MATHEMATICS TRIGONOMETRY

Section - A

I) Two Marks.

1. A tower stands vertically on the ground. From a point on the ground, which is 48 m away from the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower.
2. A kite is flying at a height of 75 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.
3. A player sitting on the top of a tower of height 20 m observes the angle of depression of a ball lying on the ground as 60°. Find the distance between the foot of the tower and the ball. $(\sqrt{ } 3=1.732)$
4. From the top of a 12 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 30°. Determine the height of the tower.
5. Find the angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of a tower of height 10 V 3 m .
6. A road is flanked on either side by continuous rows of houses of height $4 \sqrt{3} \mathrm{~m}$ with no space in between them. A pedestrian is
standing on the median of the road facing a row house. The angle of elevation from the pedestrian to the top of the house is 30°. Find the width of the road.
7. From the top of a rock $50 \sqrt{ } 3 \mathrm{~m}$ high, the angle of depression of a car on the ground is observed to be 30°. Find the distance of the car from the rock.
8. The horizontal distance between two buildings is 70 m . The angle of depression of the top of the first building when seen from the top of the second building is 45°. If the height of the second building is 120 m , find the height of the first building.
9. From the top of a tree of height 13 m the angle of elevation and depression of the top and bottom of another tree are 45° and 30° respectively. Find the height of the second tree. $(\sqrt{ } 3=1.732)$

Section - B

II) Five Marks.

1. From a point on the ground, the angles of elevation of the bottom and top of a tower fixed at the top of a 30 m high building are 45° and 60° respectively. Find the height of the tower. $(\sqrt{ } 3=1.732)$
2. A TV tower stands vertically on a bank of a canal. The tower is watched from a point on the other bank directly opposite to it. The angle of elevation of the top of the tower is 58°. From another point 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower and the width of the canal. $\left(\tan 58^{\circ}=1.6003\right)$
3. Two trees are standing on flat ground. The angle of elevation of the top of both the trees from a point X on the ground is 40°. If the horizontal distance between X and the smaller tree is 8 m and the distance of the top of the two trees is 20 m , calculate
(I) The distance between the point X and the top of the smaller tree.
(II) The horizontal distance between the two trees.

$$
\left(\cos 40^{\circ}=0.7660\right)
$$

4. From the top of a tower 50 m high, the angles of depression of the top and bottom of a tree are observed to be 30° and 45° respectively. Find the height of the tree.$(\sqrt{ } 3=1.732)$
5. From the top of a 12 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 30°. Determine the height of the tower.
6. A pole 5 m high is fixed on the top of a tower. The angle of elevation of the top of the pole observed from a point ' A ' on the ground is 60° and the angle of depression to the point ' A ' from the top of the tower is 45°. Find the height of the tower. $(\sqrt{3}=$ 1.732)
7. To a man standing outside his house, the angles of elevation of the top and bottom of a window are 60° and 45° respectively. If the height of the man is 180 cm and if he is 5 m away from the wall, what is the height of the window? $(\sqrt{ } 3=1.732)$
8. A statue 1.6 m tall stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is
60° and from the same point the angle of elevation of the top of the pedestal is 40°. Find the height of the pedestal.
$\left(\tan 40^{\circ}=0.8391, \sqrt{ } 3=1.732\right)$
9. A flag pole ' h ' metres is on the top of the hemispherical dome of radius ' r ' metres. A man is standing 7 m away from the dome. Seeing the top of the pole at an angle 45° and moving 5 m away from the dome and seeing the bottom of the pole at an angle 30°. Find
(I) The height of the pole
(II) radius of the dome. $(\sqrt{ } 3=1.732)$

10. The top of a 15 m high tower makes an angle of elevation of 60° with the bottom of an electronic pole and angle of elevation of 30° with the top of the pole. What is the height of the electric pole?
11. An aeroplane at an altitude of 1800 m finds that two boats are sailing towards it in the same direction. The angles of depression of the boats as observed from the aeroplane are 60° and 30° respectively. Find the distance between the two boats.($\sqrt{ } 3=1.732$)
12. From the top of a lighthouse, the angle of depression of two ships on the opposite sides of it are observed to be 30° and 60°. If the height of the lighthouse is h meters and the line joining the ships passes through the foot of the lighthouse, show that the distance between the ships is $\frac{4 h}{\sqrt{3}} \mathrm{~m}$.
13. A lift in a building of height 90 feet with transparent glass walls is descending from the top of the building. At the top of the building, the angle of depression to a fountain in the garden is 60°. Two minutes later, the angle of depression reduces to 30°. If the fountain is $30 \sqrt{ } 3$ feet from the entrance of the lift, find the speed of the lift which is descending.
14. A man is standing on the deck of a ship, which is 40 m above water level. He observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of the hill as 30°. Calculate the distance of the hill from the ship and the height of the hill. $(\sqrt{ } 3=1.732)$
15. The angles of elevation and depression of the top and bottom of a lamp post from the top of a 66 m high apartment are 60° and 30° respectively. Find
a. The height of the lamp post.
b. The difference between height of the lamp post and the apartment.
c. The distance between the lamp post and the apartment
$(\sqrt{ } 3=1.732)$

S.JAYALAKSHMI M.Sc, B.Ed,

TIRUVALUR DIST,

CELL NO: 9840188895

