www.Padasalai.Net iruvannamalai district Tnpsc.com

www.Padasalai.Net

www.Trb Tnpsc.com

d) x logy

d) $\frac{2}{3}$

- 10. A stone is thrown up vertically. The height it reaches at time t seconds is given by $x = 80t-16t^2$. The stone reaches the maximum height in time t seconds is given by a) 2 b) 2.5
- c) 3 d) 3.5 11. The maximum value of the function x^2e^{-2x} , x > 0 is
 - a) $\frac{1}{a}$ b) $\frac{1}{2e}$ c) $\frac{1}{e^2}$ d) $\frac{4}{4}$
- 12. If W (x, y) = xY, x > 0 then $\frac{\partial w}{\partial x}$ is equal to a) xY log x b) y log x c) yxY-1
- 13. The value of $\int_{-\pi}^{\frac{\pi}{2}} \sin^2 x \cos x \, dx$ is

a)
$$\frac{3}{2}$$
 b) $\frac{1}{2}$ c) 0

14. The value of $\int_{0}^{1} x (1-x)^{99} dx$ is

a) 9

a)
$$\frac{1}{11000}$$
 b) $\frac{1}{10100}$ c) $\frac{1}{10010}$ d) $\frac{1}{10001}$

15. The order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{1/3} + x^{1/4} = 0$ are respectively a) 2, 3 b) 3, 3 c) 2, 6 d) 2, 4

16. The solution of the differential equation $\frac{dy}{dx} = 2xy$ is a) $y = ce^{x^2} + c$ b) $y = 2x^2 + c$ c) $y = ce^{-x^2} + c$ d) $v = x^2 + c$ The random variable x has binomial distribution with n = 25 and p = 0.8 then 17.

the standard deviation of x is a) 6 b) 4 c) 3 d) 2

18. If $f(x) = \begin{cases} 2x, & 0 \le x \le a \\ 0, & other wise \end{cases}$ is a probability density function of a random

b) 2 variable, then the value of a is a) 1 c) 3 d) 4 If a compound statement involves 3 simple statements then the number of 19. rows in the truth table is c) 6 d) 3

20. The operation * defined by $a * b = \frac{ab}{7}$ is not a binary operation on? c) R d) C a) Q⁺ b) Z

b) 8

- SECTION B
- Answer any 7 questions. Q.No. 30 is compulsory. II

 $7 \times 2 = 14$

21. If
$$adj(A) = \begin{bmatrix} 0 & -2 & 0 \\ 6 & 2 & 6 \\ -3 & 0 & 6 \end{bmatrix}$$
 then, find A⁻¹. HTM 12 **BECORD** HTM 12 **BECORD**

w.Padasalai.Net

- 22. Obtain the Cartesian form of the locus of z = x + iy in z + i| = |z 1|.
- 23. Find the principal value of $\tan^{-1}(\sqrt{3})$.
- 24. Show that the three vectors $2\hat{i} + 3\hat{j} + \hat{k}$, $\hat{i} 2\hat{j} + 2\hat{k}$ and $3\hat{i} + \hat{j} + 3\hat{k}$ are coplanar.
- 25. Find a polynomial equation of minimum degree with rational coefficients having $2-\sqrt{3}$ as a root.

6. Solve :
$$\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$$

27. A random variable x has the following probability mass function

x 1 2 3 4 5 6 P (X = x) k 2k 6k 5k 6k 10k then find P (2 < x < 6).

- 28. Evaluate the limit : $\lim_{x \to 0} \frac{\sin mx}{x}$.
- 29. Find the equation of the hyperbola with vertices $(0, \pm 4)$ and $(0, \pm 6)$.
- 30. Show that the differential equation corresponding to y = A sin x (where A is an arbitrary constant) is y = y¹ tanx.

SECTION - C

III Answer any 7 questions. Q.No. 40 is compulsory.

du du du

31. If U = log (x³ + y³ + z³) then find $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$.

32. If
$$A = \begin{bmatrix} 8 & -4 \\ -5 & 3 \end{bmatrix}$$
 verify that $A(adjA) = (adjA) A = |A| I$

- 33. Prove that the equation of the parabola with focus (4, 0) and directrix x = -4 is $y^2 = 16x$.
- 34. Which one of the points 10-8i, 11 + 6i is closest to 1 + i?

35. Evaluate :
$$\lim_{x \to \infty} \left(\frac{2x^2 - 3}{x^2 - 5x + 3} \right)$$

- 36. A circular plate expands uniformly under the influence of heat. If its radius increases from 10.50 cm to 10.75cm, then find an approximate change in the area.
- 37. Show that p->q and q -> p are not equivalent.
- 38. Find the acute angle between the lines

$$\vec{r} = (4\hat{i} - \hat{j}) + t(\hat{i} + 2\hat{j} - 2\hat{k}), \quad \vec{r} = (\hat{i} - 2\hat{j} + 4\hat{k}) + s(-\hat{i} - 2\hat{j} + 2\hat{k}).$$

39. Find the centre and radius of the circle $x^2 + y^2 + 6x - 4y + 4 = 0$.

HTM 12 6000 EM Pg.- 3

 $7 \times 3 = 21$

40. Show that $\int_{0}^{1} \frac{\sqrt{x}}{\sqrt{1-x}+\sqrt{x}} dx = \frac{1}{2}$

SECTION - D

x = 35Answer all questions. IV a) solve the system of linear equations by Crammer's rule 41. 3x + 3y - z = 11, 2x - y + 2z = 9, 4x + 3y + 2z = 25. (OR) b) A particle is fired straight up from the ground to reach a height of s feet in t seconds where $s(t) = 128t - 16t^2$. i) Compute the maximum height of the particle reached. ii) What is the velocity when the particle hits the ground? 42. a) Show that $(2+i\sqrt{3})^{10} - (2-i\sqrt{3})^{10}$ is purely imaginary. (OR) b) Find the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ using integration. 43. a) Find the parametric form of vector equation and Cartesian equation of the plane containing the line $\vec{r} = (\hat{i} - \hat{j} + 3\hat{k}) + t(2\hat{i} - \hat{j} + 4\hat{k})$ and perpendicular to the plane \vec{r} . $(\hat{i} + 2\hat{j} + \hat{k}) = 8$. (OR) b) Solve the equation $6x^4 - 5x^3 - 38x^2 - 5x + 6 = 0$ if it is known that $\frac{1}{3}$ is a solution. 44. a) show that $\int (\tan^{-1} x + \tan^{-1} (1-x)) dx = \frac{\pi}{2} - \log^2 \cdot (OR)$ b) Find the area of the region bounded by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and its latus rectum. a) On lighting a rocket cracker it gets projected in a parabolic path and reaches a 45. maximum height of 4m when it is 6m away from the point of projection. Finally it reaches the ground 12m away from the starting point. Show that the angle of projection is $\tan^{-1}\left(\frac{4}{3}\right)$. (OR) b) A random variable x has the following probability mass function. x 2k² 3k² 2k k2 F(x)3k Find (i) the value of k (ii) P $(2 \le x \le 5)$ (iii) P (3 < x)a) Using vector method, prove that $\cos (A - B) = \cos A \cos B + \sin A \sin B$. 46. (OR) b) Find two positive numbers whose product is 20 and their sum is minimum. 47. a) Solve the differential equation $\frac{dy}{dx} + \frac{y}{x} = \sin x$. (OR) b) Verify whether the following compound proposition is tautology or contradiction or contingency : $(p \rightarrow q) \leftrightarrow (\neg p \rightarrow q)$.

		ww.Padasalai.I	Net www.Trb Tnpsc.com
1	[2 -5]		
	-3 8		
	(a)		
2	(c) 19		
3	(a) 1+ <i>i</i>		
4	(a) z		
5	(a) -q/r		
6	$\tan^{-1}\left(\frac{1}{-1}\right)$		
	(d) (2)		
7	(c) √10		
8	(c) π		
9	(a) √7 / 2√2		
10	(b) 2.5		
11	(c) 1/e ²		
12	(c) <i>yx</i> ^{<i>y</i>-1}		
13	(d) 2/3		
14	(b) 1/10100		
15	(a) 2, 3		
16	(a) $y = Cex^2 + c$		
17	(d) 2		
18	(a) 1		
19	(D) 8 (b) 77		
20	(D)丛	- 54-	$\begin{bmatrix} 0 & -2 & 0 \end{bmatrix}$
21	Given	adi A	
	Given	auj A –	
	37		
			0 -2 0
	·	adj A =	6 2 -6
	9		-3 0 6
		ndi a l	0(12, 0) + 2(26, 18) + 0(0, 6) = 26
	1 - C - S - P	auj A =	0(12 - 0) + 2(30 - 18) + 0(0 + 0) = 30
		A ⁻¹ =	$\pm \frac{1}{\sqrt{ \operatorname{adj} A }} (\operatorname{adj} A)$
	5a		
			$\pm \frac{1}{\sqrt{36}} \begin{vmatrix} 6 & 2 & -6 \\ -3 & 0 & -6 \end{vmatrix}$
	8	A ⁻¹ =	$\pm \frac{1}{6} \begin{vmatrix} 0 & -2 & 0 \\ 6 & 2 & -6 \end{vmatrix}$

22	www.Padasalai.Net $x + iy$ www.Trb Tnpsc.com
	$ \mathbf{z} + \mathbf{i} = \mathbf{z} - 1 $
	x + iy + i = x + iy - 1
	x + i(y + 1) = x - 1 + iy
	$\sqrt{x^2 + (y+1)^2} = \sqrt{(x-1)^2 + y^2}$
	Squaring on both sides
	squaring on both sides $x^2 + (y + 1)^2 = -(y - 1)^2 + y^2$
	$x^{2} + (y + 1) = (x - 1) + y^{2}$
	$x^2 + y^2 + 2y + 1 = x^2 + 2x + 1 + y^2$
	2y = -2x
	2x + 2y = 0
23	$2(x + y) = 0 \implies x + y = 0$ Let $\tan^{-1}(\sqrt{3}) = y$.
	Then, $\tan y = \sqrt{3}$. Thus, $y = \pi/3$. Since $\pi/3 \in (-\pi/2, -\pi/2)$
	Thus, the principal value of $\tan^{-1}(\sqrt{3})$ is $\pi/3$.
24	Here, $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} + 2\hat{k}$, $\vec{c} = 3\hat{i} + \hat{j} - \hat{k}$
	We know that a,b,c are coplanar if and only if $[a,b,c] = 0$.
	$ 1 \ 2 \ -3 $
	Now, $[\vec{a}, \vec{b}, \vec{c}] = \begin{vmatrix} 2 & -1 & 2 \end{vmatrix} = 0$.
	3 1 -1
25	Since 2 - $\sqrt{3}$ is a root and the coefficients are rational numbers,
	2 + is also a root. A required polynomial equation is given by r^{2} (Sum of the roots) $r + Product of the roots = 0$
	and hence $x = 0$
26	$x^2 - 4x + 1 = 0$ is a required equation.
20	(i) $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$
	The equation can be written as
	dy = dx
	$\sqrt{1-y^2}$ $\sqrt{1-x^2}$
	Taking Integration on both sides, we get
	$\int \frac{dy}{\sqrt{1-x^2}} = \int \frac{dx}{\sqrt{1-x^2}}$
	$\sqrt{1-y}$ $\sqrt{1-x}$ similar = similar + C
27	Since the given function is a probability mass function, the total probability is one. That is $\sum x f(x) =$
	1. From the given data $k + 2k + 6k + 5k + 6k + 10k = 1$
	30k = 1 kindly send me your key Answers to our email id - nedesalai not@gmail.com
	many send me your key misters to our eman in - pauasaiamete gmanicom

	$\Rightarrow k = 1/30$) www.]	Padasalai	.Net			www.T	rb Tnpsc.com
	Therefore	the proba	bility mas	s function	is			
	x	1	2	3	4	5	6	
	f(x)	1	2	6	5	6	10	
)(1)	30	30	30	30	30	30	
	D/2 V				6 5	5 6	17	
	P(2 < X)	< 6) = f	(3) + f(4)	(4) + f(5)	$=\frac{1}{30}+\frac{1}{3}$	$\frac{1}{0} + \frac{1}{30} =$	30	
28	If we direc	ctly substi	tute $x = 0$	we get an	n indetern	ninate form	n $0/0$ and	l hence we apply the l'Hôpital's
	rule to eva	luate the l	imit as,					
	lim sin	mx] - 1	$m \left(\frac{m \times c}{m} \right)$	$\cos mx$				
	x→0	$\left(\frac{1}{x}\right)^{-1}$	→0 (1)				
		= 1	n					
	The next e	example te	lls that th	e limit do	es not exis	st.		
29	From Fig.	5.38, the	midpoint	of line joi	ning foci	is the cent	re C(0,0).	
	~		(0.6)	1				
			(0,0)					
		C	(0,4) (0,0)					
	-		(0 - 4)		- x		5	
		/	(0,-4)					
	/	5'	(0,-6)					
		Fi	g.5.38					
	Transverse	e axis is y	-axis					
	AA' = 2a	$\Rightarrow 2a = 8,$						
	a = 4	-12, c=0						
	$b^2 = c^2 - a$	$x^2 = 36 - 16$	= 20.					
				1.		$y^2 y^2$	$\frac{c^2}{-1}$	
						16 2	$\frac{1}{20} = 1$	
30	Hence the $y = A \sin x$	equation	of the requ	uired hype	erbola is =	=		
50	$y' = A \cos x$ $y' = A \cos x$	¢	~					
	y/y' = tan	x						
31	$y = y' \tan y$	(x - z) = 0	$\log (x^3 +$	v ³ + 7 ³				
01	0 (A,	y, 2) -	IUG (A	y . 2 .	, 			
	$\frac{\partial U}{\partial x} =$	$=\frac{3x}{x^3}$	$\frac{c^2}{3}$					
	0U	31	+ 2 , ²					
	∂y	$=$ $\frac{1}{x^3 + y}$	$3^{3} + z^{3}$					
	∂U	32	2					
	∂z	$x^3 + y$	$^{3} + z^{3}$	-1 -	2			
	$\frac{\partial U}{\partial x}$	$+\frac{\partial U}{\partial v}+$	$\frac{\partial U}{\partial z} =$	$3(x^2+y)$	$\frac{z^2 + z^2}{3 + z^3}$			
	000000		10000	x + y	Τ.2			
	ki 	ndly send	me your	key Ansv	vers to ou	ir email io	d - padasa	alaı.net@gmail.com

		www.	Padasalai.Ne	t		www.Trb Tn	psc.com	
	A	-	5 3]					
	A	=	8 -4 -5 3	= 24 - 20	= 4			
	adj A	=	$ + M_{11} - M_1 $ $ - M_{21} + M_2 $	2 12				
	adj A	=	$\begin{bmatrix} 3 & 5 \\ 4 & 8 \end{bmatrix}^{\mathrm{T}}$					
1	adj A	=	$\begin{bmatrix} 3 & 4 \\ 5 & 8 \end{bmatrix}$	* ~ ~ ~ *				
6	A (adj A)		$\begin{bmatrix} 8 & -4 \\ -5 & 3 \end{bmatrix}$	$\begin{bmatrix} 3 & 4 \\ 5 & 8 \end{bmatrix}$			0	
	A (adj A)	=	$\begin{bmatrix} 24 - 20 \\ -15 + 15 \end{bmatrix}$	$32 - 32 \\ -20 + 24 \end{bmatrix}$				
2		=	$\begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$			0	•	
	(adjA)A	=	$\begin{bmatrix} 3 & 4 \\ 5 & 8 \end{bmatrix} \begin{bmatrix} 4 & 1 \end{bmatrix}$	8 -4 -5 3	C	3		
	(adjA)A	=	$\begin{bmatrix} 24 - 20 \\ 40 - 40 \end{bmatrix}$	$\begin{bmatrix} -12 + 12 \\ -20 + 24 \end{bmatrix}$	0			
		=	$\left[\begin{array}{cc} 4 & 0 \\ 0 & 4 \end{array}\right]$	-7				
	A (adj A)	=	(adjA)A	$= \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$				
		=	$4\begin{bmatrix}1&0\\0&1\end{bmatrix}$	*(1)			
	A	=	8 -4 -5 3					
	Equation (1)	-	24 - 20	= 4				
00	A(adi	A)	= (adiA)	A = 1.4				

n / 800 / 800 / 800 / 800 / 800 / 8

www.Padasalai.Net www.Trb Tnpsc.com 35 $\begin{bmatrix} - \\ \infty \end{bmatrix}$ Indeterminate form x lim $x \to \infty \log x$ Applying L' Hôpital's rule, = lim $\lim x = \infty$ Area of the circular plate $A = \pi r^2$ 36 $= \pi \times 10.5 \times 105$ $= 110.25 \pi$ $dA = 2\pi r dr$ $= 2\pi \times 10.5 \times 0.25$ $= 5.25 \pi$ Approximate percentage change in the area $=\frac{dA}{dA} \times 100$ A 5.25π ×100 110.25π $= 0.04761 \times 100$ = 4.76 % 37 $p \rightarrow q$ p q $q \rightarrow p$ T T T T T F F T F T T F T F F T From the table, it is clear that $p \rightarrow q \neq q \rightarrow p$ (i) $\vec{r} = (4\hat{i} - \hat{j}) + t(\hat{i} + 2\hat{j} - 2\hat{k}),$ 38 $\vec{r} = (\hat{i} - 2\hat{j} + 4\hat{k}) + s(-\hat{i} - 2\hat{j} + 2\hat{k})$ $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$ $\vec{d} = -\hat{i} - 2\hat{j} + 2\hat{k}$ $\vec{b} \cdot \vec{d} = 1(-1) + 2(-2) - 2(2)$ -1 - 4 - 4 = -916.d1 $|\vec{b}| = \sqrt{1+4+4} = \sqrt{9} = 3$ $|\vec{d}| = \sqrt{1+4+4} = \sqrt{9} = 3$ 16.d1 9 $\cos \theta =$ $=\frac{9}{3\times3}=1$ $|\overline{b}||\overline{d}|$ $\cos \theta = 1$ $\theta = 0^{\circ}$ 39 $x^2 + y^2 + 6x - 4y + 4 = 0$ Centre is (-g, -f) = (-3, 2) $-c = \sqrt{(3)^2 + (-2)^2 - 4} =$ $\sqrt{9} = 3$ = $\sqrt{9 + 4 - 4}$ $\sqrt{q^2 + f^2}$ Radius =

40
40
Www.Prdiasdail.Net

$$L = t = \int_{0}^{1} \sqrt{1 + x + \sqrt{x}} dx \longrightarrow 0$$

Applying the frame $\int_{0}^{1} f(x) dx = \int_{0}^{1} f(x + t - x) dx$
 $I = \int_{0}^{1} \sqrt{1 + x - x} dx \longrightarrow 0$
 $x = \int_{0}^{1} \sqrt{1 + x - x} dx \longrightarrow 0$
Add $e_{2^{11}} \oplus C \ll 0$
 $2T = \int_{0}^{1} \sqrt{1 + x + \sqrt{x}} dx \longrightarrow 0$
Add $e_{2^{11}} \oplus C \ll 0$
 $2T = \int_{0}^{1} \sqrt{1 + x + \sqrt{x}} dx \longrightarrow 0$
Add $e_{2^{11}} \oplus C \ll 0$
 $2T = \int_{0}^{1} \sqrt{1 + x + \sqrt{x}} dx \longrightarrow 0$
Add $e_{2^{11}} \oplus C \ll 0$
 $2T = \int_{0}^{1} \sqrt{1 + x + \sqrt{x}} dx \longrightarrow 0$
Add $e_{2^{11}} \oplus C \ll 0$
 $2T = \int_{0}^{1} \sqrt{1 + x + \sqrt{x}} dx \longrightarrow 0$
Add $e_{2^{11}} \oplus C \ll 0$
 $2T = \int_{0}^{1} \sqrt{1 + x + \sqrt{x}} dx \longrightarrow 0$
Add $e_{2^{11}} \oplus C \iff 0$
 $2T = \int_{0}^{1} \sqrt{1 + x + \sqrt{x}} dx \longrightarrow 0$
Add $e_{2^{11}} \oplus C \iff 0$
 $2T = \int_{0}^{1} \sqrt{1 + x + \sqrt{x}} dx \longrightarrow 0$
 $x + 3y + 2z = 9 \longrightarrow 0$
 $4x + 3y + 2z = 25 \longrightarrow 0$
 $a = \frac{3 \cdot 3 - 1}{2 - 1 \cdot 2} d$
 $a = \frac{3 \cdot 3 - 1}{2 - 1 \cdot 2} d$
 $a = \frac{3 \cdot (-2 - 6) - 3 \cdot (4 - 8) - 1 \cdot (6 + 4)}{(6 + 4)} = 3 \times -8 = 3 \times -4 - 1 \times 10$
 $A = -24 + 12 - 10 = -22$
 $a = 11 \cdot (-2 - 6) - 3 \cdot (18 - 50) - 1 \cdot (27 + 25)$
 $= -88 + 96 - 32 = 96 - 140$
 $A_1 = -44$
 $A_2 = -\frac{3 \cdot 11}{2} = \frac{3 \cdot 11}{2} = \frac{3$

www.Padasalai.Net www.Trb Tnpsc.com 2 Δ_3 3 25 3[(-25 - 27) - 3(50 - 36) +11(6+4)] $-52 - 3 \times 14 + 11 \times 10$ 156 - 42 + 110 Δ_3 The solution is x = 2, y = 3, z = 4. ... (or) (b) (i) At the maximum height, the velocity v(t) of the particle is zero. Now, we find the velocity of the particle at time *t*. v(t) = ds/dt = 128 - 32t $v(t) = 0 \Rightarrow 128 - 32t = 0 \Rightarrow t = 4.$ After 4 seconds, the particle reaches the maximum height. The height at t = 4 is $s(4) = 128(4) - 16(4)^2 = 256$ ft. (ii) When the particle hits the ground then s = 0. $s = 0 \Rightarrow 128t - 16t^2 = 0$ $\Rightarrow t = 0, 8$ seconds. The particle hits the ground at t = 8 seconds. The velocity when it hits the ground is v(8) = -128 ft/s. 42 (a) $(2 + i\sqrt{3})^{10} - (2 - i\sqrt{3})^{10}$ Let z $(2 + i\sqrt{3})^{10} - (2 - i\sqrt{3})^{10}$ ī $\overline{(2+i\sqrt{3})^{10}} - \overline{(2-i\sqrt{3})^{10}}$ $\left[\overline{\left(2+i\sqrt{3}\right)}\right]^{10} - \left[\overline{\left(2-i\sqrt{3}\right)}\right]^{10}$ $(2 - i\sqrt{3})^{10} - (2 + i\sqrt{3})^{10}$ $-\left[\left(2+i\sqrt{3}\right)^{10}-\left(2-i\sqrt{3}\right)^{10}\right]$ Z - Z z is purely imaginary $\therefore z = (2 + i\sqrt{3})^{10} - (2 - i\sqrt{3})^{10}$ is purely imaginary. (or) (b) The ellipse is symmetric about both major and minor axes. It is sketched as in Fig.9.16. So, viewing in the positive direction of y -axis, the required area A is four times the area of the region bounded by the portion of the ellipse in the first

	quadrant ^{www.Padasalai.Net}	www.Trb Tnpsc.com
	quadrant ^w with adaptativet $y = \frac{b}{a}\sqrt{a^2 - x^2}, 0 < x < a$ Hence, by taking vertical strips, y $A = 4\int_0^a y dx = 4\int_0^a \frac{b}{a}\sqrt{a^2 - x^2} dx$ $= \frac{4b}{a} \left[\frac{x\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right)\right]$	$x = 0 \text{ and } x = a.$ we get $\int_{0}^{a} = \frac{4b}{a} \times \frac{\pi a^{2}}{4} = \pi ab$
43 (a)	$\vec{a} = \hat{i} - \hat{j} + 3\hat{k}, \ \vec{b} = 2\hat{i} - \hat{j} + 4\hat{k}, \ \vec{c} = \hat{i} + 3\hat{k} + 3\hat{k} = \hat{i} + 3\hat{k} + 3\hat{k} + 3\hat{k} = \hat{i} + 3\hat{k} + 3\hat$	$(+2\hat{j}+\hat{k})$ $(+\hat{k})(+\hat{k}(4+1))$ tion: (+2-15)
		(or)

(b)	The equation of the given polynomial is www.Trb Tnpsc.com						
	$6x^4 - 5x^3 - 38x^2 - 5x + 6 = 0 (1)$						
	Given that $\frac{1}{2}$ is a solution of (1).						
	$\therefore x - \frac{1}{3}$ is a factor of (1)						
	ie. $3x - 1$ is a factor of (1)						
	To find the other roots of (1),						
	divide equation (1) by $3x - 1$.						
	$2x^3 - x^2 - 13x - 6$						
	$3x - 1 \qquad 6x^4 - 5x^3 - 38x^2 - 5x + 6$						
	$6x^4 - 2x^3$						
	$-3x^3 - 38x^2$						
	$-3x^3 + x^2$						
	$-39x^2-5x$						
	$-39x^2 + 13x$						
	-18x + 6						
	-18x + 6						
	8						
	To find the other roots we will solve the equation.						
	$P(x) = 2x^3 - x^2 - 13x - 6 = 0$						
	By comparing the cofficients,						
	we see that $1, -1$ are not the roots of $P(x)$.						
	$P(2) = 2 \times 2^3 - 2^2 - 13 \times 2 - 6$						
	= 2 × 8 - 4 - 26 - 6						
	$= 16 - 36 \neq 0$						
	$P(-2) = 2(-2)^3 - (-2)^2 - 13 \times -2 - 6$						
	$= 2 \times -8 - 4 + 26 - 6$						
	= -16 - 4 + 26 - 6						
	= -26 + 26 = 0						
	\therefore -2 is a root of P(x)						
	Hence $x + 2$ is a factor of P(x).						
	To find the remaining roots divide $P(x)$ by $x + 2$.						
ł							

		www.Padasalai.Net	www.Trb Tnpsc.com
		$x + 2$ $2x^3 - x^2 - 13x - 6$	
		$2x^3 + 4x^2$	
		$-5x^2 - 13x$	
		$-5x^2 - 10x$	
		-3x - 6	
		-3x - 6	_
		0	
		The remaining roots are obtained	by solving the
		equation.	× ×
		$2x^2 - 5x - 3 =$	0
		$2x^2 - 6x + x - 3 =$	0
		2x(x-3) + 1(x-3) =	0
		(2x + 1) (x - 3) =	0
		2x + 1 = 0 or $x - 1$	-3 = 0
		$x = -\frac{1}{2}$ or	x = 3
		\therefore The required solution are $\frac{1}{3}$, -2	$1, -\frac{1}{2}, 3$
44	(a)	$I = \int_0^1 (\tan^{-1} x + \tan^{-1} (1-x)) dx$	
		$= \int_0^1 \tan^{-1} x dx + \int_0^1 \tan^{-1} (1-x) dx$	dx
		$= \int_0^1 \tan^{-1} x dx + \int_0^1 \tan^{-1} (1 - (1 - 1))^2 dx + \int_0^1 \tan^{-1} (1 - 1)^2 dx $	(x)) dx , since $\int_0^a f(x) dx = \int_0^a f(a-x) dx$
		$= \int_0^1 \tan^{-1} x dx + \int_0^1 \tan^{-1} x dx$	0
		$= 2 \int_0^1 \tan^{-1} x dx$	
		$= \left[2\int udv\right]_0^1$, where $u = \tan^{-1} x$	and $dv = dx$
		= $2\left[uv - \int v du\right]_0^1$, applying int	egration by parts
		$= 2\left(x\tan^{-1}x - \int x\frac{dx}{1+x^2}\right)_0^1 = 2$	$\left(x\tan^{-1}x - \frac{1}{2}\log(1+x^2)\right)_0^1 = \frac{\pi}{2} - \log 2$
	(h)	The allings is some this 1 of	(or)
	(u)	Fig 9.16 So viewing in the posi-	boin major and minor axes. It is sketched as in tive direction of v -axis the required area 4 is four
		times the area of the region bo	bunded by the portion of the ellipse in the first
		quadrant	

1 ann 1 an

www.Trb Tnpsc.com To find We Padasalai Net 6, -4) Differentiating equation (1) with respect to x we get $2x = -9 \cdot \frac{\mathrm{d}y}{\mathrm{d}x} \Longrightarrow$ $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2x}{9}$ At (-6, -4), $\frac{dy}{dx} = \frac{-2 \times -6}{9} = \frac{12}{9} = \frac{4}{3}$ $\tan \theta = \frac{4}{3} \Rightarrow \theta = \tan^{-1}\left(\frac{4}{3}\right)$ The angle of projection is $\tan^{-1}\left(\frac{4}{3}\right)$ (or) (b) (i) Given f(x) in a probability mass function $\sum f(x) = 1$ $k^{2} + 2k^{2} + 3k^{2} + 2k + 3k = 1$ $6k^2 + 5k = 1$ $6k^2 + 5k - 1 = 0$ (k + 1)(6k - 1) = 0 $k = \frac{1}{6}$ $(k \neq -1 \text{ neglecting negative terms})$ Probability mass function 3 1 2 4 5 х 2 3 3 2 f(x)36 6 36 36 6 (ii) $P(2 \le X < 5)$ $P(2 \le X < 5) = P(X = 2) + P(X = 3)$ + P(X = 4) $=\frac{2}{36}+\frac{3}{36}+\frac{2}{6}$ $=\frac{2+3+12}{36}=\frac{17}{36}$ (iii) P(X > 3) = P(X = 4) + P(X = 5) $+\frac{3}{6}$

Solution:

46

(a)

www.Trb Tnpsc.com

$\overrightarrow{OL} = \overrightarrow{OA} \cos \alpha$	
$ OL = OA \cos \alpha = \cos \alpha$	
$\left \overline{LA}\right = \left \overline{OA}\right \sin \alpha = \sin \alpha$	
$\overrightarrow{OL} = \overrightarrow{OL} \hat{i} = \cos\alpha \hat{i}$	
$\overline{LA} = \sin \alpha \left(+ \hat{j} \right)$	-24
$\vec{a} = \vec{OA} = \vec{OL} + \vec{LA}$	
$= \cos \alpha \hat{i} + \sin \alpha \hat{j} \qquad .$	(1)
Similarly $\vec{b} = \cos \beta \hat{i} + \sin \beta \hat{j}$.	(2)
The angle between \vec{a} and \vec{b} is $\alpha - \beta$ and so	C
$\vec{a} \cdot \vec{b} = \vec{a} \vec{b} \cos(\alpha - \beta) = \cos(\alpha - \beta)$.	(3)
From (1) and (2)	
$\vec{a} \cdot \vec{b} = (\cos \alpha \hat{i} + \sin \alpha \hat{j}).(\cos \beta \hat{i} + \sin \beta \hat{j})$	
$= \cos\alpha \cos\beta + \sin\alpha \sin\beta .$	(4)
From (3) and (4)	
$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$	
Put $\alpha = A$; $\beta = B$	
$\frac{\cos(A-B)=\cos A\cos B+\sin A\sin B}{(\text{or})}$	

(b)	The www.Trb Tnpsc.com								
	written as dy (1)								
	$\frac{dy}{dx} + \left(\frac{1}{x}\right)y = \sin x$								
	This is of the form $\frac{dy}{dx} + Py = Q$ where $P = \frac{1}{2}$								
	$O = \sin r$								
	Thus, the given differential equation is								
	linear. I.F = $e^{\int Pdx} = e^{\int \frac{1}{x} dx} = e^{\log x} = x$ So, the required solution is given by $y \times I.F = \int (Q \times I.F) dx + c$ $yx = \int \sin x \times x dx + c$ $= x (-\cos x) - (1) (-\sin x) + c$								
	$yx = -x \cos x + \sin x + c$ $yx + x \cos x = \sin x + c$ $(y + \cos x) x = \sin x + c \text{ is a required}$ solution								
47 (a)	The given differential equation can be								
	written as								
	$\frac{dy}{dx} + \left(\frac{1}{x}\right)y = \sin x$								
	$\frac{dx}{dy} = \frac{dy}{dy} = dy$								
	This is of the form $\frac{dx}{dx} + Py = Q$								
	where $P = \frac{1}{x}$								
	$Q = \sin x$								
	Thus, the given differential equation is								
	linear.								
	I.F = $e^{\int Pdx} = e^{\int \frac{1}{x} dx} = e^{\log x} = x$								
	So, the required solution is given by								
	$y \times LF = \int (Q \times I.F) dx + c$								
	$yx = \int \sin x \times x dx + c$								
	$= x (-\cos x) - (1) (-\sin x) + c$								
	$yx = -x\cos x + \sin x + c$								
	$yx + x\cos x = \sin x + c$								
	$(y + \cos x) x = \sin x + c$ is a required solution.								
	(or)								
(b)	(iii) $(p \to q) \leftrightarrow (\neg p \to q)$								
	$p q \neg p p \rightarrow q \neg p \rightarrow q (p \rightarrow q) \leftrightarrow (\neg p \rightarrow q)$								
	T T F T T T								
	T F F F T F								
	F T T T T T								
	The entries in the last column are a combination of T and F								
	\therefore The given statement is a contingency.								
	- E. VIKRAM, M.Sc., B. Ed(Maths								
	PG Assistant (SMC								
	Govt. Girls Hr. Sec. Schoo								
	Periya Kozhapallu								
	Peranamallur pos								