^{3}+z^{3}}
$$

$$
\frac{\partial U}{\partial x}+\frac{\partial U}{\partial y}+\frac{\partial U}{\partial z}=\frac{3\left(x^{2}+y^{2}+z^{2}\right)}{x^{3}+y^{3}+z^{3}}
$$

$\left.\begin{array}{l|ll}\hline 32 & \text { A } & = \\ = & & \\ \hline-5 & 3\end{array}\right]$
$|\mathrm{A}|=\left|\begin{array}{rr}8 & -4 \\ -5 & 3\end{array}\right|=24-20=4$
$\operatorname{adj} A=\left[\begin{array}{ll}+M_{11} & -M_{12} \\ -M_{21} & +M_{22}\end{array}\right]^{T}$
$\operatorname{adj} \mathrm{A}=\left[\begin{array}{ll}3 & 5 \\ 4 & 8\end{array}\right]^{\mathrm{T}}$
$\operatorname{adj} \mathrm{A}=\left[\begin{array}{ll}3 & 4 \\ 5 & 8\end{array}\right]$
$A(\operatorname{adj} A)=\left[\begin{array}{rr}8 & -4 \\ -5 & 3\end{array}\right]\left[\begin{array}{ll}3 & 4 \\ 5 & 8\end{array}\right]$
$A(\operatorname{adj} A)=\left[\begin{array}{rr}24-20 & 32-32 \\ -15+15 & -20+24\end{array}\right]$
$=\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]$
$(\operatorname{adj} A) A=\left[\begin{array}{ll}3 & 4 \\ 5 & 8\end{array}\right]\left[\begin{array}{rr}8 & -4 \\ -5 & 3\end{array}\right]$
$(\operatorname{adj} \mathrm{A}) \mathrm{A}=\left[\begin{array}{ll}24-20 & -12+12 \\ 40-40 & -20+24\end{array}\right]$
$=\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]$
$\begin{aligned} A(\operatorname{adj} A) & =(\operatorname{adj} A) A=\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right] \\ & =4\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad \cdots(1)\end{aligned}$
$|\mathrm{A}|=\left|\begin{array}{rr}8 & -4 \\ -5 & 3\end{array}\right|$
$=24-20=4$
Equation (1) \Rightarrow

$$
\mathrm{A}(\operatorname{adj} \mathrm{~A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}_{2} .
$$

33	 Let l be the straight line $x=-4$ and $S(4,0)$ be the fixed point. Let $\mathrm{P}(x, y)$ be a moving point such $\frac{\mathrm{SP}}{\mathrm{PM}}=1 \Rightarrow \mathrm{SP}^{2}=\mathrm{PM}^{2}$ SP - Distance between the points $S(4,0)$ and $P(x, y)$ PM - Length of the perpendicular from $\mathrm{P}(x, y)$ to the line l whose equation is $x+4=0$ $\begin{aligned} \mathrm{SP}^{2} & =\mathrm{PM}^{2} \\ (x-4)^{2}+(y-0)^{2} & =\left(\left\|\frac{x+4}{\sqrt{1^{2}+0^{2}}}\right\|\right)^{2} \\ (x-4)^{2}+y^{2} & =(x+4)^{2} \\ x^{2}-8 x+16+y^{2} & =x^{2}+8 x+16 \\ y^{2} & =8 x+8 x \\ y^{2} & =16 x \end{aligned}$ which is the required equation of the parabola.
34	Let $z_{1}=10-8 i, z_{2}=11+6 i, z=1+i$ Distance between z and z_{1} is $\begin{aligned} \left\|z-z_{1}\right\| & =\|(1+i)-(10-8 i)\| \\ & =\|1+i-10-8 i\| \\ & =\|-9+9 i\| \\ & =\sqrt{(-9)^{2}+9^{2}} \\ & =\sqrt{81+81}=\sqrt{2 \times 81} \\ & =\sqrt{2 \times 9^{2}}=9 \sqrt{2} \\ \left\|z-z_{1}\right\| & =9 \sqrt{2}=12.72 \end{aligned}$ Distance between z and z_{2} is $\begin{aligned} \left\|z-z_{2}\right\| & =\|(1+i)-(11+6 i)\| \\ & =\|1+i-11-6 i\| \\ & =\|-10-5 i\| \\ & =\sqrt{(-10)^{2}+(-5)^{2}} \\ & =\sqrt{100+25} \\ & =\sqrt{125} \\ & =\sqrt{5 \times 25}=5 \sqrt{5} \\ \therefore\left\|z-z_{2}\right\| & =5 \sqrt{5}=11.18 \\ \therefore\left\|z-z_{1}\right\| & >\left\|z-z_{2}\right\| \end{aligned}$ Hence the point $z_{2}=11+6 i$ is closest to $z=1+i$.

35	$\lim _{x \rightarrow \infty} \frac{x}{\log x}$ www.Padasalai.Net $\frac{\text { Indeterminate form }}{\infty}$ www.Trb Tnpsc.com Applying L'Hôpital's rule, $=\lim _{x \rightarrow \infty} \frac{\frac{1}{\frac{1}{x}}}{x}=\lim _{x \rightarrow \infty} x=\infty$
36	Area of the circular plate $\mathrm{A}=\pi \mathrm{r}^{2}$ $\begin{aligned} & =\pi \times 10.5 \times 105 \\ & =110.25 \pi \\ \mathrm{dA} & =2 \pi \mathrm{dr} \\ & =2 \pi \times 10.5 \times 0.25 \\ & =5.25 \pi \end{aligned}$ Approximate percentage change in the area $\begin{aligned} & =\frac{d A}{A} \times 100 \\ & =\frac{5.25 \pi}{110.25 \pi} \times 100 \\ & =0.04761 \times 100 \\ & =4.76 \% \end{aligned}$
37	p q $p \rightarrow q$ $q \rightarrow p$ T T T T T F F T F T T F F F T T From the table, it is clear that $p \rightarrow q \not \equiv q \rightarrow p$
38	$\text { (i) } \begin{aligned} & \vec{r}=(4 \hat{i}-\hat{j})+t(\hat{i}+2 \hat{j}-2 \hat{k}), \\ & \vec{r}=(\hat{i}-2 \hat{j}+4 \hat{k})+s(-\hat{i}-2 \hat{j}+2 \hat{k}) \\ & \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k} \\ & \vec{d}=-\hat{i}-2 \hat{j}+2 \hat{k} \\ & \vec{b} \cdot \bar{d}=1(-1)+2(-2)-2(2) \\ &\|\vec{b} \cdot \vec{d}\|=-1-4-4=-9 \\ &\|\vec{b}\|=\sqrt{1+4+4}=\sqrt{9}=3 \\ &\|\vec{d}\|=\sqrt{1+4+4}=\sqrt{9}=3 \\ & \cos \theta=\quad \frac{\|\vec{b} \cdot d\|}{\|\vec{b}\|\|\vec{d}\|}=\frac{9}{3 \times 3}=1 \\ & \cos \theta=1 \\ & \theta=0^{\circ} \end{aligned}$
39	$\begin{aligned} & x^{2}+y^{2}+6 x-4 y+4=0 \\ & \text { Centre is }(-g,-f)=(-3,2) \\ & \text { Radius }=\sqrt{g^{2}+f^{2}-c}=\sqrt{(3)^{2}+(-2)^{2}-4}=\sqrt{9+4-4}=\sqrt{9}=3 \end{aligned}$

40		www.Padasalai.Net Let $I=\int_{0} \frac{\sqrt{x}}{\sqrt{1-x}+\sqrt{x}} d x \quad \rightarrow$ (1) www.Trb Tnpsc.com Applying the formula $\int_{a}^{b} f(x) d x=\int_{-}^{b} f(a+b-x) d x$ $\begin{aligned} I & =\int_{0}^{1} \frac{\sqrt{1+0-x}}{\sqrt{1-(1+0-x)}+\sqrt{1+0-x}} d x \\ & =\int_{0}^{1} \frac{\sqrt{1-x}}{\sqrt{x-x-0+x}+\sqrt{1-x}} d x \\ I & =\int_{0}^{1} \frac{\sqrt{1-x}}{\sqrt{x}+\sqrt{1-x}} d x \rightarrow \Sigma \end{aligned}$ Adt equ (1) $<(2)$ $\begin{aligned} 2 I & =\int_{0}^{1} \frac{\sqrt{x}+\sqrt{1-x}}{\sqrt{1-x}+\sqrt{x}} d x \\ & =\int_{0}^{1} d x \\ & =[x]: \\ & =1-0 \\ 2 I & =1 \end{aligned}$
41	(a)	The given equations are

		 www.Trb Tnpsc.com $=3 \times-52-3 \times 14+11 \times 10$ $\Delta_{3}=-156-42+110=-88$ $x=\frac{\Delta_{1}}{\Delta}=\frac{-44}{-22}=2$ $\mathrm{y}=\frac{\Delta_{2}}{\Delta}=\frac{-66}{-22}=3$ $z=\frac{-88}{-22}=4$ $\therefore \quad$ The solution is $x=2, y=3, z=4$.
	(b) (or)	
	(b)	(i) At the maximum height, the velocity $v(t)$ of the particle is zero. Now, we find the velocity of the particle at time t. $\begin{aligned} & v(t)=d s / d t=128-32 t \\ & v(t)=0 \Rightarrow 128-32 t=0 \Rightarrow t=4 \end{aligned}$ After 4 seconds, the particle reaches the maximum height. The height at $t=4$ is $s(4)=128(4)-16(4)^{2}=256 \mathrm{ft}$. (ii) When the particle hits the ground then $s=0$. $s=0 \Rightarrow 128 t-16 t^{2}=0$ $\Rightarrow t=0,8$ seconds. The particle hits the ground at $t=8$ seconds. The velocity when it hits the ground is $v(8)=-128 \mathrm{ft} / \mathrm{s}$.
42	(a)	$\text { Let } \begin{aligned} & \mathrm{z}=\frac{(2+i \sqrt{3})^{10}-(2-i \sqrt{3})^{10}}{(2+i \sqrt{3})^{10}-(2-i \sqrt{3})^{10}} \\ &=\frac{(2+i \sqrt{3})^{10}}{\overline{\mathrm{z}}}-\overline{(2-i \sqrt{3})^{10}} \\ &=[\overline{(2+i \sqrt{3})}]^{10}-[\overline{(2-i \sqrt{3})}]^{10} \\ &=-\left[(2+i \sqrt{3})^{10}-(2-i \sqrt{3})^{10}\right] \\ &\left.=-\overline{(2-i \sqrt{3})^{10}-(2+i \sqrt{3})^{10}}\right] \\ & \overline{\mathrm{z}} \quad=-\mathrm{z}=-\overline{\mathrm{z}} \\ & \mathrm{z} \text { is purely imaginary } \\ & \therefore \mathrm{z}=(2+i \sqrt{3})^{10}-(2-i \sqrt{3})^{10} \text { is purely imaginary. } \end{aligned}$ Let
		(or)
	(b)	The ellipse is symmetric about both major and minor axes. It is sketched as in Fig.9.16. So, viewing in the positive direction of y-axis, the required area A is four times the area of the region bounded by the portion of the ellipse in the first kndly sent me your keyAmswers to our emailid padasalannetegmailleom

Fig. 9.16

$$
\left(y=\frac{b}{a} \sqrt{a^{2}-x^{2}}, 0<x<a\right), x \text {-axis, } x=0 \text { and } x=a .
$$

Hence, by taking vertical strips, we get

$$
\begin{aligned}
A & =4 \int_{0}^{a} y d x=4 \int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} d x \\
& =\frac{4 b}{a}\left[\frac{x \sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)\right]_{0}^{a}=\frac{4 b}{a} \times \frac{\pi a^{2}}{4}=\pi a b
\end{aligned}
$$

(a)
$\vec{a}=\hat{i}-\hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+4 \hat{k}, \vec{c}=\hat{i}+2 \hat{j}+\hat{k}$
Parametric form of vector equation

$$
\begin{aligned}
\vec{r} & =\vec{a}+s \vec{b}+t \vec{t} \\
\vec{r} & =(\hat{i}-\hat{j}+3 \hat{k})+s(2 \hat{i}-\hat{i}+4 \hat{k})+t(\hat{i}+2 \hat{j}+\hat{k}) \\
\vec{b} \times \vec{c} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -1 & 4 \\
1 & 2 & 1
\end{array}\right|=\hat{i}(-1-8)-\hat{j}(2-4)+\hat{k}(4+1) \\
& =-9 \hat{i}+2 \hat{j}+5 \hat{k} \\
& =-(9 \hat{i}-2 \hat{j}-5 \hat{k})
\end{aligned}
$$

Non-parametric form of Vector equation:

$$
\begin{aligned}
(\vec{r}-\vec{a}) \cdot(\vec{b} \times \vec{c}) & =\overrightarrow{0} \\
{[\vec{r}-(\hat{i}-\hat{j}+3 \hat{k})] \cdot(-(9 \hat{i}-2 \hat{j}-5 \hat{k})) } & =\overrightarrow{0} \\
\vec{r} \cdot(+9 \hat{i}-2 \hat{j}-5 \hat{k}) & =+9+2-15 \\
{[\vec{r} \cdot(9 \hat{i}-2 \hat{j}-5 \hat{k})] } & =-4
\end{aligned}
$$

Cartesian equation

$$
\begin{aligned}
9 x-2 y-5 z & =-4 \\
9 x-2 y-5 z+4 & =0
\end{aligned}
$$

(b) The equatton. of facteglajin potynomial is

$$
\begin{equation*}
6 x^{4}-5 x^{3}-38 x^{2}-5 x+6=0 \tag{1}
\end{equation*}
$$

Given that $\frac{1}{3}$ is a solution of (1).

$$
\therefore \quad x-\frac{1}{3} \text { is a factor of }(1)
$$

ie. $\quad 3 x-1$ is a factor of (1)
To find the other roots of (1),
divide equation (1) by $3 x-1$.

$$
3 x-1 \begin{array}{r}
2 x^{3}-x^{2}-13 x-6 \\
\begin{array}{r}
6 x^{4}-5 x^{3}-38 x^{2}-5 x+6 \\
6 x^{4}-2 x^{3}
\end{array} \\
\begin{array}{r}
-3 x^{3}-38 x^{2} \\
-3 x^{3}+x^{2}
\end{array} \\
\begin{array}{r}
-39 x^{2}-5 x \\
-39 x^{2}+13 x \\
-18 x+6 \\
-18 x+6
\end{array} \\
\hline 0
\end{array}
$$

To find the other roots we will solve the equation.

$$
P(x)=2 x^{3}-x^{2}-13 x-6=0
$$

By comparing the cofficients,
we see that $1,-1$ are not the roots of $P(x)$.

$$
\begin{aligned}
P(2) & =2 \times 2^{3}-2^{2}-13 \times 2-6 \\
& =2 \times 8-4-26-6 \\
& =16-36 \neq 0 \\
P(-2) & =2(-2)^{3}-(-2)^{2}-13 \times-2-6 \\
& =2 \times-8-4+26-6 \\
& =-16-4+26-6 \\
& =-26+26=0
\end{aligned}
$$

$$
\therefore-2 \text { is a root of } \mathrm{P}(x)
$$

Hence $x+2$ is a factor of $\mathrm{P}(x)$.
To find the remaining roots divide $\mathrm{P}(x)$ by $x+2$.
$x+2$

The remaining roots are obtained by solving the equation.

$$
\begin{aligned}
2 x^{2}-5 x-3 & =0 \\
2 x^{2}-6 x+x-3 & =0 \\
2 x(x-3)+1(x-3) & =0 \\
(2 x+1)(x-3) & =0 \\
2 x+1=0 \quad \text { or } & x-3=0 \\
x=-\frac{1}{2} \quad \text { or } & x=3
\end{aligned}
$$

\therefore The required solution are $\frac{1}{3},-2,-\frac{1}{2}, 3$
(a)

$$
\begin{aligned}
I & =\int_{0}^{1}\left(\tan ^{-1} x+\tan ^{-1}(1-x)\right) d x \\
& =\int_{0}^{1} \tan ^{-1} x d x+\int_{0}^{1} \tan ^{-1}(1-x) d x \\
& =\int_{0}^{1} \tan ^{-1} x d x+\int_{0}^{1} \tan ^{-1}(1-(1-x)) d x, \text { since } \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x \\
& =\int_{0}^{1} \tan ^{-1} x d x+\int_{0}^{1} \tan ^{-1} x d x \\
& =2 \int_{0}^{1} \tan ^{-1} x d x \\
& =\left[2 \int u d v\right]_{0}^{1}, \text { where } u=\tan ^{-1} x \text { and } d v=d x \\
& =2\left[u v-\int v d u\right]_{0}^{1}, \text { applying integration by parts } \\
& =2\left(x \tan ^{-1} x-\int x \frac{d x}{1+x^{2}}\right)_{0}^{1}=2\left(x \tan ^{-1} x-\frac{1}{2} \log \left(1+x^{2}\right)\right)_{0}^{1}=\frac{\pi}{2}-\log 2
\end{aligned}
$$

(or)

(b) The ellipse is symmetric about both major and minor axes. It is sketched as in Fig.9.16. So, viewing in the positive direction of y-axis, the required area A is four times the area of the region bounded by the portion of the ellipse in the first quadrant

Fig. 9.16

$$
\left(y=\frac{b}{a} \sqrt{a^{2}-x^{2}}, 0<x<a\right), x \text {-axis, } x=0 \text { and } x=a
$$

Hence, by taking vertical strips, we get

$$
\begin{aligned}
A & =4 \int_{0}^{a} y d x=4 \int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} d x \\
& =\frac{4 b}{a}\left[\frac{x \sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)\right]_{0}^{a}=\frac{4 b}{a} \times \frac{\pi a^{2}}{4}=\pi a b
\end{aligned}
$$

Let $a^{2}=25 ; b^{2}=16$

$$
a=5 ; b=4
$$

$$
A=\pi(5)(4)=20 \pi
$$

(a) Given the rocket cracker is projected in a parabolic path.

It reaches a maximum height of 4 m when it is 6 m away from the point of projection.
Finally it reaches the ground 12 m away from the starting point.

Let P be the starting point and Q be the final point at which it reaches the ground.
By the given data $\mathrm{PQ}=12 \mathrm{~m}$
Choose the vertex of the parabolic path be the origin and axis along y axis.
The parabola is open downward.
$\therefore \quad$ The coordinates of P, Q are $P(-6,-4)$ and $Q(6,-4)$.

$$
\begin{equation*}
\mathrm{VN}=\text { the maximum height }=4 \mathrm{~m} \tag{1}
\end{equation*}
$$

The equation of the parabola is $x^{2}=-4 a y$
It passes through the point $(6,-4)$

$$
\therefore \quad 6^{2}=-4 a(-4) \quad \Rightarrow \quad 36=16 a \quad \Rightarrow \quad 4 a=\frac{36}{4}=9
$$

Substituting $4 \mathrm{a}=9$ in the equation of the parabola we get
(1) $\quad \Rightarrow \quad x^{2}=-9 y$

To find WWePadspalidNet 6,-4)

Differentiating equation (1) with respect to x we get

$$
\begin{aligned}
2 x & =-9 \cdot \frac{d y}{d x} \\
\text { At }(-6,-4), \quad \frac{d y}{d x} & =\frac{-2 \times-6}{9} \quad=\frac{d y}{d x}=-\frac{2 x}{9} \\
\tan \theta & =\frac{4}{3} \Rightarrow \theta=\frac{4}{3} \\
& \therefore \text { The angle of projection is } \tan ^{-1}\left(\frac{4}{3}\right)
\end{aligned}
$$

(or)
(b) (i) Given $f(x)$ in a probability mass function

$$
\begin{aligned}
& \sum_{x} f(x)=1 \\
& k^{2}+2 k^{2}+3 k^{2}+2 k+3 k=1 \\
& 6 k^{2}+5 k=1 \\
& 6 k^{2}+5 k-1=0 \\
&(k+1)(6 k-1)=0 \\
& k=\frac{1}{6}
\end{aligned}
$$

($k \neq-1$ neglecting negative terms)
Probability mass function

x	1	2	3	4	5
$f(x)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{2}{6}$	$\frac{3}{6}$

(ii) $\mathrm{P}(2 \leq \mathrm{X}<5)$

$$
\begin{aligned}
P(2 \leq X<5)= & P(X=2)+P(X=3) \\
& +P(X=4) \\
= & \frac{2}{36}+\frac{3}{36}+\frac{2}{6} \\
= & \frac{2+3+12}{36}=\frac{17}{36}
\end{aligned}
$$

(iii) $\mathrm{P}(\mathrm{X}>3)=\mathrm{P}(\mathrm{X}=4)+\mathrm{P}(\mathrm{X}=5)$

$$
=\frac{2}{6}+\frac{3}{6}
$$

$=\frac{5}{6}$

Let $\vec{a}=\overrightarrow{O A}, \vec{b}=\overrightarrow{O B}$ be the unit vectors and which make angles α and β respectively with positive x-axis where A and B are as in diagram.

Draw $A L$ and $B M$ perpendicular to the X axis, then

$$
\begin{align*}
\overrightarrow{O L} & =\overrightarrow{O A} \cos \alpha \\
|\overrightarrow{O L}| & =|\overrightarrow{O A}| \cos \alpha=\cos \alpha \\
|\overrightarrow{L A}| & =|\overrightarrow{O A}| \sin \alpha=\sin \alpha \\
\overrightarrow{O L} & =|\overrightarrow{O L}| \hat{i}=\cos \alpha \hat{i} \\
\overrightarrow{L A} & =\sin \alpha(+\hat{j}) \\
\vec{a} & =\overrightarrow{O A}=\overrightarrow{O L}+\overrightarrow{L A} \\
& =\cos \alpha \cdot \hat{i}+\sin \alpha \hat{j} \tag{1}
\end{align*}
$$

Similarly

$$
\begin{equation*}
\vec{b}=\cos \beta \hat{i}+\sin \beta \hat{j} \tag{2}
\end{equation*}
$$

The angle between \vec{a} and \vec{b} is $\alpha-\beta$ and so
$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos (\alpha-\beta)=\cos (\alpha-\beta)$
From (1) and (2)
$\vec{a} \cdot \vec{b}=(\cos \alpha \hat{i}+\sin \alpha \hat{j}) \cdot(\cos \beta \hat{i}+\sin \beta \hat{j})$
$=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
From (3) and (4)
$\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
Put $\alpha=\mathrm{A} ; \beta=\mathrm{B}$
$\cos (A-B)=\cos A \cos B+\sin A \sin B$
(b) The gww Padasalainet equation can be

$$
\frac{d y}{d x}+\left(\frac{1}{x}\right) y=\sin x
$$

This is of the form $\frac{d y}{d x}+P y=Q$

$$
\text { where } \begin{aligned}
P & =\frac{1}{x} \\
Q & =\sin x
\end{aligned}
$$

Thus, the given differential equation is linear.
I.F $=e^{\int P d x}=e^{\int \frac{1}{x} d x}=e^{\log x}=x$

So, the required solution is given by

$$
\begin{aligned}
\mathrm{y} \times \mathbf{I} \cdot \mathbf{F} & =\int(Q \times I \cdot F) d x+c \\
\mathrm{y} x & =\int \sin x \times x d x+c \\
& =x(-\cos x)-(1)(-\sin x)+c \\
\mathrm{y} x & =-x \cos x+\sin x+c \\
\mathrm{y} x+x \cos x & =\sin x+c \\
(y+\cos x) x & =\sin x+c \text { is a required }
\end{aligned}
$$ solution.

47 (a)
The given differential equation can be written as

$$
\frac{d y}{d x}+\left(\frac{1}{x}\right) y=\sin x
$$

This is of the form $\frac{d y}{d x}+P y=Q$

$$
\text { where } P=\frac{1}{x}
$$

$$
\mathrm{Q}=\sin x
$$

Thus, the given differential equation is linear.
I.F $=e^{\int p d x}=e^{\int \frac{1}{x} d x}=e^{\log x}=x$

So, the required solution is given by

$$
\begin{aligned}
\mathrm{y} \times \mathrm{I} \cdot \mathrm{~F} & =\int(Q \times I \cdot F) d x+c \\
\mathrm{y} x & =\int \sin x \times x d x+c \\
& =x(-\cos x)-(1)(-\sin x)+\mathrm{c} \\
\mathrm{y} x & =-x \cos x+\sin x+\mathrm{c} \\
\mathrm{y} x+x \cos x & =\sin x+\mathrm{c} \\
(\mathrm{y}+\cos x) x & =\sin x+\mathrm{c} \text { is a required }
\end{aligned}
$$ solution.

(or)
(b)
(iii) $(p \rightarrow q) \leftrightarrow(\neg p \rightarrow q)$

p	q	$\neg p$	$p \rightarrow q$	$\neg p \rightarrow q$	$(p \rightarrow q) \leftrightarrow(\neg p \rightarrow q)$
T	T	F	T	T	T
T	F	F	F	T	F
F	T	T	T	T	T
F	F	T	T	F	F

The entries in the last column are a combination of T and F.
\therefore The given statement is a contingency.

