

Note

(1) $\sec \theta$

Padasalai.Net. www.Trb Tnpsc.Com VIVEKANANDAR TUITION CENTRE - ARAMBAKKAM www.Padasalai.Net.

MODEL QUARTERLY EXAMINATION - SEPTEMBER 2019

 $14 \times 1 = 14$

: (1). Answer all the 14 questions.

Time Allowed: $2^{1}/_{2}$ Hours CLASS: 10th MATHS

Maximum Marks: 100

SECTION - I

(2). Choose the	e most suitable answer	from the given four	alternatives and v	write the option
code with the corresponding answer.				
1.If the ordered pairs (a-	+2,4)and (5,2a+b)a	are equal then (a,b) is	
(1) (2,-2)	(2) (5, 1)	(3) (2,3)		(4) (3,-2)
2. Let A = { 1,2,3,4 } and B	s = { 4,8,9,10 }. A function	on $f: A \to B$ given by	$f = \{(1,4), (2,8)\}$	(3,9),(4,10) is a
(1) Many-one function	(2) Identity functi	on (3) One to o	ne function	(4) Into function
3.If 6 times of 6 th term of an A.P is equal to 7 times the 7 th term , then the 13 th term of the A.P is				
(1). 0	(2) 6	(3) 7	(0)	(4) 13
4.Sum of 7 terms of -2,	6, -18, is	-7		
(1) 1094	(2) -1094	(3) 9041		(4) -9041
5.If (x – 6) is the HCF of $x^2-2x-24$ and x^2-kx-6 , then the value of k is				
(1) 3	(2) 5	(3) 6		(4) 8
6. The square root of $\frac{25}{2}$	$\frac{56x^8y^4z^{10}}{25x^6y^6z^6}$ is equal to	3		
$(1) \ \frac{16}{5} \left \frac{x^2 z^4}{y^2} \right $	(2) $16 \left \frac{y^2}{x^2 z^4} \right $	$(3) \ \frac{16}{5} \left \frac{y}{xz^2} \right $	$(4) \ \frac{16}{5} \left \frac{xz^2}{y} \right $	
7. The perimeters of two respectively. If $PQ =$			are 36 cm and	24 cm
(1) $6\frac{2}{3}$ cm	(2) $\frac{10\sqrt{6}}{3}$ cm	(3) $66\frac{2}{3}$ cm	(4) 15 cm	
8. If in $\triangle ABC$, $DE \parallel$	$BC \cdot AB = 3.6$ cm,	AC = 2.4 cm and	AD = 2.1 cm th	nen the length of AE i
(1) 1.4 cm	(2) 1.8 cm	(3) 1.2 cm	(4) 1.05 cm	
9.If (5, 7) , (3, p) and (6	, 6) are collinear , then	the value of 'p' is		
(1) 3	(2) 6	(3) 9		(4) 12
10. How many tangents	can be drawn to the	circle from an exte	erior point?	
(1) one	(2) two	(3) infinite	(4) zero	
11. $\tan \theta \csc^2 \theta - \tan \theta$	heta is equal to			
(1) $\sec \theta$	(2) $\cot^2 \theta$	(3) $\sin \theta$		(4) $\cot \theta$

(3) $\sin \theta$

(4) $\cot \theta$

12. $(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta)$ is equal to

(1) 0

(2) 1

(3) 2

(4) -1

13. Variance of first 20 natural numbers is

(1) 32.25

(2) 44.25

(3) 33.25 (4) 30

14. If the mean and coefficient of variation of a data are 4 and 87.5 %, then the standard deviation is

(1) 3.5

(2) 3

(3) 4.5

(4) 2.5

SECTION -II

Note: Answer 10 questions. Question No. 28 is compulsory.

 $10 \times 2 = 20$

15. Define - Onto function

16. Find the value of k , such that $f \circ g = g \circ f$, where f(x) = 3x + 2 , g(x) = 6x - 6

17. Use Euclid's Divisions Algorithm to find the HCF of 340 and 412

18. Find the number of terms in the A.P 3, 6, 9,111.

19. Find the sum $1^2 + 2^2 + 3^2 + \cdots + 23^2$.

20. Find the LCM of the polynomials $a^2 + 4a - 12$ and $a^2 - 5a + 6$ whose GCD is a - 2

21. Solve 2x - 3y = 6, x + y = 1

22. Reduce the rational expressions to its lowest form (i) $\frac{x-3}{x^2-9}$ (ii) $\frac{x^2-16}{x^2+8x+16}$

23. If $\triangle ABC$ is similar to $\triangle DEF$ such that BC = 3 cm , EF = 4 cm and area of $\triangle ABC$ = 54 cm² . Find the area of $\triangle DEF$.

^{24.} The vertices of a triangle are A(-1,3), B(1,-1) and C(5,1). Find the length of the median through the vertex C.

25. Find the slope and *y* intercept of $\sqrt{3}x + (1 - \sqrt{3})y = 3$.

26. Prove that $\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \csc\theta + \cot\theta$

27. The standard deviation and mean of a data are 6.5 and 12.5 respectively. Find the co efficient of variation.

28. Three vertices of a parallelogram of ABCD are A(2, -2), B(8,4), C(5,7) find the 4th vertex.

(OR)

Find the rational form of the number 0.123.

SECTION – III

Note: Answer 10 questions. Question No. 42 is compulsory.

 $10 \times 5 = 50$

29. Let $f: A \to B$ be a function defined by $f(x) = \frac{x}{2} - 1$, where A = { 2, 4, 6, 10, 12 }, B = { 0, 1, 2, 4, 5, 9 }

Represent by (i).set of ordered pairs

(ii). a table

(iii). an arrow diagram (iv). a graph

30. Find x if gff(x) = fgg(x), given f(x) = 3x + 1 and g(x) = x + 3

- 31. Find the sumve Paternal in Nette series 5 + 55 + 555 + www.Trb Tnpsc.Com
- 32. Rekha has 15 square colour papers of sizes 10 cm, 11 cm, 12 cm,24 cm. How much area can be decorated with these colour papers ?
- 33. Find the sum of all natural numbers between 602 and 902 which are not divisible by 4.
- 34. If $ax^4 + bx^3 + 361x^2 + 220x + 100$ is a perfect square , find the value of a and b .

35. Solve:
$$\frac{1}{2x} + \frac{1}{4y} - \frac{1}{3z} = \frac{1}{4}$$
; $\frac{1}{x} = \frac{1}{3y}$; $\frac{1}{x} - \frac{1}{5y} + \frac{4}{z} = 2\frac{2}{15}$

- 36. State and prove Thales theorem.
- 37. Find the area of the quadrilateral formed by the points (8, 6), (5, 11), (-5,12) and (-4,3)
- 38. Find the equation of the median and altitude of $\triangle ABC$ through A where the vertices are A(6,2), B(-5,-2) and C(1,9).
- 39. If $\frac{\cos \theta}{1+\sin \theta} = \frac{1}{a}$, then prove that $\frac{a^2-1}{a^2+1} = \sin \theta$
- 40. If the sum of 10 values data is 60; and $\Sigma (x \overline{x})^2 = 36$ then find Σx^2 , $\Sigma (x 5)^2$.
- 41. Find the coefficient of variation of 24, 26, 33, 37, 29, 31.
- 42.Find area of the triangle formed by sides x + 4y 9 = 0, 9x + 10y + 23 = 0, 7x + 2y 11 = 0. (OR)

In an A.P $t_{24} = 47 S_{24} = 576$ then find the common difference and find the sum of first 12 terms.

SECTION – IV

Note: Answer both questions.

 $2 \times 8 = 16$

43.(a) Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{4}$ of the corresponding sides of the triangle PQR. (scale factor $\frac{7}{4}>1$)

(OR)

- (b). Draw a triangle ABC of base BC = 5.6 cm , $\angle A = 40^{\circ}$ and the bisector of $\angle A$ meets BC at D such that CD= 4 cm
- 44. (a) Draw the graph of $y=x^2-5x-6$ and hence solve $x^2-5x-14=0$ (OR)
 - (b). Sum of 3 numbers is 10. Sum of the first number, twice the second number and 3 times the third is 29 and the sum of first, four times the second and nine times the third is 43. Find the numbers.

******* All The Best **********

