PUBLIC EXAMINATION - MARCH- 2024 TENTATIVE ANSWER KEY

Q.N	PART - I		MARKS
	TYPE - A	TYPE - B	
1.	(a) Photovoltaic action	(c) 1.1 eV	1
2.	(c) $900 \mathrm{Vm}^{-1}$	(c) 480 W	1
3.	(c) 480 W	(a) $\frac{Q}{\sqrt{2}}$	1
4.	(a) 3	(d) $3750 \AA$	1
5.	(c) polarisation	(d) $6 \mu \mathrm{~F}$	1
6.	(a) $\frac{Q}{\sqrt{2}}$	(a) Photovoltaic action	1
7.	(d) $\frac{3}{\pi} \mathrm{P}_{\mathrm{m}}$	(d) its wavelength	1
8.	(d) its wavelength	(c) $900 \mathrm{Vm}^{-1}$	1
9.	(b) $\frac{\pi}{4}$	(d) $\frac{3}{\pi} \mathrm{P}_{\mathrm{m}}$	1
10.	(a) more than before	(b) $\frac{\pi}{4}$	1
11.	(d) $6 \mu \mathrm{~F}$	(a) more than before	1
12.	(d) $3750 \AA$	(a) 3	1
13.	(a) plane polarised	(c) polarisation	1
14.	(a) Albert Einstein	(a) plane polarised	1
15.	(c) 1.1 eV	(a) Albert Einstein	1
	PART - II		
16.	Hysteresis: The phenomenon of la field is called hysteresis.	etic induction behind the magnetising 'lagging behind'.	2
17.	Malus' law: When a beam of plane pol light transmitted of inten of the cosine of the angle θ $I=I_{0} \cos ^{2} \theta$	intensity I_{0} is incident on an analyser, the analyser varies directly as the square ansmission axis of polariser and analyser (Formula only award 1 mark)	2

18.	Electrostatic. .p.tertialiai.Net www.Trb Tnpsc.com The electrostatic potential at a point is equal to the work done by an external force to bring a unit positive charge with constant velocity from infinity to the point \mathbf{P} in the region of the external electric field \vec{E}. $\mathrm{V}_{\mathrm{p}}=-\int_{\infty}^{P} \vec{E} \cdot \overrightarrow{\boldsymbol{d r}}$ (or) $\mathbf{V}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}$ (Formula only award 1 mark)	2
19.	Given: $\begin{aligned} d \Phi_{B} & =4 \mathrm{mWb}=4 \times 10^{-3} \mathrm{~Wb}, \mathrm{dt}=0.4 \mathrm{~s} \\ \text { sol: } \varepsilon & =\frac{d \phi_{B}}{d t} \\ & =\frac{4 \times 10^{-3}}{0.4} \end{aligned}$ $=10 \times 10^{-3}=10 \mathrm{mV} . \quad \text { (without unit Reduce } 1 / 2 \text { mark) }$	$1 / 2$ $1 / 2$ 1
20.	Applications Seebeck effect > Seebeck effect is used in thermoelectric generators (Seebeckgenerators). These thermoelectric generators are used in power plants to convert waste heat into electricity. > This effect is utilized in automobiles as automotive thermoelectric generators for increasing fuel efficiency. $>$ Seebeck effect is used in thermocouples and thermopiles to measure the temperature difference between the two objects. (Any 2 points 2X1=2)	2
21.	Given: $\mathrm{T}_{\frac{1}{2}}=5.01$ days $=5.01 \mathrm{X} 24 \mathrm{X} 60 \mathrm{X} 60 \mathrm{~s}$ $\begin{aligned} \text { sol: } \lambda & =\frac{0.6931}{T_{\frac{1}{2}}} \\ & =\frac{0.6931}{5.01 \times 24 \times 60 \times 60} \end{aligned}$ $=1.6 \times 10^{-6} \mathrm{~s}^{-1} . \quad \quad\left(\text { without unit Reduce }{ }^{1 / 2}\right. \text { mark) }$	$1 / 2$ $1 / 2$ 1
22.	Electromagnetic waves: An electromagnetic wave is radiated by an accelerated charge which propagates through space as coupled electric and magnetic fields, oscillating perpendicular to each other and to the direction of propagation of the wave.	2
23.	Biasing: Biasing means providing external energy to charge carriers to overcome the barrier potential and make them move in a particular direction. Two types of biasing: i) Forward bias ii) Reverse bias	1
24.	$\begin{aligned} & \text { Given: } \mathrm{f}=150 \mathrm{~cm}=150 \times 10^{-2} \mathrm{~m} . \\ & \begin{aligned} & \text { sol: } \mathrm{P}=\frac{1}{f} \\ &=\frac{1}{150 \times 10^{-2}}=\frac{1}{1.5 \mathrm{~m}} \\ &=0.67 \mathrm{D} \\ & \text { (without unit Reduce } 1 / 2 \text { mark) } \end{aligned} \end{aligned}$	$1 / 2$ $1 / 2$ 1

	www.Padasalai.Net PART - III www.Trb Tnpsc.com	
25.	$\beta+$ decay Process: - In $\beta+$ decay, the atomic number is decreased by one and the mass number remains the same. ${ }_{Z}^{A} X \rightarrow{ }_{Z-1}^{A} Y+e^{+}+v$ for each $\beta+$ decay, a proton in the nucleus of X is converted into a neutron by emitting a positron ($e+$) and a neutrino. $\left.p \rightarrow n+e^{+}+v \quad\right\}$ Example: ${ }_{11}^{22} \mathrm{Na} \rightarrow{ }_{10}^{22} \mathrm{Ne}+e^{+}+\mathrm{v}$	$1 / 2$ 1 1 $1 / 2$
26.	$\begin{aligned} & \text { Given: } \mathrm{A}=0.5 \mathrm{~mm}^{2}=0.5 \mathrm{X10}^{-6} \mathrm{~m}^{2}, \mathrm{I}=0.2 \mathrm{~A}, \mathrm{n}=8.4 \mathrm{X} 10^{28} \mathrm{~m}^{-3} . \\ & \text { sol: } \begin{aligned} \mathrm{Vd} & =\frac{I}{n e A} \\ & =\frac{0.2}{8.4 \times 10^{28} \times 1.6 \times 10^{-19} \times 0.5 \times 10^{-6}} \\ & =0.03 \times 10^{-3} \mathrm{~m} / \mathrm{s}(\text { or }) \mathrm{ms}^{-1} \quad \text { (without unit Reduce } 1 / 2 \text { mark) } \end{aligned} \end{aligned}$	1 1 1
27.	Effective focal length for lenses in contact: * Let us consider two lenses 1and 2 of focal length f_{1} and f_{2} are placed coaxially inContact with each other so that they have a common principal axis. * For an object placed at O beyond the focus of the first lens 1 on the principal axis, an image is formed by it at I^{\prime}. * This image I^{\prime} acts as an object for the second lens 2 and the final image is formed at I For the lens (1), the object distance $P O$ is u and the image distance $P I^{\prime}$ is v^{\prime}. For the lens (2), the object distance $P I^{\prime}$ is v^{\prime} and the image distance $P I$ is v. Writing the lens equation for first lens 1 , $\left.\begin{array}{l} \frac{1}{v^{\prime}}-\frac{1}{u}=\frac{1}{f_{1}} \\ \text { ens equation for second lens 2, } \\ \frac{1}{v}-\frac{1}{v^{\prime}}=\frac{1}{f_{2}} \end{array}\right\}$	$1 / 2$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{gather*}
\begin{array}{c}
\frac{\text { www.PadasalailNet }}{v} \frac{1}{u}=\frac{1}{f_{1}}+\frac{1}{f_{2}} . \\
\text { (or) } \\
\frac{1}{v}-\frac{1}{u}=\frac{1}{f}, \ldots \ldots .
\end{array} . \tag{1}
\end{gather*}
\] \\
www.Trb Tnpsc.com \\
Comparing equations (1) and (2)
\[
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}
\] \\
(or) \\
equation can be extended for any number of lenses in contact as,
\[
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}+\frac{1}{f_{3}}+\frac{1}{f_{4}}+\ldots \ldots \ldots
\]
\end{tabular} \& \(1 / 2\)

$1 / 2$

\hline 28. \& | Current sensitivity of a galvanometer: |
| :--- |
| It is defined as the deflection produced per unit current flowing through it. |
| (or) $\mathrm{I}_{\mathrm{S}}=\frac{\theta}{I}=\frac{N A B}{K}=\frac{1}{G}$ |
| The current sensitivity of a galvanometer can be increased: |
| by increasing |
| $>$ the number of turns (N) |
| $>$ the magnetic induction (B) |
| $>$ the area of the coil (A) |
| $>$ by decreasing the couple per unit twist of the suspension wire (K). | \& 1

2

\hline 29. \& \& 1
1
1

\hline 30. \& | Induction of a solenoid: |
| :--- |
| - Consider a long solenoid of length l and cross-sectional area A. Let n be the number of turns per unit length (or turn density) of the solenoid. |
| - When an electric current is passed through the solenoid, a magnetic field is produced by it which is almost uniform and is directed along the axis of the solenoid as shown in Figure. |
| - The magnetic field at any point inside the solenoid is given by $B=\mu_{\mathrm{o}} n i$ | \& $1 / 2$

$1 / 2$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\Phi_{B} \& =\int_{A} \vec{B} \cdot d \vec{A}=B A \cos \theta=B A \text { since } \theta=0^{\circ} \\
\& =\left(\mu_{0} n i\right) A
\end{aligned}
\] \\
The total magnetic flux linked or flux linkage of the solenoid with \(N\) turns (the total number of turns \(N\) is given by \(N=n l\)) is
\[
\begin{gathered}
N \Phi_{B}=(n l)\left(\mu_{0} n i\right) \mathrm{A} \\
N \Phi_{B}=\left(\mu_{\mathrm{o}} n^{2} A l\right) i \\
N \Phi_{B}=L i
\end{gathered}
\] \\
- Comparing equations
\[
L=\mu_{0} n^{2} A l
\] \\
If the solenoid is filled with a dielectric medium of relative permeability, then
\[
L=\mu n^{2} A l \text { or } \quad L=\mu_{0} \mu_{r} n^{2} A l
\]
\end{tabular} \& \(1 / 2\)

$11 / 2$

1

\hline 31. \& Differences between interference and diffraction: \& 3

\hline 32. \& | Gauss law from Coulomb's law: |
| :--- |
| We can calculate the totalelectric flux through the closed surface of the sphere $\Phi_{E}=\oint \vec{E} \cdot d \vec{A}=\oint E d A \cos \theta$ |
| The electric field of the point charge is directed radially outward at all points on the surface of the sphere. Therefore, the direction of the area element $\overrightarrow{d A}$ is along the electric field \vec{E} and $\theta=0^{0}$. $\Phi_{E}=\oint E d A \quad \text { since } \cos 0^{\circ}=1$ |
| E is uniform on the surface of the sphere, $\Phi_{E}=E \oint d A$ |
| Substituting for $\oint d A=4 \pi r^{2}$ and $\begin{align*} & E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}} \tag{upto}\\ & \Phi_{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}} \times 4 \pi r^{2}=4 \pi \frac{1}{4 \pi \varepsilon_{0}} Q \end{align*}$ | \& 1/2

\hline
\end{tabular}

	$\Phi_{E}=\frac{Q}{\varepsilon_{0}} \quad$ www.Padasalai.Net www.Trb Tnpsc.com This equation is called as Gauss' law. - Gauss's law states that if a charge \mathbf{Q} is enclosed by an arbitrary closed surface, then the total electric flux Φ_{E} through the closed surface is $\frac{1}{\varepsilon_{0}}$ times the net charge enclosed by the surface. $\Phi_{E}=\oint \vec{E} \cdot d \vec{A}=\frac{Q_{\text {end }}}{\varepsilon_{0}}$ where $Q_{\text {encl }}$ denotes the charges within the closed surface.	1/2
33.	$\begin{aligned} & \text { Given: } \mathrm{E}_{\mathrm{g}}=1.875 \mathrm{eV}, \mathrm{~h}=6.6 \mathrm{X} 10^{-34} \mathrm{~J} \mathrm{~s} . \\ & \text { sol: } \quad \lambda=\frac{h c}{E_{g}} \\ & \\ & =\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{1.875 \times 1.6 \times 10^{-19}} \\ & \\ & \\ & =660 \mathrm{~nm} \\ & \quad \quad \text { Red colour light. } \end{aligned}$	$\begin{gathered} 1 \\ 1 / 2 \\ 1 / 2 \\ 1 \end{gathered}$
	PART - IV	
34. a)	Simple microscope: - A simple microscope is a single magnifying (convex) lens of small focal lengthwhich must produce an erect, magnified and virtual image of the object. - The object must be placed within the focal length f (between the points F and P) on one side of the lens and viewed through the other side of it. The nearest point where an eye can clearly see is called the near point and the farthest point up to which an eye can clearly see is called the far point. For a healthy eye, the distance of the near point is 25 cm , which is denoted as D and the far point should be at infinity. Near point focusing - The eye is least strained when image is formed at near point, i.e. 25 cm . The near point is also called as least distance of distinct vision. This is shown in Figure. - The object distance u should be less than f. The image distance is the near point D. The magnification m of this lens is given by the equation $m=\frac{v}{u}$ $\text { since }(v=-D \quad u=-u,)$ (or) $\begin{aligned} & \text { (or) } m=\frac{D}{u} \\ & \frac{1}{v}-\frac{1}{u}=\frac{1}{f} \text { in } \end{aligned}$	1

$\mathrm{v}=-\mathrm{D}$

$$
m=1+\frac{D}{f}
$$

Normal focusing

- The eye is most relaxed when the image is formed at infinity. The focusing is called normal focusing when the image is formed at infinity. To find the magnification m, if we take theratio of the height of image to the height of object

$$
\left(m=\frac{h^{\prime}}{h}\right)
$$

- The angular magnification is defined as the ratio of angle θ_{i} subtended by the image with aided eye to the angle θ_{0} subtended by the object with unaided eye.

$$
m=\frac{\theta_{i}}{\theta_{0}}
$$

(a) with unaided eye

$$
\begin{aligned}
m & =\frac{\theta_{i}}{\theta_{0}}=\frac{h / f}{h / D} \\
m & =\frac{D}{f}
\end{aligned}
$$

- The meter bridge is another form of Wheatstone's bridge. It consists of a uniform manganin wire $A B$ of one meter length.
- This wire is stretched along a meter scale on a wooden board between two copper strips C and D.
- Between these two copper strips another copper strip E is mounted to enclose two gaps G_{1} and G_{2} as shown in Figure.
- An unknown resistance P is connected in G_{1} and a standard resistance Q is connected in G_{2}.
- A jockey (conducting wire) is connected to the terminal E on the central copper strip through a galvanometer (G) and a high resistance (HR).
- The exact position of jockey on the wire can be read on the scale.
- A Lechlanche cell and a key (K) are connected across the ends of the bridge wire.

- The bridge wire is soldered at the ends of the copper strips. Due to imperfect contact, some resistance might be introduced at the contact.These are called end resistances.
- This error can be eliminated, if another set of readings are taken with P and Q interchanged and the average value of P is found.
- To find the specific resistance of the material of the wire in the coil P, the radius aand length l of the wire is measured.
- The specific resistance or resistivity ρ can be calculated using the relation

$$
\text { Resistance }=\rho \frac{l}{A}
$$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
www.Padasalai.Net
\[
\begin{gathered}
\rho=\text { Resistance } \times \frac{A}{l} \\
\rho=P \frac{\pi a^{2}}{l}
\end{gathered}
\] \\
www.Trb Tnpsc.com \\
(upto)
\end{tabular} \& 1 \\
\hline \begin{tabular}{l}
35. \\
a)
\end{tabular} \& \begin{tabular}{l}
Magnetic field at a point \(P\) on the axis of the circular coil: \\
- Consider a current carrying circular loop of radius R and let I be the current flowing through the wire in the direction as shown in Figure. \\
- The magnetic field at a point P on the axis of the circular coil at a distance \(z\) from its center of the coil O . \\
- It is computed by taking two diametrically opposite line elements of the coil each of length \(\overrightarrow{d l}\) at C and D . Let \(\vec{r}\) be the vector joining the current element (I \(\overrightarrow{d l}\)) at C to the point P . \\
- According to Biot-Savart's law, the magnetic field at P due to the current element \(C\) is
\[
d \vec{B}=\frac{\mu_{\circ}}{4 \pi} \frac{I d \vec{l} \times \hat{r}}{r^{2}}
\] \\
- The magnitude of \(\overrightarrow{d B}\) is
\[
d B=\frac{\mu_{\circ}}{4 \pi} \frac{I d l \sin \theta}{r^{2}}=\frac{\mu_{\circ}}{4 \pi} \frac{I d l}{r^{2}}
\] \\
- where \(\theta\) is the angle between \(\mathrm{I} \overrightarrow{d l}\) and \(\vec{r}\). Here \(\theta=90^{\circ}\). \\
- The direction of \(\overrightarrow{d B}\) is perpendicular to the current element \(\mathrm{I} \overrightarrow{d l}\) and CP. It is therefore along PR perpendicular to CP. \\
- The magnitude of magnetic field at P due to current element at D is the same as that for from the coil. But its direction is along PS \\
- The magnetic field \(\overrightarrow{d B}\) due to each current element is resolved into two components: \(\mathrm{dB} \cos \Phi\) along y direction and \(\mathrm{dB} \sin \Phi\) along z direction. \\
- The horizontal components cancel out while the vertical components along contribute to the net magnetic field \(\vec{B}\) at the point \(P\).
\end{tabular} \& \(1 / 2\)

1
1

1

\hline
\end{tabular}

$$
\begin{aligned}
\vec{B} & =\int d \vec{B}=\int d B \sin \phi \hat{k} \\
& =\frac{\mu_{0} I}{4 \pi} \int \frac{d l}{r^{2}} \sin \phi \hat{k}
\end{aligned}
$$

From $\triangle \mathrm{OCP}$,

$$
\begin{aligned}
& \sin \phi=\frac{R}{\left(R^{2}+z^{2}\right)^{1 / 2}} \text { and } r^{2}=R^{2}+z^{2} \\
& \vec{B}=\frac{\mu_{0} I}{4 \pi} \frac{R}{\left(R^{2}+z^{2}\right)^{3 / 2}} \hat{k}\left(\int d l\right)
\end{aligned}
$$

- If we integrate the line element from 0 to $2 \pi R$, we get the net magnetic field \vec{B} at point P due to the current-carrying circular loop.

$$
\vec{B}=\frac{\mu_{0} I}{2} \frac{R^{2}}{\left(R^{2}+z^{2}\right)^{3 / 2}} \hat{k}
$$

- If the circular coil contains N turns, then the magnetic field is
$\vec{B}=\frac{\mu_{0} N I}{2} \frac{R^{2}}{\left(R^{2}+z^{2}\right)^{3 / 2}} \hat{k}$
- The magnetic field at the centre of the coil is

$$
\vec{B}=\frac{\mu_{0} N I}{2 R} \hat{k} \quad \text { since } z=0
$$

35.

Angle of deviation:

- Consider a prism ABC . the faces AB and AC are polished and the face BC is rough.
- Let light ray PQ is incident on one of the refracting faces of the prism.
- The angles of incidence and refraction at the first face $A B$ are i_{1} and ${ }_{r 1}$.
- The path of the light inside the prism is QR.
- The angle of incidence and refraction at the second face AC is r_{2} and i_{2} respectively.
- RS is the ray emerging from the second face.
- Angle i_{2} is also called angle of emergence.
- The angle between the direction of the incident ray PQ and the emergent ray RS is called the angle of deviation d .
- The two normals drawn at the point of incidence Q and emergence R are QN and RN. They meet at point N.
- The incident ray and the emergent ray meet at a point M.

- The deviation d_{1} at the surface AB is, angle $\angle R Q M=d_{1}=i_{1}-r_{1}$
- The deviation d_{2} at the surface AC is,
angle $\angle Q R M=d_{2}=i_{2}-r_{2}$
- Total angle of deviation d produced is,

$$
\begin{aligned}
& d=d_{1}+d_{2} \\
& d=\left(i_{1}-r_{1}\right)+\left(i_{2}-r_{2}\right) \\
& d=\left(i_{1}+i_{2}\right)-\left(r_{1}+r_{2}\right)
\end{aligned}
$$

- In the quadrilateral AQNR, two of the angles (at the vertices Q and R) are right angles.
Therefore, the sum of the other angles of the quadrilateral is 180°.
$\angle A+\angle Q N R=180^{\circ}$
From the triangle $\triangle Q N R$,

$$
r_{1}+r_{2}+\angle Q N R=180^{\circ}
$$

- Comparing these two equations

$$
r_{1}+r_{2}=A
$$

- Substituting this equation for angle of deviation,

$$
d=i_{1}+i_{2}-A
$$

(upto)

Angle of minimum deviation:

The minimum value of angle of deviation
At minimum deviation ($\mathrm{d}=\mathrm{D}$),

$$
\begin{aligned}
& \mathrm{i}_{1}=\mathrm{i}_{2}=\mathrm{I} \quad \text { and } \mathrm{r}_{1}=\mathrm{r}_{2}=\mathrm{r} \\
& \mathrm{D}=\mathrm{i}_{1}+\mathrm{i}_{2}-\mathrm{A}=2 \mathrm{i}-\mathrm{A} \quad \text { (or) } \mathrm{i}=\frac{(A+D)}{2} \\
& \mathrm{r}_{1}+\mathrm{r}_{2}=\mathrm{A} \quad=2 \mathrm{r}=\mathrm{A} \quad \text { (or) } \mathrm{r}=\frac{A}{2} \\
& \mathrm{n}=\frac{\sin i}{\sin r} \Rightarrow \mathrm{n}=\frac{\sin \frac{(A+D)}{2}}{\sin \frac{A}{2}}
\end{aligned}
$$

36. Einstein'sphoppelectric equation:

- When a photon of energy $h v$ is incident on a metal swrface, it is completely absorbed by a single electron and the electron is ejected.
- In this process, a part of the photon energy is used for the ejection of the electrons from the metal surface (photoelectric work function ϕ_{0}) and the remaining energy as the kinetic energy of the ejected electron. From the law of conservation of energy,

$$
\begin{equation*}
h v=\phi_{0}+\frac{1}{2} m v^{2} \tag{1}
\end{equation*}
$$

where m is the mass of the electron and v its velocity.

- If we reduce the frequency of the incident light, the speed or kinetic energy of photo electrons is also reduced.
- At some frequency v_{0} of incident radiation, the photo electrons are ejected with almost zero kinetic energy

$$
h v_{0}=\phi_{0}
$$

where v_{0} is the threshold frequency. Byrewriting the equation

$$
\begin{equation*}
h v=h v_{0}+\frac{1}{2} m v^{2} \tag{2}
\end{equation*}
$$

- The equation is known as Einstein's photoelectric equation.
-
- If the electron does not lose energy by internal collisions, then it is emitted with maximum kinetic energy $K_{\text {max }}$. Then

$$
K_{\max }=\frac{1}{2} m v_{\max }^{2}
$$

where $v_{\max }$ is the maximum velocity of the electron ejected. Equation (1) becomes

$$
\begin{equation*}
K_{\max }=h v-\phi_{0} \tag{3}
\end{equation*}
$$

- Consider a circuit containing a pure inductor of inductance L connected across an alternating voltage source. The alternating voltage is given by the equation.

$$
v=V_{m} \sin \omega t
$$

- The alternating current flowing through the inductor induces a self-induced
emf or back emf in the circuit. The back emf is given by

$$
\text { Backemf, } \varepsilon=-L \frac{d i}{d t}
$$

- Integrating both sides, we get

$$
i=\frac{V_{m}}{L} \int \sin \omega t d t
$$

$$
i=\frac{V_{m}}{L \omega}(-\cos \omega t)+\text { constant }
$$

$$
i=\frac{V_{m}}{\omega L} \sin (\omega t-\pi / 2)
$$

- From equations, it is evident that current lags behind the applied voltage by in an inductive circuit.
- the current lags the voltage by 90°
(upto)

$$
v+\varepsilon=0
$$

$$
V_{m} \sin \omega t=L \frac{d i}{d t}
$$

$$
d i=\frac{V_{m}}{L} \sin \omega t d t
$$

$$
\text { or } \quad i=I_{m} \sin (\omega t-\pi / 2)
$$

$$
\text { where } \frac{V_{m}}{\omega L}=I_{m} \text {, }
$$

i) Large decrease in noise. This leads to an increase in signal-noise ratio.
ii) The operating range is quite large.
iii) The transmission efficiency is very high as all the transmitted power is useful.
iv) FM bandwidth covers the entire frequency range which humans can hear. Due to this, FM radio has better quality compared to AM radio.
(Any 2 or 3 points)

Limitations of FM

i) FM requires a much wider channel.
ii) FM transmitters and receivers are more complex and costly.
iii) In FM reception, less area is covered compared to AM.

2 (or) 3

- In order to understand how the changing electric field induces magnetic
(b) field, let us consider a situation of charging a parallel plate capacitor which contains non conducting medium between the plates.
- Let a time dependent current i_{c}, called conduction current be passed through the wire to charge the capacitor.

- Ampere's circuital law can be used to find the magnetic field produced around the current carrying wire.
- To calculate the magnetic field at a point P near the wire and outside the capacitor, let us draw a circular amperian loop which encloses the circular surface S 1 .
- Using ampere's circuital law for this loop we get
$\oint_{\text {encosing } s_{1}} \vec{B} \cdot d \vec{l}=\mu_{0} i_{C}$
- where μ_{o} is the permeability of free space.

- Now the same loop is enclosed by balloon shaped surface S_{2} such that boundaries of two surfaces S_{1} and S_{2} are same but the shape of the surfaces is different.
 shape of the enclosing surface, the integrals should give the same answer. But by applying Ampere's circuital law for the surface S_{2}, we get

$$
\oint_{\text {endosing } s_{2}} \vec{B} \cdot d \vec{l}=0
$$

- The right hand side of equation is zero because the surface S 2 nowhere touches the wire carrying conduction current and further, there is no current flowing between the plates of the capacitor.
- So the magnetic field at a point P is zero.
- Time varying electric field (or time varying electric flux) produces a current. This is known as displacement current flowing between the plates of the capacitor.

- From Gauss's law of electrostatics, the electric flux between the plates of the capacitor is

$$
\Phi_{E}=\oint_{S} \vec{E} \cdot d \vec{A}=E A=\frac{q}{\epsilon_{0}}
$$

where A is the area of the plates of capacitor. The change in electric flux is given by

$$
\begin{aligned}
& \frac{d \Phi_{E}}{d t}=\frac{1}{\epsilon_{o}} \frac{d q}{d t} \\
& \frac{d q}{d t}=\epsilon_{o} \frac{d \Phi_{E}}{d t} \\
& i_{d}=\epsilon_{0} \frac{d \Phi_{E}}{d t}
\end{aligned}
$$

where $\mathrm{dq} / \mathrm{dt}=\mathrm{id}$ is known as displacement current or maxwell's displacement current

- The displacement current can be defined as the current which comes into play in the region in which the electric field (or the electric flux) is changing with time.
- whenever the change in electric field takes place, displacement current is produced
- Maxwell modified Ampere's law as
$\oint_{1} \vec{B} . d \vec{l}=\mu_{0} i=\mu_{0}\left[i_{c}+i_{d}\right]$
$\oint_{I} \vec{B} \cdot d \vec{l}=\mu_{0} i_{c}+\mu_{0} \epsilon_{0} \frac{d \Phi_{F}}{d t}$

38. Electric field duetta a dingle at a point:
(a)

- Consider an electric dipole placed on the x-axis as shown in Figure. A point C is located at a distance of r from the midpoint O of the dipole along the axial line.

- The electric field at a point C due to +q is

$$
\vec{E}_{+}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r-a)^{2}} \text { along BC }
$$

- Since the electric dipole moment vector is from -q to +q and is directed along BC , the above equation is rewritten as

$$
\vec{E}_{+}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r-a)^{2}} \hat{p}
$$

- where p is the electric dipole moment unit vector from -q to +q .
- The electric field at a point C due to -q is

$$
\vec{E}_{-}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r+a)^{2}} \hat{p}
$$

- The total electric field at point C is calculated using the superposition principle of the electric field.

$$
\begin{aligned}
& \vec{E}_{\text {tot }}=\vec{E}_{+}+\vec{E}_{-} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r-a)^{2}} \hat{p}-\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r+a)^{2}} \hat{p} \\
& \vec{E}_{\text {tot }}=\frac{q}{4 \pi \varepsilon_{0}}\left(\frac{1}{(r-a)^{2}}-\frac{1}{(r+a)^{2}}\right) \hat{p} \\
& \vec{E}_{\text {tot }}=\frac{1}{4 \pi \varepsilon_{0}} q\left(\frac{4 r a}{\left(r^{2}-a^{2}\right)^{2}}\right) \hat{p}
\end{aligned}
$$

- If the point C is very far away from the dipole then ($\mathrm{r} \gg \mathrm{a}$). Under this limit the term Substituting this into equation

$$
\begin{aligned}
& \vec{E}_{\text {tot }}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{4 a q}{r^{3}}\right) \hat{p} \quad(\mathrm{r} \gg \mathrm{a}) \\
& \quad \text { since } 2 a q \hat{p}=\vec{p} \\
& \vec{E}_{\text {tot }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \vec{p}}{r^{3}}
\end{aligned}
$$

Moderator:

- The moderator is a material used to convert fast neutrons into slow neutrons.

Example:

- water, heavy water $\left(\mathbf{D}_{2} \mathrm{O}\right)$ and graphite as moderators.

Control rods:

- The control rods are used to adjust the reaction rate. During each fission, on an average 2.5 neutrons are emitted and in order to have the controlled chain reactions, only one neutron is allowed to cause another fission and the remaining neutrons are absorbed by the control rods.

Example:

- Usually cadmium or boron acts as control rod material.

Cooling system:

- The cooling system removes the heat generated in the reactor core.

Example:

- Ordinary water, heavy water and liquid sodium are used as coolant
- since they have very high specific heat capacity and have large boiling point under high pressure.

Department of Physics SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL

SAKKARAMPALAYAM , AGARAM (PO) ELACHIPALAYAM TIRUCHENGODE(TK), NAMAKKAL (DT) PIN-637202

5VI

SWI
SVI

jovt michit couttal.

594583 2022-2025 क力)

CㅋL ; 9965531727,9442288402

 CELL: 99655 31727, 9442288402

SRI RAM KUMARAN N MIT, CHENNAI

GOKUL PRANESH K B SRM COLLEGE CHENNAI

MOUNEESWARAN S MIT, CHENNAI

HARISHRAGAVAN S THIYAGAJAN COLLEGE MADURAI

PRAVEEN KUMAR N PRAVEEN KARTHIKEYAN D PRAVEEN KUMAR N KONGU ENGINEERING COLLEGE PERUNDHURAI

NIKILESH KARTHICK P BHAVANBALJI G ramakrishna engineering COLLEGE, COVAI

NIRESH KARTHIK N
KARUNMA UNIVERSTTY, COVAI

SURAJPRASAD P
CIT COVAI

MONISH B
INDUSTAN ENGINEERING COLLEGE, COVAI

PRAVIN M
KONGU ENGINEERING AEDS
PERUNDURAI

NITIN P P
SRI KRISHNA ENGINEERING
COLLEGE, COVAI

RITHESH K
PSG COLLEGE, KOVAI

SANJAY S
vellalar college, onoal

DEEPSHIKA S N SRI Vallammal COLLEGE ENGNEERING, CHEMMAI

NAVEENBALA.IIS
PAURUAL UNVEESTIY,
GUUARAT

SANJAY K
PANNARYAMMAN,
SATHYAMANGALAM

MEISHANTH R

SHAAJITH R PANNARYAMMAN,
SATHYAMANGALAM

SUDHARSAN J
INDUSTAN ENGINEERING
COLLEGE, COVAI

SANJAY M
GUMARAGURU COLLEGE, KOVAI

MONISH V
POLLANCH MMGGLIMGAM

GOKULPRASANTH
VISHWAN S ENGINEERING, KARUR

DHARSAN KM
POLLCH I MAGANGAM ENGNEERMG COLLEGE

SUJITH G
VELLAMMAL ENGINEERING COLLEGE CHENNAI

KAMAL RAJ KONGU ENGINEERING COLLEGE, COVAI

SREENATH S kONGU. PEEUNOURAA

RPAGAM ENGINEERING

ENGINEERING, COVAI

RAGUL S
INDUSTAN ENGINEERING COLLEGE, COVAI

SRI HARINI P
KARPAGAM COLLEGE OF ENGINEERING, COIMBATORE

RANJITH D
CIT COLLEGE OF
ENGINEERING COVAI

DHARSHINI S
KARPAGAM COLLEGE OF
ENGINEERING, COIMBATORE

SHANCHITHA M M.KUMARASAMY COLLEGE OF ENGINEERING, KARUR

JEEVITHA G T
VIVEKANANDA COLLEGE OF
ENGINEERING.
elayampalayam

HARSHINI B
KARPAGAM COLLEGE OF
ENGINEERING, COIMBATORE

VARSHA C KALAINAR KARUNANTTH INSTITUTE OF TECHNOLOG,

COImbatore

SHARVESH B
VSB ENGINEERING
COLLEGE COVA

KANIKA S VIVEKANANDA COLLEGE OF ENGINEERING COLLEGE ELAYAMPALAYAM

KANISHKA M P SNS ENGINEERING COLLEGE, COIMBATORE

KANISHKA L
KUMARAGURU COLLEGE
OF ENGINEERING, COMMBATORE

SUJITH S
INDUSTAN COLLEGE OF
ENGINEERING, COVAI

SUBHASHREE HARINI N VELLALAR ENGINEERING COLLEGE, THINDAL

MADHU PRIYA P NGP COLLEGE COIMBATORE

SONIKA M KONGU ENGINEERING COLLEGE. PERUNDURAI

2022-2023 ஆட்் ஆண்ாடல் PILOT \& BDS \& LAW கல்லூாாியில் சோ்ந்த เாாயவா்கள்

99/100

STATE $2^{\text {nd }}$ RANK
Reg. No. 223120297

STATE $3^{n t}$ RANK
Reg. No. 223120282 லோோ லுக்க்ள் 6u

Reg. No. 223120345
99/100

STATE $2^{\text {nd }}$ RANK
Reg. No. 223120352

Reg. Ho. 223120260

Reg. No. $223120288 \quad$ Reg. No. 223120338

Reg. No. 223120291

Reg. No. 223120316

Reg. No. 223120314

STATE $2^{\text {nd }}$ RANK Reg. No. 223120274

Reg. No. 223120246

Reg. Ho. 223120319

