6. TRIGONOMETRY

Two marks

1. Prove that $\tan ^{2} \theta-\sin ^{2} \theta=\tan ^{2} \theta \sin ^{2} \theta$
2. Prove that $\cot \theta+\tan \theta=\sec \theta \operatorname{cosec} \theta$
3. Prove that $(\operatorname{cosec} \theta-\sin \theta)(\sec \theta-\cos \theta)(\tan \theta+\cot \theta)=1$
4. Prove that $\quad \operatorname{Sin} A=1-\operatorname{Cos} A$
$1+\operatorname{Cos} \mathrm{A} \quad \operatorname{Sin} \mathrm{A}$
5. Prove that $\operatorname{Sin} A \quad \operatorname{Sin} A \quad=2 \operatorname{cosec} A$
6. Prove that $\cos \theta=\sec \theta-\tan \theta$

$$
1+\sin \theta
$$

7. Prove that $1+\frac{\operatorname{Cot}^{2} \theta}{1+\operatorname{cosec} \theta}=\operatorname{cosec} \theta$
8. Prove that $\sec \theta-\cos \theta=\tan \theta \sin \theta$
9. Prove that $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$
10. Prove that $\sqrt{1+\sin \theta}=\sec \theta+\tan \theta$
11. Prove that $\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=2 \sec \theta$
12. Prove that $\frac{\sec \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta}=\cot \theta$
13. If $\cos \theta+\sin \theta=\sqrt{2} \cos \theta$, then prove that $\cos \theta-\sin \theta=\sqrt{2} \sin \theta$
14. Prove that $\left[\frac{1+\tan ^{2} \mathrm{~A}}{1+\cot ^{2} \mathrm{~A}}\right]=\left[\frac{1-\tan \mathrm{A}}{1-\cot \mathrm{A}}\right]^{2}$
15. A tower stands vertically on the ground. From a point on the ground, which is 48 m away from the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower
16. A kite is flying at a height of 75 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.
17. Find the angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of a tower of height $10 \sqrt{3} \mathrm{~m}$.
18. A road is flanked on either side by continuous rows of houses of height $4 \sqrt{3} \mathrm{~m}$ with no space in between them. A pedestrian is standing on the median of the road facing a row house. The angle of elevation from the pedestrian to the top of the house is 30°. Find the width of the road.

Five marks

1.If $\operatorname{cosec} \theta+\cot \theta=P$, then prove that $\cos \theta=P^{2}-1$

$$
\mathrm{P}^{2}+1
$$

2. Prove that $\left[\frac{\cos ^{3} \mathrm{~A}-\sin ^{3} \mathrm{~A}}{\cos \mathrm{~A}-\sin \mathrm{A}}\right]-\left(\frac{\cos ^{3} \mathrm{~A}+\sin ^{3} \mathrm{~A}}{\cos \mathrm{~A}+\sin \mathrm{A}}\right]=2 \sin \mathrm{~A} \cos \mathrm{~A}$
3. Prove that $(1+\cot \mathrm{A}+\tan \mathrm{A})(\sin \mathrm{A}-\cos \mathrm{A})=\sin ^{2} \mathrm{~A} \cos ^{2} \mathrm{~A}$
$\operatorname{Sec}^{3} \mathrm{~A}-\operatorname{cosec}^{3} \mathrm{~A}$
4. If $\cos ^{2} \theta=\mathrm{p}$ and $\sin ^{2} \theta=\mathrm{q}$ then prove that $\mathrm{p}^{2} \mathrm{q}^{2}\left(\mathrm{p}^{2}+\mathrm{q}^{2}+3\right)=1$
$\sin \theta \quad \cos \theta$
5. If $\cos \alpha=p$ and $\cos \alpha=q$ then prove that $\left(m^{2}+n^{2}\right) \cos ^{2} \beta=n^{2}$
$\operatorname{Cos} \beta \quad \sin \beta$
6. If $\cot \theta+\tan \theta=\mathrm{p}$ and $\sec \theta-\cos \theta$, then prove that $\left.\left(\mathrm{x}^{2} \mathrm{y}\right)^{2 / 3}-\mathrm{xy}^{2}\right)^{2 / 3}=1$
7. If $\sin \theta+\cos \theta=p$ and $\sec \theta+\operatorname{cosec} \theta=q$, then prove that $q\left(p^{2}-1\right)=2 p$
8. If $\frac{\cos \theta}{1+\sin \theta}=\frac{1 \text {, the prove that } \frac{a^{2}-1}{a}=\sin \theta}{a^{2}+1}$
9. If $\sin \theta(1+\sin 2 \theta)=\cos 2 \theta$, then prove that $\cos ^{6} \theta-4 \cos ^{4} \theta+8 \cos ^{2} \theta=4$
10. If $3 \sin \theta-\cos \theta=0$, then show that $\tan 3 \theta=\underline{3 \tan \theta-\tan ^{3} \theta}$

$$
1-3 \tan ^{3} \theta
$$

11. Two ships are sailing in the sea on either sides of a lighthouse. The angles of elevation of the top of the lighthouse as observed from the ships are 30° and 45° respectively. If the lighthouse is 200 m high, find the distance between the two ships.
12. From a point on the ground, the angles of elevation of the bottom and top of a tower fixed at the top of a 30 m high building are 45° and 60° respectively. Find the height of the tower
13. To a man standing outside his house, the angles of elevation of the top and bottom of a window are 60° and 45° respectively. If the height of the man is 180 cm and if he is 5 m away from the wall, what is the height of the window?
14. The top of a 15 m high tower is observed from the bottom and the top on an electric pole with an angle of elevation of 60° and 30° respectively. What is the height of the electric pole?
15. From the top of a tower 50 m high, the angles of depression of the top and bottom of a tree are observed to be 30° and 45° respectively. Find the height of the tree
16. The horizontal distance between two buildings is 70 m . The angle of depression of the top of the first building when seen from the top of the second building is 45°. If the height of the second building is 120 m , find the height of the first building
17. From the top of the tower 60 m high the angles of depression of the top and bottom of a vertical lamp post are observed to be 38° and 60° respectively. Find the height of the lamp post.
18. An aeroplane at an altitude of 1800 m finds that two boats are sailing towards it in the same direction. The angles of depression of the boats as observed from the aeroplane are 60° and 30° respectively. Find the distance between the two boats.
19. A pole 5 m high is fixed on the top of a tower. The angle of elevation of the top of the pole observed from a point ' A ' on the ground is 60° and the angle of depression to the point ' A ' from the top of the tower is 45°. Find the height of the tower
20. From the top of a tree of height 13 m the angle of elevation and depression of the top and bottom of another tree are 45° and 30° respectively. Find the height of the second tree.
21. A man is standing on the deck of a ship, which is 40 m above water level. He observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of the hill as 30°. Calculate the distance of the hill from the ship and the height of the hill.

Prepared by
S.MURUGAVEL M.Sc.,B.Ed.,

TGT in Mathematics
Puducherry state
Email id: murugavel213@gmail.com

