SHRL VIDHY ARHARATHI MATRIC HR, SEC. SCHOOL SAKKARAMPALAYAM, AGARAM (PO), ELACHIPALAYAM TIRUCHENGODE (TK), NAMAKKAL (DT) PIN-637202 Cell:99655-31727, 99655-35967,94422-88402, 80726-68664 PUBLIC EXAMINATION – MARCH– 2024 TENTATIVE ANSWER KEY

XII - PHYSICS

TOTAL MARKS: 70

Q.N	PART – I		MARKS
	TYPE – A	TYPE – B	
1.	(a) Photovoltaic action	(c) 1.1 eV	1
2.	(c) 900 Vm ⁻¹	(c) 480 W	1
3.	(c) 480 W	(a) $\frac{Q}{\sqrt{2}}$	1
4.	(a) 3	(d) 3750Å	1
5.	(c) polarisation	(d) 6 µF	1
6.	(a) $\frac{Q}{\sqrt{2}}$	(a) Photovoltaic action	1
7.	(d) $\frac{3}{\pi} P_{\rm m}$	(d) its wavelength	1
8.	(d) its wavelength	(c) 900 Vm^{-1}	1
9.	(b) $\frac{\pi}{4}$	(d) $\frac{3}{\pi} P_{\rm m}$	1
10.	(a) more than before	(b) $\frac{\pi}{4}$	1
11.	(d) 6 µF	(a) more than before	1
12.	(d) 3750Å	(a) 3	1
13.	(a) plane polarised	(c) polarisation	1
14.	(a) Albert Einstein	(a) plane polarised	1
15.	(c) 1.1 eV	(a) Albert Einstein	1
	PAF	RT – II	
16.	Hysteresis:The phenomenon of lagging of magnetic induction behind the magnetisingfield is called hysteresis. Hysteresis means 'lagging behind'.		2
17.	Malus' law: When a beam of plane polarised light of intensity I_0 is incident on an analyser, the light transmitted of intensity <i>I</i> from the analyser varies directly as the square of the cosine of the angle θ between the transmission axis of polariser and analyser $I = I_0 \cos^2 \theta$ (Formula only award 1 mark)		2

18.	Electrostatic potential: www.Padasalai.Net www.Trb Tnpsc.com The electrostatic potential at a point is equal to the work done by an external	2
f	orce to bring a unit positive charge with constant velocity from infinity to the	<u> </u>
ľ	point P in the region of the external electric field \vec{E} .	
	$\mathbf{V_p} = -\int_{\infty}^{P} \vec{E} \cdot \vec{dr} \text{(or)} \mathbf{V} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r} (Formula \text{ only award 1 mark})$	
19.	Given:	
($d\phi_B = 4\text{mWb} = 4\text{x}10^{-3} \text{Wb}, \ \text{dt} = 0.4\text{s}$	
S	sol: $\varepsilon = \frac{d\phi_B}{dt}$	1⁄2
	$=\frac{4\times10^{-3}}{0.4}$	1/2
		1
20.	Applications Seebeck effect	
	 Seebeck effect is used in thermoelectric generators (Seebeckgenerators). These thermoelectric generators are used in power 	
	plants to convert waste heat into electricity.	
	 This effect is utilized in automobiles as automotive thermoelectric 	
	generators for increasing fuel efficiency.	2
	> Seebeck effect is used in thermocouples and thermopiles to measure	
	the temperature difference between the two objects.	
	(Any 2 points 2X1=2)	
21.	Given: $T_{\frac{1}{2}} = 5.01 \text{ days} = 5.01 \text{X} 24 \text{X} 60 \text{X} 60 \text{ s}$	
s	ol: $\lambda = \frac{0.6931}{T_1}$	1/2
-	$\frac{1}{2}$	
	$=\frac{0.6931}{5.01X24X60X60}$	1/2
	$= 1.6X10^{-6} \text{ s}^{-1}.$ (without unit Reduce ¹ / ₂ mark)	1
22. I	Electromagnetic waves:	
	An electromagnetic wave is radiated by an accelerated charge which	
_	propagates through space as coupled electric and magnetic fields, oscillating	2
	berpendicular to each other and to the direction of propagation of the wave.	
23. I	Biasing: Biasing means providing external energy to charge carriers to overcome	
t	he barrier potential and make them move in a particular direction.	1
1	Two types of biasing:	
) Forward bias	1
	i) Reverse bias	
ZT .	Given: $f = 150cm = 150X10^{-2}m$.	
S	ol: $P = \frac{1}{f}$	1⁄2
	$=\frac{1}{150X10^{-2}}=\frac{1}{1.5m}$	1⁄2
	190V10 - 1'9W	1
	= 0.67D (without unit Reduce ¹ / ₂ mark)	1

www.Padasalai.Net PAR1 - III www.Trb Tnpsc.com + decay Process: • In β + decay, the atomic number is decreased by one and the mass number remains the same. $\frac{{}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + e^{+} + \nu$ or each β + decay, a proton in the nucleus of X is converted into a neutron by nitting a positron (e+) and a neutrino. $p \rightarrow n + e^{+} + \nu$ Example: $\frac{{}^{22}_{11}Na \rightarrow {}^{22}_{10}Ne + e^{+} + \nu$ iven: A = 0.5 mm ² = 0.5X10 ⁻⁶ m ² , I = 0.2A, n = 8.4X10 ²⁸ m ⁻³ . bl: V_{d} = \frac{l}{neA} $= \frac{0.2}{84 \times 10^{28} \times 1.6 \times 10^{-19} \times 0.5 \times 10^{-6}}$	1 1⁄2 1 ½
remains the same. ${}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + e^{+} + \nu$ for each β + decay, a proton in the nucleus of X is converted into a neutron by nitting a positron (e+) and a neutrino. $p \rightarrow n + e^{+} + \nu$ Example: ${}^{22}_{11}Na \rightarrow {}^{22}_{10}Ne + e^{+} + \nu$ iven: A = 0.5 mm ² = 0.5X10 ⁻⁶ m ² , I = 0.2A, n = 8.4X10 ²⁸ m ⁻³ . bl: Vd = $\frac{l}{neA}$	1/2 1 1/2
by each β + decay, a proton in the nucleus of X is converted into a neutron by nitting a positron (e+) and a neutrino. $p \rightarrow n + e^+ + v$ Example: $2^2_{11}Na \rightarrow 2^2_{10}Ne + e^+ + v$ iven: A = 0.5 mm ² = 0.5X10 ⁻⁶ m ² , I = 0.2A, n = 8.4X10 ²⁸ m ⁻³ . bl: V_d = $\frac{I}{neA}$	1 ½
nitting a positron (e+) and a neutrino. $p \rightarrow n + e^{+} + v$ Example: ${}^{22}_{11}Na \rightarrow {}^{22}_{10}Ne + e^{+} + v$ iven: A = 0.5 mm ² = 0.5X10 ⁻⁶ m ² , I = 0.2A, n = 8.4X10 ²⁸ m ⁻³ . bl: V_d = $\frac{l}{neA}$	<i>Y</i> ₂
Example: ${}^{22}_{11}Na \rightarrow {}^{22}_{10}Ne + e^{+} + \nu$ iven: A = 0.5 mm ² = 0.5X10 ⁻⁶ m ² , I = 0.2A, n = 8.4X10 ²⁸ m ⁻³ . bl: V _d = $\frac{I}{neA}$	
${}^{22}_{11}Na \rightarrow {}^{22}_{10}Ne + e^+ + \nu$ iven: A = 0.5 mm ² = 0.5X10 ⁻⁶ m ² , I = 0.2A, n = 8.4X10 ²⁸ m ⁻³ . bl: V _d = $\frac{I}{neA}$	
bl: $V_d = \frac{l}{neA}$	1
$=\frac{0.2}{8.4\times10^{28}\times1.6\times10^{-19}\times0.5\times10^{-6}}$	
	1
$= 0.03 \text{ x}10^{-3} \text{ m/s (or) ms}^{-1}$ (without unit Reduce ¹ / ₂ mark)	1
ffective focal length for lenses in contact:	
• Let us consider two lenses 1 and 2 of focal length f_1 and f_2 are placed	
coaxially inContact with each other so that they have a common principal	
axis.	
	1/2
For an object placed at O beyond the focus of the first lens 1 on the	
principal axis, an image is formed by it at <i>I</i> '.	
• This image I' acts as an object for the second lens 2 and the final image is	
formed at I	1⁄2
	1
	the lens (1), the object distance <i>PO</i> is <i>u</i> and the image distance <i>PI'</i> is <i>v'</i> . For the (2), the object distance <i>PI'</i> is <i>v'</i> and the image distance <i>PI</i> is <i>v</i> . Writing the lens equation for first lens 1, $\frac{1}{v'} - \frac{1}{u} = \frac{1}{f_1}$ Writing the lens equation for second lens 2,

www.PadasalailNet 1 $\overline{v} - \frac{1}{u} = \frac{1}{f_1} + \frac{1}{f_2}$ www.Trb Tnpsc.com	
$\frac{1}{v} - \frac{1}{u} = \frac{1}{f_1} + \frac{1}{f_2}$ (1)	
(or)	1/2
$\frac{1}{v} - \frac{1}{u} = \frac{1}{f},\dots,(2)$	
Comparing equations (1) and (2)	
$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$	
(or)	1/2
equation can be extended for any number of lenses in contact as,	
$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3} + \frac{1}{f_4} + \dots$	
J J_1 J_2 J_3 J_4	
28. Current sensitivity of a galvanometer:	
It is defined as the deflection produced per unit current flowing through it.	
(or) $I_S = \frac{\theta}{L} = \frac{NAB}{K} = \frac{1}{C}$	1
The current sensitivity of a galvanometer can be increased:	
by increasing → the number of turns (N)	
 the magnetic induction (B) 	2
\blacktriangleright the area of the coil (A)	_
by decreasing the couple per unit twist of the suspension wire (K). 29. Given: P = 50mW = 50X10 ⁻³ W, $\lambda = 640$ nm = 640X10 ⁻⁹ .	
sol: $n = \frac{P\lambda}{hc}$	1
$=\frac{50\times10^{-3}\times640\times10^{-9}}{6.626\times10^{-34}\times3\times10^8}$	1
= 1.61×10^{17} per second. (without unit Reduce ¹ / ₂ mark) 1
30. Induction of a solenoid:	
 Consider a long solenoid of length <i>l</i> and cross-sectional area <i>A</i>. Let <i>n</i> 	r
be the number of turns per unit length (or turn density) of the	1/2
solenoid.	72
• When an electric current is passed through the solenoid, a magnetic	
field is produced by it which is almost uniform and is directed along the axis of the solenoid as shown in Figure.	
 The magnetic field at any point inside the solenoid is given by 	
$B = \mu_{\circ} n i$	
	1/2

		www.Padasalai.Net	www.Trb Tnpsc.com	
$\Phi_{B} = \int_{A} \overrightarrow{B.dA} = BA\cos\theta = BA \operatorname{since} \theta = 0^{\circ}$ $= (\mu_{0}ni)A$			1/2	
		(the total number of	ux linkage of the solenoid with N turns turns N is given by $N = n l$ is $(nl)(\mu_0 ni) A$	
		-	$(\mu_o n^2 A l) i$	17
			$\Phi_B = Li$	1/2
	If t	he solenoid is filled with a dielect	$= \mu_{\circ} n^{2} A l$ ric medium of relative permeability, then $L = \mu_{\circ} \mu_{r} n^{2} A l$	1
31.	Differ	ences between interference and o	diffraction:	
	S.No.	Interference	Diffraction	
	1	Equally spaced bright and dark fringes	Central bright is double the size of other fringes	0
	2	Equal intensity for all bright fringes	Intensity falls rapidly for higher order fringes	3
	3	Large number of fringes are obtained	Less number of fringes are obtained	
32.		law from Coulomb's law: can calculate the totalelectric flux	through the closed surface of the sphere	
	T on the		e is directed radially outward at all points the direction of the area element \overrightarrow{dA} is along	1/2
	$\Phi_E = \oint E dA \qquad \text{since } \cos 0^0 = 1$ <i>E</i> is uniform on the surface of the sphere,			
	$\Phi_E =$	$= E \oint dA$		
	Subs	tituting for $\oint dA = 4\pi r^2$ and		
	$E = \frac{1}{4\pi}$	$\frac{1}{\pi\varepsilon_0}\frac{Q}{r^2}$	(upto)	1
	$\Phi_E =$	$=\frac{1}{4\pi\varepsilon_{\circ}}\frac{Q}{r^{2}}\times 4\pi r^{2}=4\pi\frac{1}{4\pi\varepsilon_{\circ}}Q$		

	$\Phi_{E} = \frac{Q}{\varepsilon_{C}}$ www.Padasalai.Net www.Trb Tnpsc.com	1/2
	This equation is called as Gauss' law.	
	• Gauss's law states that if a charge Q is enclosed by an arbitrary	
	closed surface, then the total electric flux Φ_E through the closed	
	surface is $\frac{1}{\varepsilon_0}$ times the net charge enclosed by the surface.	1
	$\Phi_{E} = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{encl}}{\varepsilon_{o}}$	
	where Q_{encl} denotes the charges within the closed surface.	
33.	Given: $E_g = 1.875 \text{ eV}$, $h = 6.6X10^{-34} \text{Js.}$ sol: $\lambda = \frac{hc}{E_g}$ $= \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.875 \times 1.6 \times 10^{-19}}$ = 660 nm \clubsuit Red colour light.	1 1/2 1/2 1
	PART – IV	
34.	Simple microscope:	
a)	 A simple microscope is a single magnifying (convex) lens of small focal lengthwhich must produce an erect, magnified and virtual image of the object. The object must be placed within the focal length f (between the points F and P) on one side of the lens and viewed through the other side of it. The magnified and viewed through the other side of it. 	
	nearest point where an eye can clearly see is called the near point and the farthest point up to which an eye can clearly see is called the far point. For a healthy eye, the distance of the near point is 25 cm, which is denoted as D and the far point should be at infinity.	1
	 Near point focusing The eye is least strained when image is formed at near point, i.e. 25 cm. The near point is also called as <i>least distance of distinct vision</i>. This is shown in Figure . The object distance <i>u</i> should be less than <i>f</i>. The image distance is the near point <i>D</i>. The magnification <i>m</i> of this lens is given by the equation m = ^v/_u since (v = -D u = -u,) 	
	(or) $m = \frac{D}{u}$ $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$ in	1⁄2
L		

θi

l**←**f

QOi

(b) with aided eye

Eye focused

at infinity

Normal focusing

•

v = -D

- object $\left(m=\frac{h'}{h}\right)$
- The *angular magnification* is defined as the ratio of angle θ_i subtended by the image with aided eye to the angle θ_0 subtended by the object with unaided eye. 0

$$m = \frac{\sigma_i}{\theta_0}$$

$$h \underbrace{\theta_0}_{\text{(a) with unaided eye}}$$

For unaided eye shown in Figure

$$\tan \theta_0 \approx \theta_0 = \frac{h}{D}$$

For aided eye shown in Figure

$$\tan \theta_i \approx \theta_i = \frac{h}{f}$$

The angular magnification is,

$$m = \frac{\theta_i}{\theta_0} = \frac{h/f}{h/L}$$
$$m = \frac{D}{f}$$

1/2

1

1/2

1/2

1/2

1/2

Meter bridge:
(OR)
(D)Padasatai Net
The meter bridge is another form of Wheatstone's bridge. It consists of a
uniform maganin wire AB of one meter length.34.
(OR)
(b)This wire is stretched along a meter scale on a wooden board between two
copper strips C and D.
Between these two copper strips another copper strip E is mounted to
enclose two gaps G₁ and G₂ as shown in Figure.
A nunknown resistance P is connected in G₁ and a standard resistance Q is
connected in G₂.1• An unknown resistance P is connected to the terminal E on the central
copper strip through a galvanometer (G) and a high resistance (HR).
• The exact position of jockey on the wire can be read on the scale.1• A Lechlanche cell and a key (K) are connected across the ends of the bridge
wire.1• The position of lockey on the wire is adjusted so that the galvanometer
shows zero deflection. Let the point be J.1• The lengths AJ and JB of the bridge wire now replace the resistance R and
S of the Wheatstone's bridge. Then
$$\frac{P}{Q} = \frac{R}{S} = \frac{rAJ}{r.B}$$
1/2 $\frac{P}{Q} = \frac{R}{J_{1}} = \frac{L}{L_{2}}$
 $P = Q_{\frac{L}{L_{2}}}^{\frac{L}{L_{2}}}$
(upto)1• The bridge wire is soldered at the ends of the copper strips. Due to
imperfect contact, some resistance might be introduced at the
contact. These are called end resistances.1/2• The specific resistance or resistivity ρ can be calculated using the
relation
Resistance $= p\frac{L}{A}$ 1/2

$\frac{\left \frac{\mu_{h}I}{4\pi}\int \frac{d}{r^{2}}\sin\phi\hat{k}\right }{\left \frac{R}{R^{2}}+z^{2}\right ^{\frac{1}{2}}} \text{ and } r^{2}=R^{2}+z^{2}$ $\frac{R}{\left(R^{2}+z^{2}\right)^{\frac{1}{2}}} \text{ and } r^{2}=R^{2}+z^{2}$ $\frac{R}{\left(R^{2}+z^{2}\right)^{\frac{1}{2}}} \hat{k}\left(\int dl\right)$ (upto) (upto) $\frac{R}{B}=\frac{\mu_{0}I}{4\pi}\frac{R}{\left(R^{2}+z^{2}\right)^{\frac{1}{2}}}\hat{k}\left(\int dl\right)$ (upto) (upto) $\frac{R}{B}=\frac{\mu_{0}I}{2}\frac{R^{2}}{\left(R^{2}+z^{2}\right)^{\frac{1}{2}}}\hat{k}$ If the circular coil contains N turns, then the magnetic field is $\frac{R}{B}=\frac{\mu_{0}NI}{2R}\frac{R^{2}}{\left(R^{2}+z^{2}\right)^{\frac{1}{2}}}\hat{k}$ The magnetic field at the centre of the coil is $\frac{R}{B}=\frac{\mu_{0}NI}{2R}\hat{k} \text{since } z=0$ 1 35. Angle of deviation: (OR) b) Consider a prism ABC, the faces AB and AC are polished and the face BC is rough. It he angles of incidence and refraction at the first face AB are i ₁ and ₁ . The angles of incidence and refraction at the second face AC is r ₂ and i ₂ respectively. RS is the ray emerging from the second face. Angle i ₂ is also called angle of emergence.		www.Padasalai.Net $\vec{B} = \int d\vec{B} = \int dB \sin \phi \hat{k}$ www.Trb Tnpsc.com	
• If the circular coil contains N turns, then the magnetic field is $\vec{B} = \frac{\mu_0 NI}{2} \frac{R^2}{(R^2 + z^2)^{3/2}} \hat{k}$ • The magnetic field at the centre of the coil is $\vec{B} = \frac{\mu_0 NI}{2R} \hat{k} \text{since } z = 0$ 1 35. Angle of deviation: (OR) b) • Consider a prism ABC. the faces AB and AC are polished and the face BC is rough. • Let light ray PQ is incident on one of the refracting faces of the prism. • The angles of incidence and refraction at the first face AB are i_1 and r_1. • The path of the light inside the prism is QR. • The angle of incidence and refraction at the second face AC is r_2 and i_2 respectively. • RS is the ray emerging from the second face. • Angle i_2 is also called angle of emergence.		$\vec{B} = \int d\vec{B} = \int dB \sin \phi \hat{k}$ $= \frac{\mu_0 I}{4\pi} \int \frac{dl}{r^2} \sin \phi \hat{k}$ From ΔOCP , $\sin \phi = \frac{R}{(R^2 + z^2)^{\frac{1}{2}}} \text{ and } r^2 = R^2 + z^2$ $\vec{B} = \frac{\mu_0 I}{4\pi} \frac{R}{(R^2 + z^2)^{\frac{3}{2}}} \hat{k} \left(\int dl\right)$ (upto) • If we integrate the line element from 0 to $2\pi R$, we get the net magnetic field \vec{B} at point P due to the current-carrying circular loop.	1
(1 + 2) • The magnetic field at the centre of the coil is $\vec{B} = \frac{\mu_0 NI}{2R} \hat{k}$ since $z = 0$ 1 35. Angle of deviation: (OR) • Consider a prism ABC. the faces AB and AC are polished and the face BC is rough. • Let light ray PQ is incident on one of the refracting faces of the prism. • The angles of incidence and refraction at the first face AB are i_1 and r_1 . • The path of the light inside the prism is QR. • The angle of incidence and refraction at the second face AC is r_2 and i_2 respectively. • RS is the ray emerging from the second face. • Angle i_2 is also called angle of emergence.		• If the circular coil contains N turns, then the magnetic field is	1/2
 (OR) Consider a prism ABC. the faces AB and AC are polished and the face BC is rough. Let light ray PQ is incident on one of the refracting faces of the prism. The angles of incidence and refraction at the first face AB are i₁ and r₁. The path of the light inside the prism is QR. The angle of incidence and refraction at the second face AC is r₂ and i₂ 1/₂ respectively. RS is the ray emerging from the second face. Angle i₂ is also called angle of emergence. 		• The magnetic field at the centre of the coil is	1
 The angle between the direction of the incident ray PQ and the emergent ray RS is called the angle of deviation d. The two normals drawn at the point of incidence Q and emergence R are QN and RN. They meet at point N. The incident ray and the emergent ray meet at a point M. 	(OR)	 Consider a prism ABC. the faces AB and AC are polished and the face BC is rough. Let light ray PQ is incident on one of the refracting faces of the prism. The angles of incidence and refraction at the first face AB are i₁ and r₁. The path of the light inside the prism is QR. The angle of incidence and refraction at the second face AC is r₂ and i₂ respectively. RS is the ray emerging from the second face. Angle i₂ is also called angle of emergence. The angle between the direction of the incident ray PQ and the emergent ray RS is called the angle of deviation d. The two normals drawn at the point of incidence Q and emergence R are QN and RN. They meet at point N. 	1⁄2

www.Padasalai.Net www.Trb Tnpsc.com	
www.Padasalai.Net www.Trb Tnpsc.com A^A M_{d} M	1/2
angle $\angle QRM = d_2 = i_2 - r_2$	
• Total angle of deviation d produced is,	
$d = d_1 + d_2$	
$d = (i_1 - r_1) + (i_2 - r_2)$	
$d = (i_1 + i_2) - (r_1 + r_2) $ (upto)) 1
• In the quadrilateral AQNR, two of the angles (at the vertices Q and R are right angles.	()
Therefore, the sum of the other angles of the quadrilateral is 180°.	
$\angle A + \angle QNR = 180^{\circ}$	
From the triangle $\triangle QNR$,	
$r_1 + r_2 + \angle QNR = 180^{\circ}$	
Comparing these two equations	
$r_1 + r_2 = A$	
• Substituting this equation for angle of deviation,	
$d = i_1 + i_2 - A \tag{upto}$) 1
Angle of minimum deviation:	
The minimum value of angle of deviation	1/2
At minimum deviation $(d=D)$,	
$i_1 = i_2 = I$ and $r_1 = r_2 = r$	1/
$D = i_1 + i_2 - A = 2i - A$ (or) $i = \frac{(A+D)}{2}$	1/2
$r_1 + r_2 = A$ = 2r = A (or) $r = \frac{A}{2}$	1⁄2
$n = \frac{\sin i}{\sin r} \implies n = \frac{\sin \frac{(A+D)}{2}}{\sin \frac{A}{2}}$	1/2
SHRI VIDHYABHARATHIMAMPIR.SEC.SCHOOLSSAKKARAMPADANAM-996551s311272t@gmail.c	com 11

38.	www.Padasalai.Net www.Trb Tnpsc.com	
(OR)	Nuclear reactor:	
(b)	Nuclear reactor is a system in which the nuclear fission takes place in a	
	self-sustained controlled manner and the energy produced is used either for	2
	research purpose or for power generation.	
	Moderator:	
	• The moderator is a material used to convert fast neutrons into slow neutrons .	1
	Example:	1
	• water, heavy water (D ₂ O) and graphite as moderators.	
	Control rods:	
	• The control rods are used to adjust the reaction rate. During each fission, on an average 2.5 neutrons are emitted and in order to have the controlled chain reactions, only one neutron is allowed to cause another fission and the remaining neutrons are absorbed by the control rods.	1
	Example:	
	• Usually cadmium or boron acts as control rod material.	
	Cooling system:	
	• The cooling system removes the heat generated in the reactor core.	
	Example:	1
	• Ordinary water, heavy water and liquid sodium are used as coolant	
	• since they have very high specific heat capacity and have large boiling	
	point under high pressure.	
	point under ingn pressure.	

Department of Physics SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL SAKKARAMPALAYAM , AGARAM (PO) ELACHIPALAYAM TIRUCHENGODE(TK), NAMAKKAL (DT) PIN-637202

SHRI VIDHYABHARATHIMATHIR SEC. SCHOOLS SAKKARAMPADAHAM 996553811727et@gmail.com

www.Padasalai.Net

www.Trb Tnpsc.com

RAGUL S INDUSTAN ENGINEERING COLLEGE, COVAI

SRI HARINI P KARPAGAM COLLEGE OF ENGINEERING, COIMBATORE

BE(EEE)

DHARSHINI S

KARPAGAM COLLEGE OF

ENGINEERING, COIMBATORE

ENGINEERING COVAI

JEEVITHA G T VIVEKANANDA COLLEGE OF ENGINEERING ELAYAMPALAYAM

HARSHINI B KARPAGAM COLLEGE OF ENGINEERING, COIMBATORE

VARSHAC KALAINAR KARUNANITHI INSTITUTE OF TECHNOLOG. COIMBATORE

SHARVESH B **VSB ENGINEERING COLLEGE COVAI**

KANIKA S VIVEKANANDA COLLEGE OF ENGINEERING COLLEGE ELAYAMPALAYAM

KANISHKA M P SNS ENGINEERING COLLEGE, COIMBATORE

KANISHKA L KUMARAGURU COLLEGE OF ENGINEERING, COIMBATORE

SUJITH S INDUSTAN COLLEGE OF ENGINEERING, COVAI

SUBHASHREE HARINI N VELLALAR ENGINEERING COLLEGE, THINDAL

MADHU PRIYA P NGP COLLEGE, COIMBATORE

SONIKA M KONGU ENGINEERING COLLEGE, PERUNDURAI

AKSHAYA A AVINASILINGAM,

YUVANSHANKAR S KONGU ENGINEERING COLLEGE, PERUNDURAI

PRAGADHI C MANGAIKABASI ENGINEERING COLLEGE, MADURAL

BE(CS)

MONIKA S

SRM COLLEGE OF

ENGINEERING, TRICHY

SUNITHA B

KARPAKAM INSTITUTE

OF (COIMBATORE)

BHUMIKA S

SALEM KARUPPOOR

ENGINEERING

POOJA M KPR ENGINEERING COLLEGE, COIMBATORE

ELAKKIYA R PERUNDURAI KONGU ENGINEERING COLLEGE

CHARUMATHI A K JJ COLLEGE OF ENGINEERING, TRICHY

NITHIKA H KUMARAGURU COLLEGE OF ENGINEERING, COIMBATORE

SHANCHITHA M

M.KUMARASAMY COLLEGE

OF ENGINEERING, KARUR

SINDHUJA R KONGU ENGINEERING COLLEGE, PERUNDURAL

B Tech(IT) **VARSHINI P** KONGU ENGINEERING

BE(CSE)

COIMBATORE

B Pharm

SAKTHIKUMARAN S

COUNCELLING

D Pharm SUBASIVAVELAN K SALEM VINAYAGA MISSION

MOHITH K KAVITHA'S LAW COLLEGE, CHENNAI

DEEPAKRAJ R KERALA. THIRUVANANDHAPURAM

BANGALORE CHRIST UNIVERSITY

VIDHYA K NANDHA COLLEGE PERUNDURAI

THARUN A KALASALINGAM UNIVERSITY, VIRUTHUNAGAR

21

SHRI VIDHYABHARATHIMAMHR.SEC.SCHOOLSSAKKARAMPADAHAM 996553812727et@gmail.com

2024 - 2025 ஆம் கல்வியாண்டிற்கான KG முதல் XII வரை அட்மிஷன் நடைபெறுகிறது

www.shrividhyabharathi.com

បតាំតាាយាឆាំ ៩៣បំបល់ទាស់សតាំ:

* FOUNDATION, NEET, JEE, UPSC ,OLYMPIAD (For VI to XII)

www.Padasalai.Net

களவுகள் மையியட வேண்டும். சக்கராம்பாளையும், எலச்சிபாளையும், கிர

- 🌣 குழந்தைகளுக்கு விளையாட்டு மூலம் கற்றல் கற்பித்தல் (Play Way Method)
- Montessori தரத்தில் கற்றல் கற்பித்தல் நடைபெறுகிறது.
- * KG குழந்தைகளுக்கு தரமாகவும், சுவையாகவும் மதிய உணவு வழங்கப்படுகிறது.
- * KG II Std வரை CBSE கற்பித்தல் முறை பின்பற்றப்படுகிறது.
- * சிறந்த அழகிய கையெழுத்துப்பயிற்சி (தமிழ், ஆங்கிலம் மற்றும் ஹிந்தி) அளிக்கப்படுகிறது.
- 🛠 சிறப்பாக ஆங்கிலத்தில் பேசும் பயிற்சி (Communicative English) அளிக்கப்படுகிறது.
- ጳ ஒவ்வொரு மாணவர் மீதும் கனிவான தனிகவனம் செலுத்தப்படுகிறது.
- ጳ கதை, கவிதை, கட்டுரை, ஓவியம் மற்றும் பேச்சாற்றலுக்கான சிறப்பு பயிற்சி அளிக்கப்படுகிறது
- ጳ தமிழ், ஆங்கிலம், ஹிந்தி வாசித்தல் திறனை மேம்படுத்தும் வகையில் பயிற்சிகள் அளிக்கப்படுகிறது.
- ጳ ஹிந்தி தேர்வுகளுக்கு (ப்ராத்மிக், மத்யமா, ராஷட்ரபாஷா) தேர்வு மையமாக செயல்படுகிறது.
- 🌣 ஒவ்வொரு வார இறுதீயிலும் புரிதல் தேர்வு (Understanding Test) நடைபெறுகிறது.
- 🛠 பாடவாரியாக Club அமைத்து Activity நடைபெறுகிறது .
- * சிலம்பம், வில்வித்தை, கராத்தே, பரதம், மேற்கத்திய நடனம், துப்பாக்கிச்சுடுதல் ஆகிய Extracurricular Activity வகுப்புகள் சிறந்த முறையில் நடைபெறுகிறது.
- * Education Oriented Field Trip அழைத்துச் செல்லப்படுகிறது.
- * Computer பயிற்சி சிறந்த முறையில் அளிக்கப்டுகிறது.
- 🔆 <mark>மன அமைதி ம</mark>ற்றும் ஞாபக சக்தியை மேம்படுத்துவதற்காக யோகா வகுப்புகள் நடத்தப்டுகிறது.
- 🔆 <mark>மாணவர்கள் Ches</mark>s ல் சிறந்து விளங்க Chess வகுப்புகள் சிறந்த முறையில் நடைபெறுக<mark>ிறது</mark>.
- 🔆 ஒவ்வொரு பருவத் தேர்வு இறுதியிலும் School Level Achievement Survey Test நடத்தப்படுகிறது
- 🔆 மாணவர்களின் உடல் திறனை மேம்படுத்தும் வகையில் விளையாட்டுப் பயிற்சிகள் 🦲
 - (Indoor And Outdoor Games) அளிக்கப்படுகிறது.

எசல்: 99655 31727, 99655 35967, 94422 88402, 80726 68664

ிகால்காப்பியம் நிலம் கீ நீர் வசி விசும்போடு ஐந்நம் கலந்த யயக்கம் உலகம் ஆகவின் இருநினை ஐம்பால் இயல்லிதலி வாழஅறை "திரிவு இல் சொல்லிலாடு நழாஅல் வேண்டும்

www.Trb Tnpsc.com

சங்கோடு (வ), நாமக்கல் (மா) <u>–</u> 637,20

Email: vidhyabharathi!123@gmail.com

மெடீரிக் மேல்நிலைப்பள்ளி

Biopex noun Proper noun, is. The name of the particular person or place. Example Hari, Abbor, Stephen, Kayal, Chemme Tamit Nadu, India.

डॉ. उनब्दुल कलाम विद्या देती नयी कल्पना , कल्पना लाती नयी विचार । नये विचारों से मिले ज्ञान, ज्ञान बनाए आपको महान । । - डॉ. जब्दुल कलाम.

