ROYAL TUITION CENTER, ELAMPILLAI CELL: 9080244280

CLASS	:	X

SUBJECT : MATHS

MARKS : 75

TIME : 150 Min

1x10 = 10

I. ANSWER ALL THE QUESTIONS

- 1. $f(x) = (x+1)^3 (x-1)^3$ represents a function which is
 - (1) linear
- (2) cubic
- (3) reciprocal
- (4) quadratic
- If $g = \{(1,1),(2,3),(3,5),(4,7)\}$ is a function given by $g(x) = \alpha x + \beta$ then the values of α and β are
 - (1) (-1,2)
- (2)(2,-1)
- (3)(-1,-2)
- 3. If $f: A \to B$ is a bijective function and if n(B) = 7, then n(A) is equal to
 - (1)7

(2)49

(3) 1

(4) 14

- If $f(x) = 2x^2$ and $g(x) = \frac{1}{3x}$, then $f \circ g$ is
 - $(1) \frac{3}{2\pi^2}$

- $(2)\frac{2}{3x^2}$ $(3)\frac{2}{9x^2}$

- $(4)\frac{1}{6\pi^2}$
- 5. If $\{(a,8),(6,b)\}$ represents an identity function, then the value of a and b are respectively
 - (1)(8,6)
- (2)(8,8)
- (3)(6,8)
- 6. Let n(A) = m and n(B) = n then the total number of non-empty relations that can be defined from A to B is
 - (1) m^{n}
- (2) n^{m}
- $(3) 2^{mn} 1$
- 7. If $n(A \times B) = 6$ and $A = \{1,3\}$ then n(B) is
 - (1) 1

(3) 3

- 8. $A = \{a, b, p\}, B = \{2, 3\}, C = \{p, q, r, s\} \text{ then } n[(A \cup C) \times B] \text{ is }$
 - (1) 8

(2) 20

(3) 12

- (4) 16
- If there are 1024 relations from a set $A = \{1, 2, 3, 4, 5\}$ to a set B, then the number of elements in B is
 - (1) 3

(2) 2

(3)4

(4) 8

The range of the relation $R = \{(x, x^2) \mid x \text{ is a prime number less than } 13\}$ is

- (1) {2,3,5,7}
- (2) {2,3,5,7,11}
- (3) {4,9,25,49,121} (4) {1,4,9,25,49,121}

Kindly send me your key answers to our email id - padasalai.net@gamil.com

II. ANSWER ANY 10 QUESTIONS. 20 AND 21 IT'S A COMPULSORY QUESTIONS 10x2=20

- 11. If $A \times B = \{(3,2), (3,4), (5,2), (5,4)\}$ then find A and B.
- 12. Let $A = \{1,2,3\}$ and $B = \{x \mid x \text{ is a prime number less than 10}\}$. Find $A \times B$ and $B \times A$.
- 13. The arrow diagram shows (Fig.1.10) a relationship between the sets P and Q. Write the relation in (i) Set builder form (ii) Roster form (iii) What is the domain and range of R.

- 15. A function f is defined by f(x)=3-2x . Find x such that $f(x^2)=(f(x))^2$. Fig. 1.10
- ^{16.} Show that the function $f: \mathbb{N} \to \mathbb{N}$ defined by $f(m) = m^2 + m + 3$ is one-one function.
- Find $f\circ g$ when f(x)=2x+1 and $g(x)=x^2-2$
- 18. Find *k* if $f \circ f(k) = 5$ where f(k) = 2k 1.
- 19. (i) If $f(x) = x^2 1$, g(x) = x 2 find a, if $g \circ f(a) = 1$.
- 20. Find the domain of the function $f(x) = \sqrt{1 + \sqrt{1 \sqrt{1 x^2}}}$
- Given that $f(x) = \begin{cases} \sqrt{x-1} & x \ge 1 \\ 4 & x < 1 \end{cases}$. Find (i) f(0) (ii) f(3)
- 22. Define One to one and Onto
- III. ANSWER ANY 9 QUESTIONS .25 AND 31 IT'S A COMPULSORY QUESTIONS 9x5=45
- ^{23.}Consider the functions f(x), g(x), h(x) as given below. Show that $(f \circ g) \circ h = f \circ (g \circ h)$ in each case.
 - (i) f(x) = x 1, g(x) = 3x + 1 and $h(x) = x^2$
 - (ii) $f(x) = x^2$, g(x) = 2x and h(x) = x + 4
- 24. Find x if gff(x) = fgg(x), given f(x) = 3x + 1 and g(x) = x + 3.
- 25. The function 't' which maps temperature in Celsius (C) into temperature in Fahrenheit (F) is defined by t(C) = F where $F = \frac{9}{5}C + 32$. Find,
 - (i) t(0) (ii) t(28) (iii) t(-10)
 - (iv) the value of C when t(C) = 212
 - (v) the temperature when the Celsius value is equal to the Farenheit value.

If the function $f:\mathbb{R} o\mathbb{R}$ is defined by $f(x)=egin{cases} 2x+7,x<-2\ x^2-2,-2\le x<3\ ,\ 3x-2,x\ge 3 \end{cases}$ 26. then find the values of

- (ii) f(-2) (iii) f(4) + 2f(1) (iv) $\frac{f(1) 3f(4)}{f(-3)}$ (i) f(4)
- Let f be a function $f: \mathbb{N} \to \mathbb{N}$ be defined by $f(x) = 3x + 2, x \in \mathbb{N}$ 27.
 - (ii) Find the pre-images of 29, 53 Find the images of 1, 2, 3 (i)
 - (ii) Identify the type of function

28. Let $A = \{1, 2, 3, 4\}$ and $B = \{2, 5, 8, 11, 14\}$ be two sets. Let $f: A \to B$ be a function given by f(x) = 3x - 1. Represent this function

- (i) by arrow diagram
- (ii) in a table form
- (iii) as a set of ordered pairs
- (iv) in a graphical form

29. Given the function $f: x \to x^2 - 5x + 6$, evaluate

(i) f(-1)

(iii) f(2)

30. Let $A = \{x \in \mathbb{W} \mid x < 2\}$, $B = \{x \in \mathbb{N} \mid 1 < x \le 4\}$ and $C = \{3, 5\}$. Verify that

(i)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
 (ii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$

(ii)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

- The functions f and g are defined by $f(x)=6x+8; \ g(x)=\frac{x-2}{3}$ (i) Calculate the value of $gg\left(\frac{1}{2}\right)$

 - (ii) Write an expression for gf(x) in its simplest form.
- 32. An open box is to be made from a square piece of material, 24 cm on a side, by cutting equal squares from the corners and turning up the sides as shown (Fig.1.17).

Express the volume V of the box as a function of x.

Forensic scientists can determine the height (in cms) of a person based on 33 the length of their thigh bone. They usually do so using the function $h(b) = 2 \cdot 47b + 54 \cdot 10$ where b is the length of the thigh bone.

- (i) Check if the function h is one one
- (ii) Also find the height of a person if the length of his thigh bone is 50 cms.
- (iii) Find the length of the thigh bone if the height of a person is 147.96 cms.