www.Trb Tnpsc.com

PUBLIC EXAMINATION YEAR WISE (MARCH 2019 – JUNE 2023) (TWO MARKS NUMERICAL PROBLEMS QUESTION WITH SOLUTION)

The de-Broglie wavelength of a neutron of kinetic energy K is λ. When its kinetic energy.
 is 4 K, what is the de-Broglie wavelength of the neutron? (MARCH – 2019)

de Broglie wavelength
$$\lambda = \frac{h}{\sqrt{2mE}}$$
 Here E = K
de Broglie wavelength $\lambda = \frac{h}{\sqrt{2mK}}$ E = 4K
de Broglie wavelength $\lambda' = \frac{h}{\sqrt{2m4k}}$; $\lambda' = \frac{h}{2\sqrt{2mk}}$ (or) $\lambda' = \frac{h}{2}$

2. The number of turns in the primary of an ideal transformer is 400 and that in the secondary 2000. If the output power from the secondary at 1000 V is kW then calculate the voltage and current in the primary coil. (MARCH – 2019)

$$\frac{E_{S}}{E_{P}} = \frac{N_{S}}{N_{P}}; E_{P} = 1000 \text{ X} \frac{400}{2000}; E_{P} = 200 \text{ V}$$

Ideal Transformer = $E_{P}I_{P} = E_{S}I_{S}$
 $I_{P} = \frac{10000}{200}; I_{P} = 50\text{ A}$

3. An ideal transformer has 460 and 40,000 turns in the primary and secondary coils respectively. Find the voltage developed per turn of the secondary coil if the transformer is connected to a 230 V AC main. (MARCH – 2020)

i) Secondary voltage,
$$V_S = \frac{V_P N_S}{N_P} = \frac{230 \times 40000}{460}$$
; $V_S = 20000V$
ii) Secondary voltage per turn, $\frac{V_S}{N_S} = \frac{20000}{40000}$; $= 0.5 V$

4. Two materials X and Y are magnetized whose intensity of magnetization are 500 Am⁻¹ and 2000 Am⁻¹ respectively. The magnetizing field is 1000 Am⁻¹. What is the ratio between the susceptibilities of the two material? **(MARCH – 2020)**

The susceptibility of material X is $\chi_m X = \frac{|\vec{M}|}{|\vec{H}|} = \frac{500}{1000} = 0.5$ The susceptibility of material Y is $\chi_m Y = \frac{|\vec{M}|}{|\vec{H}|} = \frac{2000}{1000} = 2$

Since, susceptibility of material Y is greater than that of material X, material Y can be easily magnetized than X. 0.5 : 4 or 1 : 4

www.Trb Tnpsc.com

5. An electron in Bohr's hydrogen atom has an energy of -3.4 eV. What is the angular momentum of the electron? (MARCH - 2020)

Total Energy
$$E_n = \frac{-13.6}{-3.4} = 4$$
 : $n^2 = 4$: $n = 2$
Angular momentum $L = \frac{nh}{2\pi}$; $= \frac{h}{\pi}$; $= \frac{6.63 \times 10^{-34}}{3.14}$
 $L = 2.11 \times 10^{-34} \text{ kgm}^{2}\text{s}^{-1}$

6. Calculate the cut-off wavelength and cut-off frequency of X-rays from an X-ray tube of accelerating potential 20,000 V. (SEPTEMBER - 2020, MAY - 2022)

> The cut-off wavelength of the characteristic x-rays is $\lambda_0 = \frac{12400}{V}$ Å $=\frac{12400}{20000}$ Å; = 0.62 Å The corresponding frequency is $v_0 = \frac{c}{\lambda_0}$; $= \frac{3 \times 10^8}{0.62 \times 10^{-10}}$ v_0 = 4.84 x 10¹⁸ Hz

Potential in a given region is given as a function of distance x, $V=5(x^2+x)$ Volt. 7. Find the electric field when x = 1 cm. (SEPTEMBER - 2020)

 $E = \frac{dv}{dx}$; = $\frac{d}{dx}(5x^2 + 5x)$; = 10x + 5; x = 1; E = 10 +5 = 15 Vom¹

If an electric field of magnitude 570 NC⁻¹. Is applied in the copper wire, find the 8. experienced by the electron. (SEPTEMBER - 2020)

$$a = \frac{Ee}{m} ; = \frac{570 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}} ; a = 100.29 \times 10^{12} \text{ ms}^{-2}$$

Compute the speed of electromagnetic wave in a medium if the amplitudes of electric 9. and magnetic fields in it are 3 x 10⁴ NC⁻¹ and 2 x 10⁻⁴ T respectively.

(SEPTEMBER - 2020)

Speed of the electromagnetic wave in a medium is $v = \frac{E}{R}$

$$v = \frac{3 \times 10^4}{2 \times 10^{-4}}; v = 1.5 \times 10^8 \text{ ms}^{-1}$$

10. Find the Polarizing angle for glass of refractive index 1.5.

(SEPTEMBER - 2021, JUNE - 2023)

Brewster's law, $tani_P = n$ For glass, $tani_P = 1.5$; $i_P = tan^{-1} 1.5$; $i_P = 56.3^{\circ}$

www.Trb Tnpsc.com

11. Dielectric strength of air is 4x10⁶ Vm⁻¹. Suppose the radius of a hollow sphere in the Van de Graaff generator is R = 0.4 m, calculate the maximum potential difference created by this Van de Graaff generator. (SEPTEMBER - 2021)

The electric field on the surface of the sphere (by Gauss law) is given by

 $\mathsf{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^2}$ The potential on the surface of the hollow metallic sphere is given by $V = \frac{1}{4\pi\epsilon_0} \frac{Q}{R} = ER$; With $V_{max} = E_{max} R$ Here $E_{max} = 4 \times 10^{6} \frac{V}{m}$. So, the maximum potential difference created is given by $V_{max} = 4 \times 10^6 \times 0.4$; = 1.6 × 10⁶ V (or) 1.6 million volt

12. Calculate the momentum of an electron with kinetic energy 2 eV.

Momentum of the electron is

 $p = \sqrt{2mK} = \sqrt{2 \times 9.1 \times 10^{-31} \times 2 \times 1.6 \times 10^{-19}}; \sqrt{58.24 \times 10^{-50}}$ $p = 7.63 \times 10^{-25} \text{ kg ms}^{-1}$

A copper wire of cross-sectional area 0.5 mm² carries a current of 0.2 A. If the free 13. electron density of copper is 8.4 x 10²⁸ m⁻³ then compute the drift velocity of free electrons. (SEPTEMBER - 2021)

The relation between drift velocity of electrons and current in a wire of c ross-

sectional area A is
$$V_d = \frac{I}{neA}$$
; = $\frac{0.2}{8.4 \times 10^{28} \times 1.6 \times 10^{-19} \times 0.5 \times 10^{-6}}$
= $\frac{2 \times 10^{-3}}{6.72}$ V_d = 0.03 x 10⁻³ ms⁻¹

14.

Calculate the radius of ${}^{197}_{79}$ Au nucleus. (MAY – 2022) (R = R₀A^{$\frac{1}{3}$}), R = 1.2 x 10⁻¹⁵ x (197)^{$\frac{1}{3}$} = 6.97 x 10⁻¹⁵m (or) R = 6.97 F

15. The angle of minimum deviation for the equilateral prism is 40°. Find the refractive index of the material of the prism. (MAY - 2022)

Equation for refractive index is, n =
$$\frac{\sin\left(\frac{A+D}{2}\right)}{\sin\left(\frac{A}{2}\right)}$$

Substituting the values, n = $\frac{\sin\left(\frac{60^{0}+40^{0}}{2}\right)}{\sin\left(\frac{60^{0}}{2}\right)}$; = $\frac{\sin(50^{0})}{\sin(30^{0})}$; = $\frac{0.766}{0.5}$; = 1.532;

The refractive index of the material of the prism is, n = 1.532 (No Unit)

www.Trb Tnpsc.com

16. Pure water has refractive index 1.33. What is the speed of light through it?

(JULY - 2022)

(JULY - 2022)

n =
$$\frac{c}{v}$$
; $v = \frac{c}{n}$; $v = \frac{3 \times 10^8}{1.33}$; = 2.25 x 10⁸ ms⁻¹
Light travels with a speed of 2.25 × 10⁸ ms⁻¹ through pure water.

17. Calculate the equivalent resistance for the circuit which is connected to 12 V battery and find the potential difference across 2Ω and 4Ω resistors in the circuit.

Since the resistors are connected in series, the effective resistance in the circuit = $2 \Omega + 4 \Omega = 6 \Omega$

The Current I in the circuit $=\frac{V}{R_{eq}}=\frac{12}{6}=2$ A

Voltage across 4Ω resistor

 $V_1 = IR_1 = 2A \times 2\Omega = 4 V$

Voltage across 6 Ω resistors

 $V_2 = IR_1 = 2A \times 4 \Omega = 8 V$

18. The relative magnetic permeability of the medium is 2.5 and the relative electrical permittivity of the medium is 2.25. Compute the refractive index of the medium.

(JULY - 2022, MARCH 2023)

Refractive index of the medium, n = $\sqrt{\epsilon_{r\mu_r}}$; = $\sqrt{2.25 \times 2.5}$; = $\sqrt{5.625}$; n =2.37 No Unit

19. The ratio of intensities of two waves in an interference pattern is 36 : 1. What is the ratio of the amplitudes of the two interfering waves? (MARCH – 2023)

$$| \propto a^{2} \text{ (OR) } I_{1} \propto a_{1}^{2} \text{ (OR) } I_{2} \propto a_{2}^{2}$$

$$\frac{I_{1}}{I_{2}} = \frac{a_{1}^{2}}{a_{2}^{2}} \text{ (OR) } \frac{a_{1}}{a_{2}} = \sqrt{\frac{I_{1}}{I_{2}}} = \sqrt{\frac{36}{1}} ; \frac{a_{1}}{a_{2}} = \frac{6}{1}$$

$$(OR)$$

$$| \propto a^{2} \text{ (OR) } I_{\max} \propto (a_{1} + a_{2})^{2} \text{ and } I_{\min} \propto (a_{1} - a_{2})^{2}$$

$$\frac{I_{\max}}{I_{\min}} = \frac{(a_{1} + a_{2})^{2}}{(a_{1} - a_{2})^{2}} \text{ (OR) } \frac{a_{1} + a_{2}}{a_{1} - a_{2}} = \sqrt{\frac{I_{\max}}{I_{\min}}} = \sqrt{\frac{36}{1}}$$

$$\frac{(a_{1} + a_{2})}{(a_{1} - a_{2})} = \frac{6}{1} \text{ (OR) } \frac{a_{1}}{a_{2}} = \frac{7}{5}$$

www.Trb Tnpsc.com

20. If the resistance of coil is 3Ω at 20° C and $\alpha = 0.004/{\circ}$ C, then, determine its resistance at 100°C. (MARCH – 2023)

 $\begin{array}{l} \mathsf{R}_{\mathsf{T}} = \; \mathsf{R}_0(1 + \alpha(\mathsf{T}\text{-}\mathsf{T}_0)) \\ \mathsf{R}_{100} = \; \mathsf{3}(1 + 0.004 \times 80) \quad ; \; \mathsf{R}_{100} = \; \mathsf{3}(1 + 0.32) \\ \mathsf{R}_{100} = \; \mathsf{3}(1.32) \quad ; \mathsf{R}_{100} = \; \mathsf{3.96} \; \Omega \end{array}$

21. Determine the number of electrons flowing per second through a conductor, when a current of 32 A flows through it? (JUNE – 2023)

I = 32 A , t = 1 s Charge of an electron, e = 1.6 \times 10 19 C The number of electrons flowing per second, n =?

$$I = \frac{q}{t} = \frac{ne}{t} ; n = \frac{lt}{e} ; n = \frac{32 \times 1}{1.6 \times 10^{-19} \text{ C}}$$

n= 20 × 10¹⁹ = 2 × 10²⁰ electrons

22. The radius of the 5th orbit of hydrogen atom is 13.25 Å Calculate the de Broglie wavelength of the electron orbiting in the 5th orbit. (JUNE - 2023)

$$2\pi r = n\lambda ; 2 \times 3.14 \times 13.25 \text{ Å} = 5 \times \lambda ; \therefore \lambda = 16.64 \text{ Å}$$

(or) $\lambda = \frac{2\pi r}{n}; = \frac{2 \times 3.14 \times 13.24 \times 10^{-10}}{5}; = 2 \times 3.14 \times 2.68 \times 10^{-10}$
 $\lambda = 16.64 \times 10^{-10} \text{ m}; \lambda = 16.64 \text{ Å}$

www.Trb Tnpsc.com

PUBLIC EXAMINATION YEAR WISE (MARCH 2019 – JUNE 2023) (THREE MARKS NUMERICAL PROBLEMS QUESTION WITH SOLUTION)

20 30 1. 6Ω

The heat developed across 6 Ω resistor per second is 50 J. Calculate the heat developed per second across 2 Ω resistor in the given electric circuit. (MARCH – 2019)

$$H = \frac{V^{2}t}{R}; = \frac{V^{2}x1}{6}; = V^{2} = 6H; V^{2} = 6 \times 50; V^{2} = 300$$
$$I_{1} = \frac{V}{(R_{1} + R_{2})}; = \frac{\sqrt{300}}{5}$$
$$H = I^{2}Rt; = \frac{300}{25} \times 2 \times 1; H = 24J$$

Half lives of two radioactive elements are 12 hrs and 16 hrs respectively. If at any instant, the ratio of the amounts of radioactive substance is 2 : 1, then after 2 days, What will be the ratio of the un-decayed portions? (MARCH – 2019)

$$N_{1} = (N_{0})_{1} (\frac{1}{2})^{n_{1}} - ----1$$

$$N_{2} = (N_{0})_{2} (\frac{1}{2})^{n_{2}} - ----2$$

$$n_{1} = \frac{2 \times 24}{12} = 4 \quad ; \quad n_{2} = \frac{2 \times 24}{16} = 3 - ---3$$

$$n_{1} = \frac{2 \times 24}{12} = 4 \quad ;$$

$$\frac{(N_{0})_{1}}{(N_{0})_{2}} = \frac{2}{1} \quad ; \quad \frac{N_{1}}{N_{2}} = \frac{2}{1} (\frac{\frac{1}{2}}{\frac{1}{2}})^{4}}{(\frac{\frac{1}{2}}{\frac{1}{2}})^{3}} ; \quad \frac{N_{1}}{N_{2}} = 2 \times \frac{1}{2}; \quad \frac{N_{1}}{N_{2}} = 1 \quad N_{1} : N_{2} = 1 : 1$$

3. In Young's double slit experiment two coherent sources of intensity ratio of 64:1, produce interference fringes. Calculate the ratio of maximum and minimum intensities.

(MARCH - 2019)

$$\frac{I_1}{I_2} = \frac{a_1^2}{a_2^2} = \frac{64}{1} = \frac{a_1}{a_2} = \frac{8}{1} a_1 = 8a_2$$

$$\frac{I_{\text{max}}}{I_{\text{min}}} = \frac{(a_1 + a_2)^2}{(a_1 - a_2)^2} ; = \frac{(8a_2 + a_2)^2}{(8a_2 - a_2)^2} ; = \frac{(9a_2)^2}{(7a_2)^2} ; = \frac{81}{49}$$

$$I_{\text{max}} : I_{\text{min}} : 81 : 49$$

www.Trb Tnpsc.com

4. Two light sources of equal amplitudes interfere with each other. Calculate the ratio of maximum and minimum intensities. **(MARCH – 2019)**

 $I \propto 4a^{2}\cos^{2}\left(\frac{\phi}{2}\right) \text{ (or) } I = 4 I_{0}\cos^{2}\left(\frac{\phi}{2}\right)$ Resultant Intensity for maximum : $\phi = 0$, $\cos \theta = 1$; $I_{\text{max}} \alpha 4a^{2}$ Resultant Intensity for minimum : $\phi = \pi$, $\cos \frac{\pi}{2} = 0$; $I_{\text{min.}} \alpha 0$ $I_{\text{max}} = I_{\text{min}} = 4a^{2}$: 0

 The resistance of a nichrome wire at 0° C is 10Ω. If its temperature coefficient of resistance is 0.004/°C, find its resistance at boiling point of water. Comment on the result. (MARCH – 2020)

> Temperature of boiling point of water, $R_T = R_0 (1 + \alpha T); = 10[1+(0.004 \times 100^0]]$ $R_T = 10(1+0.4) = 10 \times 1.4; R_T = 14 \Omega$

As the temperature increases the resistance of the wire also increases.

6. In the circuit shown in the figure, the input voltage V_i is 20 V, $V_{BE} = 0$ V and $V_{CE} = 0$ V. What are the values of I_B , I_C , β ? (MARCH – 2020)

$$I_{B} = \frac{V_{i}}{R_{B}} = \frac{20 \text{ V}}{500 \text{ k}\Omega} ;= 40 \mu \text{A} \qquad [\therefore \text{ V}_{BE} = 0\text{V}]$$

$$I_{C} = \frac{V_{CC}}{R_{C}} = \frac{20 \text{ V}}{4 \text{ k}\Omega} ;= 5\text{mA} \qquad [\therefore \text{ V}_{CE} = 0\text{V}]$$

$$\beta = \frac{I_{C}}{I_{B}} = \frac{5 \text{ mA}}{40 \mu \text{A}} ; \beta = 125$$

7. Half lives of two radioactive elements A and B are 20 minutes and 40 minutes respectively. Initially the samples have equal number of nuclei. Calculate the ratio of decayed number of A and B nuclei after 80 minutes. (SEPTEMBER – 2020)

Decayed part of A atom :
$$\frac{15}{16}$$
 or 93.75 %
Decayed part of B atom : $\frac{3}{4}$ or 75 %
Ratio between A and B atom $\frac{N_A}{N_B} = \frac{5}{4}$ or $N_A = N_B = 5 : 4$
 $N_A = N_B = 1.25\%$ (or)

www.Trb Tnpsc.com

80 minutes = 4 half-lives of A = 2 half live of B Let the initial number of nuclei in each sample be N. N_A after 80 minutes = $\frac{N}{2^4}$ Number of A nuclides decayed = $\frac{15}{16}$ N N_B after 80 minutes = $\frac{N}{2^4}$ Number of B nuclides decayed = $\frac{3}{4}$ N Required ratio = $\frac{15}{16} \times \frac{4}{3} = \frac{5}{4}$; N_A:N_B = 5 : 4

8. An 500 μ H, $\frac{80}{\pi^2}$ pF capacitor and a 628 Ω resistor are connected to form a series RLC circuit. Calculate the resonant frequency and Q-factor of this circuit at resonance.

(SEPTEMBER - 2020)

$$f = \frac{1}{2\pi\sqrt{LC}} \quad ; = \frac{1}{2\pi\sqrt{500 \times 10^{-6} x \frac{80}{\pi L} \times 10^{-12}}}$$
$$= \frac{1}{2\sqrt{40000 \times 10^{-10}}} ; = \frac{10000 \times 10^3}{4} \quad ; f = 2500 \text{ kHz}$$
$$Q \text{ factor} = \frac{\omega_r L}{R} ; \frac{2 \times 3.14 \times 2500 \times 10^3 \times 500 \times 10^{-6}}{628}$$
$$Q \text{ factor} = 12.5$$

9. Write the output (Y) Boolean expression for the following circuit with inputs A, B and C. (SEPTEMBER – 2020)

Output of A and B = $\overline{A} + \overline{B}$ or \overline{AB} or AB Output of C = C Output of circuit Y = ABC

10. The repulsive force between two magnetic poles in air is 9x10⁻³ N. If the two poles are equal in strength and are separated by a distance of 10 cm, calculate the pole strength of each pole. **(SEPTEMBER – 2021)**

The force between two poles are given by $\vec{F} = k \frac{q_{mA}q_{mB}}{r^2} \hat{r}$ The magnitude of the force is $F = k \frac{q_{mA}q_{mB}}{r^2}$ Given : F = 9 x 10⁻³N, r = 10 cm = 10 x 10⁻² m Therefore, 9 x 10⁻³ = 10⁻⁷ x $\frac{q_m^2}{(10 \times 10^{-2})^2} \implies q_m^2$ = 900 ; q_m = 30 NT⁻¹

11. ${}_{92}U^{235}$ nucleus emits 2α particles, 3β particles and 2γ particles. What is the resulting atomic number and mass number? **(SEPTEMBER – 2021)**

The α - decay process symbolically written as ${}_{Z}^{AX} \rightarrow {}_{Z-2}^{A-4}Y + {}_{2}^{4}He$. (e.g.) ${}_{92}^{235}U \rightarrow 2\alpha {}_{92-4}^{235-8}X + 2{}_{2}^{4}He$; ${}_{88}^{227}X + 2{}_{2}^{4}He$ In β - decay, ${}_{Z}^{AX} \rightarrow {}_{Z+1}^{AY}Y + {}_{-1}^{0}e + \bar{v} \cdot (e.g.) {}_{88+3}^{227}Y + 3{}_{-1}^{0}e$; ${}_{91}^{227}Y + 3{}_{-1}^{0}e$ During gamma decay there is **no change in atomic number and mass number**. ${}_{Z}^{A}X^* \rightarrow {}_{Z}^{A}X + gamma rays (\gamma)$

- 12. Find the:
 - (i) Angular momentum
 - (ii) Velocity of the electron revolving in the 5th orbit of hydrogen atom. (h = 6.6 x 10^{-34} Js; m = 9.1 x 10^{-31} kg) (MAY – 2022)

(i) Angular momentum is given by $= n\hbar = \frac{n\hbar}{2\pi}; = \frac{5 \times 6.6 \times 10^{-34}}{2 \times 3.14}$ = 5.25 x 10⁻³⁴ kgm²s⁻¹

(ii) Velocity is given by velocity, $= \frac{l}{mr}$; $= \frac{(5.25 \times 10^{-34} \text{ kgm}^2 \text{s}^{-1})}{(9.1 \times 10^{-31} \text{ kg})(13.25 \times 10^{-10} \text{ m})}$ $v = 4.4 \times 10^5 \text{ ms}^{-1}$

13. Find the impedance of a series RLC circuit, if the inductive reactance, capacitive reactance and resistance are 184 Ω , 144 Ω , and 30 Ω respectively. Also calculate the phase angle between voltage and current. **(MAY – 2022)**

(i) The impedance is Impedance,
$$Z = \sqrt{R^{2+(X_L-X_C)^2}}$$

= $\sqrt{30^{2+}(184 - 144)^2}$; = $\sqrt{900 + 1600}$
Impedance, Z = 50 Ω
(ii) Phase angle is tan $\phi = \frac{X_L - X_C}{R}$; $\frac{184 - 144}{30}$; = 1.33; ϕ = 53.1°

www.Trb Tnpsc.com

- 14. Light travels from air into a glass slab of thickness 50 cm and refractive index 1.5.(a) What is the speed of light in the glass slab?
 - (b) What is the time taken by the light to travel through the glass slab? (JULY 2022)

Speed of light in glass is, $v = \frac{c}{n}$; $= \frac{3 \times 10^8}{1.5}$; $= 2 \times 10^8$ ms⁻¹. Time taken by light to travel through glass slab is,

 $t = \frac{d}{v}; = \frac{0.5}{2 \times 10^8} = 2.5 \times 10^{-9} \text{ s}$

Optical path, $d' = nd = 1.5 \times 0.5$; = 0.75m; =75 cm Light would have travelled 25 cm more (75 cm – 50 cm) in vacuum by the same time

had there not been a glass slab.

15. Calculate the number of nuclei of carbon-14 undecayed after 22,920 years if the initial number of carbon-14 atoms is 10,000. The half –life of carbon-14 is 5730 years. (JULY – 2022)

To get the time interval in terms of half-life, n = $\frac{t}{T_{1/2}} = \frac{22920 \text{ yr}}{5730 \text{ yr}} = 4$

The number of nuclei remaining un-decayed after 22,920 years,

$$N = \left(\frac{1}{2}\right)^{n} N_{o}; = \left(\frac{1}{2}\right)^{4} \times 10000; N = 625$$

16. An electron moving perpendicular to a uniform magnetic field 0.500 T undergoes circular motion of radius 2.50 mm. What is the speed of electron? (JULY – 2022)

Velocity of the electron, $v = |q| \frac{rB}{m}$ $v = 1.60 \ge 10^{-19} \ge \frac{2.50 \ge 10^{-3} \ge 0.500}{9.11 \ge 10^{-31}}$; $v = 2.195 \ge 10^8 \text{ ms}^{-1}$

17. The given circuit has two ideal diodes connected as shown in figure below. Calculate the current flowing through the resistance R_1 (MARCH – 2023)

Diode D_1 is reverse biased so, it will block the current and Diode D_2 is forward biased, so it will pass the current.

$$R_{\text{net}} = 2 + 2 = 4\Omega$$

Current in the circuit is I = $\frac{V}{R}$; = $\frac{10}{2+2} = \frac{10}{4}$; I = 2.5A

18. Calculate the amount of energy released in joules when 1 kg of $^{235}_{92}$ U undergoes fission reaction. (MARCH – 2023)

235 g of ${}^{235}_{92}$ U has 6.02 x 10²³ atoms. In one gram of ${}^{235}_{92}$ U, the number of atoms is equal to $\frac{6.02 \times 10^{23}}{235}$ = 2.56 x 10²¹;

So the number of atoms present in 1 kg of $^{235}_{92}$ U = **2.56 x 10²¹ x 1000** = **2.56 x 10²⁴** Each $^{235}_{92}$ U nucleus releases 200 Mev of energy during the fission. The total energy released by 1 kg of $^{235}_{92}$ U is

Q= 2.56 x 10²⁴ x 200 Mev = 5.12 x 10²⁶ MeV In terms of joules, 5.12 x 10²⁶ x 1.6 x 10⁻¹³ J = 8.192 x 10¹³ J

19. Find the ratio of the intensities of light with wavelength 500 nm and 300 nm which undergo Rayleigh scattering. (JUNE – 2023)

 $\lambda_1 = 500 \text{ nm} = 500 \text{ x} 10^{-9} \text{ m}$; $\lambda_2 = 300 \text{ nm} = 300 \text{ x} 10^{-9} \text{ m}$;

From Rayleigh's Scattering law, the intensity of scattered light I $\propto \frac{1}{14}$

Hence,
$$I_1 \propto \frac{1}{\lambda_1^4}$$
 and $I_2 \propto \frac{1}{\lambda_2^4}$
From this, $\frac{I_1}{I_2} = \frac{\lambda_2^4}{\lambda_1^4}$; $= \left(\frac{300 \times 10^{-9}}{500 \times 10^{-9}}\right)^4$; $= \left(\frac{3}{5}\right)^4$; $= \frac{81}{625}$
 $I_1: I_2 = 81: 625$

20. Calculate the electric flux through the rectangle of side 5 cm and 10 cm kept in the region of a uniform electric field 100 NC⁻¹. The angle θ is 60°. If θ becomes zero, what is the electric flux? (JUNE – 2023)

The electric flux $\Phi_E = \vec{E} \cdot \vec{A} = \text{EA} \cos\theta = 100 \text{ x } 5 \text{ x } 10 \text{ x} 10^{-4} \text{ x } \cos 60^\circ$ $\Rightarrow \Phi_E = 0.25 \text{ Nm}^2 \text{C}^{-1} \cdot$ For $\theta = 0^\circ, \Phi_E = \vec{E} \cdot \vec{A} = \text{EA} \cos\theta = 100 \text{ x } 5 \text{ x } 10 \text{ x} 10^{-4}$ $= 0.5 \text{Nm}^2 \text{C}^{-1}$

21. A coil of a tangent galvanometer of diameter 0.24 m has 100 turns. If the horizontal component of Earth's magnetic field is 25×10⁻⁶ T then, calculate the current which gives a deflection of 60°. (JUNE – 2023)

The diameter of the coil is 0.24 m. Therefore, radius of the coil is 0.12 m. Number of turns is 100 turns. Earth's magnetic field is 25 x 10⁻⁶ T Deflection is $\theta = 60^{0} \Rightarrow \tan 60^{0} = \sqrt{3} = 1.732$ $I = \frac{2RB_{H}}{\mu_{0}N} \tan \theta$; $= \frac{2 \times 0.12 \times 25 \times 10^{-6}}{4 \times 10^{-7} \times 3.14 \times 100} \times 1.732$ $= 0.82 \times 10^{-1} A$ (or) I = 0.082 A.

RAJENDRAN M, M.Sc., B.Ed., C.C.A., P.G. TEACHER IN PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI – 606603.

MRPHYSICS, SIMUS MAY