MODEL QUARTERLY EXAMINATION - SEPTEMBER 2019

Time Allowed : $\mathbf{2}^{1 / 2}$ Hours
CLASS : 10th MATHS
Maximum Marks : 100

SECTION - I

Note
: (1). Answer all the 14 questions.
$14 \times 1=14$

(2). Choose the most suitable answer from the given four alternatives and write the option code with the corresponding answer.

1.If the ordered pairs $(a+2,4)$ and $(5,2 a+b)$ are equal then (a, b) is
(1) $(2,-2)$
(2) $(5,1)$
(3) $(2,3)$
(4) $(3,-2)$
2. Let $A=\{1,2,3,4\}$ and $B=\{4,8,9,10\}$. A function $f: A \rightarrow B$ given by $f=\{(1,4),(2,8),(3,9),(4,10)\}$ is a
(1) Many-one function
(2) Identity function
(3) One to one function
(4) Into function
3.If 6 times of $6^{\text {th }}$ term of an A.P is equal to 7 times the $7^{\text {th }}$ term, then the $13^{\text {th }}$ term of the A.P is
(1). 0
(2) 6
(3) 7
(4) 13
4.Sum of 7 terms of $-2,6,-18$, \qquad is
(1) 1094
(2) -1094
(3) 9041
(4) -9041
5.If $(\mathrm{x}-6)$ is the HCF of $x^{2}-2 x-24$ and $x^{2}-k x-6$, then the value of k is
(1) 3
(2) 5
(3) 6
(4) 8
6. The square root of $\frac{256 x^{8} y^{4} z^{10}}{25 x^{6} y^{6} z^{6}}$ is equal to
(1) $\frac{16}{5}\left|\frac{x^{2} z^{4}}{y^{2}}\right|$
(2) $16\left|\frac{y^{2}}{x^{2} z^{4}}\right|$
(3) $\frac{16}{5}\left|\frac{y}{x z^{2}}\right|$
(4) $\frac{16}{5}\left|\frac{x z^{2}}{y}\right|$
7. The perimeters of two similar triangles $\triangle A B C$ and $\triangle P Q R$ are 36 cm and 24 cm respectively. If $P Q=10 \mathrm{~cm}$, then the length of $A B$ is
(1) $6 \frac{2}{3} \mathrm{~cm}$
(2) $\frac{10 \sqrt{6}}{3} \mathrm{~cm}$
(3) $66 \frac{2}{3} \mathrm{~cm}$
(4) 15 cm
8. If in $\triangle A B C, D E \| B C . A B=3.6 \mathrm{~cm}, A C=2.4 \mathrm{~cm}$ and $A D=2.1 \mathrm{~cm}$ then the length of AE is
(1) 1.4 cm
(2) 1.8 cm
(3) 1.2 cm
(4) 1.05 cm
9.If $(5,7),(3, p)$ and $(6,6)$ are collinear, then the value of ' p ' is
(1) 3
(2) 6
(3) 9
(4) 12
10. How many tangents can be drawn to the circle from an exterior point?
(1) one
(2) two
(3) infinite
(4) zero
11. $\tan \theta \operatorname{cosec}^{2} \theta-\tan \theta$ is equal to
(1) $\sec \theta$
(2) $\cot ^{2} \theta$
(3) $\sin \theta$
(4) $\cot \theta$
12. $(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)$ is equal to
(1) 0
(2) 1
(3) 2
(4) -1
13. Variance of first 20 natural numbers is
(1) 32.25
(2) 44.25
(3) 33.25
(4) 30
14. If the mean and coefficient of variation of a data are 4 and 87.5%, then the standard deviation is
(1) 3.5
(2) 3
(3) 4.5
(4) 2.5

SECTION -II

Note: Answer 10 questions. Question No. 28 is compulsory.

15. Define - Onto function
16. Find the value of k , such that $f \circ g=g \circ f$, where $f(x)=3 x+2, g(x)=6 x-k$
17. Use Euclid's Divisions Algorithm to find the HCF of 340 and 412
18. Find the number of terms in the A.P 3, 6, 9, 111.
19. Find the sum $1^{2}+2^{2}+3^{2}+\cdots \ldots \ldots \ldots \ldots+23^{2}$.
20. Find the LCM of the polynomials $a^{2}+4 a-12$ and $a^{2}-5 a+6$ whose GCD is $a-2$
21. Solve $2 x-3 y=6, x+y=1$
22. Reduce the rational expressions to its lowest form $\begin{array}{ll}\text { (i) } \frac{x-3}{x^{2}-9} & \text { (ii) } \frac{x^{2}-16}{x^{2}+8 x+16}\end{array}$
23. If $\triangle A B C$ is similar to $\triangle D E F$ such that $\mathrm{BC}=3 \mathrm{~cm}, \mathrm{EF}=4 \mathrm{~cm}$ and area of $\triangle A B C=54 \mathrm{~cm}^{2}$. Find the area of $\triangle D E F$.
24. The vertices of a triangle are $A(-1,3), B(1,-1)$ and $C(5,1)$. Find the length of the median through the vertex C .
25. Find the slope and y intercept of $\sqrt{3} x+(1-\sqrt{3}) y=3$.
26. Prove that $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\operatorname{cosec} \theta+\cot \theta$
27. The standard deviation and mean of a data are 6.5 and 12.5 respectively. Find the co efficient of variation.
28.Threee vertices of a parallelogam of ABCD are $\mathrm{A}(2,-2), \mathrm{B}(8,4), \mathrm{C}(5,7)$ find the 4th vertex.
(OR)
Find the rational form of the number $0 . \overline{123}$.

SECTION - III

Note : Answer 10 questions. Question No . 42 is compulsory.
$10 \times 5=50$
29. Let $f: A \rightarrow B$ be a function defined by $f(x)=\frac{x}{2}-1$, where $\mathrm{A}=\{2,4,6,10,12\}, \mathrm{B}=\{0,1,2,4,5,9\}$ $\begin{array}{llll}\text { Represent by (i).set of ordered pairs } & \text { (ii). a table } & \text { (iii). an arrow diagram } & \text { (iv). a graph }\end{array}$
30. Find x if $g f f(x)=f g g(x)$, given $f(x)=3 x+1$ and $g(x)=x+3$
31. Find the sumwdPadeaflsibNtle series $5+55+555+\cdots \ldots \ldots \ldots \ldots$
32. Rekha has 15 square colour papers of sizes $10 \mathrm{~cm}, 11 \mathrm{~cm}, 12 \mathrm{~cm}$, \qquad .24 cm . How much area can be decorated with these colour papers ?
33. Find the sum of all natural numbers between 602 and 902 which are not divisible by 4 .
34. If $a x^{4}+b x^{3}+361 x^{2}+220 x+100$ is a perfect square, find the value of a and b.
35. Solve : $\frac{1}{2 x}+\frac{1}{4 y}-\frac{1}{3 z}=\frac{1}{4} ; \frac{1}{x}=\frac{1}{3 y} ; \frac{1}{x}-\frac{1}{5 y}+\frac{4}{z}=2 \frac{2}{15}$
36. State and prove Thales theorem.
37.Find the area of the quadrilateral formed by the points $(8,6),(5,11),(-5,12)$ and $(-4,3)$
38. Find the equation of the median and altitude of $\triangle A B C$ through A where the vertices are $A(6,2)$, $B(-5,-2)$ and $C(1,9)$.
39. If $\frac{\cos \theta}{1+\sin \theta}=\frac{1}{a}$, then prove that $\frac{a^{2}-1}{a^{2}+1}=\sin \theta$
40. If the sum of 10 values data is 60 ; and $\Sigma(\mathrm{x}-\overline{\mathrm{x}})^{2}=36$ then find $\Sigma \mathrm{x}^{2}, \Sigma(\mathrm{x}-5)^{2}$.
41.Find the coefficient of variation of $24,26,33,37,29,31$.
42.Find area of the triangle formed by sides $x+4 y-9=0,9 x+10 y+23=0,7 x+2 y-11=0$.
(OR)
In an A.P $t_{24}=47 \mathrm{~S}_{24}=576$ then find the common difference and find the sum of first 12 terms.

SECTION - IV

Note : Answer both questions.

$$
2 \times 8=16
$$

43.(a) Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{4}$ of the corresponding sides of the triangle PQR. (scale factor $\frac{7}{4}>1$)
(b). Draw a triangle ABC of base $\mathrm{BC}=5.6 \mathrm{~cm}, \angle A=40^{\circ}$ and the bisector of $\angle A$ meets BC at D such that $C D=4 \mathrm{~cm}$
44. (a) Draw the graph of $y=x^{2}-5 x-6$ and hence solve $x^{2}-5 x-14=0$
(OR)
(b). Sum of 3 numbers is 10 . Sum of the first number , twice the second number and 3 times the third is 29 and the sum of first, four times the second and nine times the third is 43 . Find the numbers.

All The Best

Prepared by :

S.Ramesh B.Tech.,EEE

Vivekanandar Tuition Centre - Arambakkam (Tiruvallur District)

