UNIT TEST - 1 (Relations and functions, Graphs, Practical geometry) MATHEMATICS

CLASS: X standard

PART-I [Marks 14]

MARKS: 100
$14 \times 1=14$

1. If $n(A \times B)=6$ and $A=\{1,3\}$ then $n(B)$ is
(a)1
(b)2
(c) 3
(d) 6
2. If $n(A)=p$ and $n(B)=q$ then $n(A \times B)=$
(a) $p+q$
(b) $\mathrm{p}-\mathrm{q}$
(c) pxq
(d) p / q
3. $A=\{\mathrm{a}, \mathrm{b}, \mathrm{p}\}, B=\{2,3\}, C=\{\mathrm{p}, q, r, s\}$ then $\mathrm{n}[(\mathrm{A} U C) \mathrm{xB}]$ is
(a) 8
(b) 20
(c) 12
(d) 16
4. If there are 1024 relations from a set $A=\{1,2,3,4,5\}$ to a set B, then the number of elements in B is
(a) 3
(b) 2
(c) 4
(d) 8
5. The range of the relation $R=\left\{\left(x, x^{2}\right) \mid x\right.$ is a prime number less than 13$\}$ is
(a) $\{2,3,5,7\}$
(b) $\{2,3,5,7,11\}$
(c) $\{4,9,25,49,121\}$
(d) $\{1,4,9,25,49,121\}$
6. Let $n(A)=m$ and $n(B)=n$ then the total number of non-empty relations that can be defined from A to B is
(a) m^{n}
(b) n^{m}
(c) $2^{m n}-1$
(d) 2^{mn}
7. If $\{(\mathrm{a}, 8),(6, \mathrm{~b})$ represents an identity function, then the value of a and b are respectively
(a) $(8,6)$
(b) $(8,8)$
(c) $(6,8)$
(d) $(6,6)$
8. Let $A=\{1,2,3,4\}$ and $B=\{4,8,9,10\}$. A function $f: A \rightarrow B$ given by $f=\{(1,4),(2,8),(3,9),(4,10)\}$ is a
a) Many-one function (b) Identity function c) one-to-one function (d) Into function 9.If $f(x)=2 x^{2}$ and $g(x)=\frac{1}{3 x} \quad$ then $f o g$ is
a) $3 / 2 x^{2}$
b) $2 / 3 x^{2}$
c) $2 / 9 x^{2}$
d) $1 / 6 x^{2}$
9. If $\mathrm{f}: A \rightarrow B$ is a bijective function and if $n(B)=7$, then $n(A)$ is equal to
(a) 7
(b) 49
(c)1
(d)14
10. The range of a function is a subset of its \qquad
(a) Co domain
(b) Domain
(c) Unique
(d) Constant
11. Let f and g be two functions given by $f=\{(0,1),(2,0),(3,-4),(4,2),(5,7)\}$ $g=\{(0,2),(1,0),(2,4),(-4,2),(7,0)\}$ then the range of $f \circ g$ is
 α and β are
a) $(-1,2)$
b) $(2,-1)$
c) $(-1,-2)$
(d) $(1,2)$
12. $f(x)=(x+1)^{3}-(x-1)^{3}$ represents a function which is
(a) linear
(b)cubic
(c)reciprocal
(d)quadratic

PARTS-II [MARKS: 20]

Answer all the questions [Question number 28 is compulsory] $10 \times 2=20$
15. Let $A=\{1,2,3\}$ and $B=\{x \mid x i s a p r i m e n u m b e r l e s s t h a n 10\}$. Find $A \times B$ and $B \times A$.
16. If $B \times A=\{(-2,3),(-2,4),(0,3),(0,4,(3,3),(3,4)\}$ find A and B.
17. Let $A=\{3,4,7,8\}$ and $B=\{1,7,10\}$.Which of the sets are relations from A to $B ? \mathrm{R}=\{(3,7),(4,7),(7,10),(8,1)\}$
18. Let $\mathrm{A}=\{1,2,3,4, \ldots ., 45\}$ and R be the relation defined as "is square of" on A. Write R as a subset of $\mathrm{A} \times \mathrm{A}$. Also, find the domain and range of R .
19. A Relation R is given by the $\operatorname{set}\{(x, y) / y=x+3, x €\{0,1,2,3,4\}\}$. Determine its domain and range.
20. Represent each of the given relations by (a) an arrow diagram, (b) agraph and (c) a set in roster form, wherever possible.
$\{(x, y) \mid y=x+3, x, y$ are natural numbers $<10\}$
21. $\operatorname{Let} X=\{1,2,3,4)$ and $Y=\{2,4,6,8,10\}$ andR $=\{(1,2),(2,4),(3,6),(4,8)\}$.

Show that R is a function and find its domain, co-domain and range?
22. A relation ' ρ is defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2$ where $\mathrm{x} €\{-2,-1,0,3\}$
i) List the elementoff
ii) Isf afunction?
23. $\operatorname{Let} A=\{1,2,3\} B=\{4,5,6,7\}$ and $f=\{(1,4)(2,5)(3,6)\}$ be a function from A to B. Show that f is one - one but not onto function.
24. Show that the function $\mathrm{F}: \mathrm{N} \longrightarrow \mathrm{N}$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{m}^{2}+\mathrm{m}+3$ is one-one function.
25. Let $A=\{-1,1\}$ and $B=\{0,2\}$ If the function $f: A \quad B$ defined by $f(x)=a x+b$ an onto function? Find a and b.
26. If $f(x)=x^{2}-1$ and $g(x)=x-2$,find a if g o $f(a)=1$

Kindly send me your key answers to our email id - padasalai.net @ gamil.com
27. Find fog and gof when $f(x)=2 x+1$ and $g(x)=x^{2}-1$
28. Find k, if $\mathrm{f}(\mathrm{k})=2 \mathrm{k}-1$ and $\mathrm{fo} \mathrm{f}(\mathrm{k})=5$

PARTS-III [MARKS: 50]

Answer all the questions [Question number 42 is compulsory] $10 \times 5=50$
29. Let $A=\{x € N \mid 1<x<4\}, B=\{x € W \mid 0 \leq x<2\}$ and $C=\{x € N \mid x<3\}$ then verify that
$A x(B U C)=(A \times B) U(A \times C)$
30. If $A=\{5,6\}, B=\{4,5,6\}, c=\{5,6,7\}$ showthat $A x A=(B x B) \cap(C x C)$
31. Given the function $\mathrm{f}: \mathrm{x} \longrightarrow \mathrm{x}^{2}-5 \mathrm{x}+6$, evaluate
i) $f(-1)$
ii) $f(2 a)$
iii) $f(2)$
iv) $f(x-1)$
32. A function f is defined by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-3$
i) find $\mathrm{f}(0)+\mathrm{f}(1)$ 2
ii) find x such that $f(x)=0$
ii) find x such that $f(x)=x$
iii) find x such that $f(x)=f(1-x)$
33. Let $A=\{1,2,3,4\}$ and $B=\{2,5,8,11,14\}$ be two sets. Let $f: A \longrightarrow B$ be a function given by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-1$. Represent thisfunction
(i) by arrow diagram
(ii) in a table form
(iii) as a set oforderedpairs
(iv) in a graphical form
34. Forensic scientists can determine the height (in cms) of a person based on the length of their thigh bone. They usually do so using the function $h(b)=2.47 b+54.10$ where b is the length of the thigh bone.
(i) Check if the function h is one - one
(ii) Also find the height of a person if the length of his thigh bone is 50 cms .
(iii) Find the length of the thigh bone if the height of a person is 147.96 cms .
35. If the function $f: R \longrightarrow R$ is define by $f(x)= \begin{cases}2 x+7, & x<-2 \\ x^{2}-2, & -2 \leq x<3 \\ 3 x-2, & x \geq 3\end{cases}$
i)f(4) iif(-2) iii)f(4) $+2 f(1)$

$$
\frac{\text { iv }) f(1)-3 f(4)}{f(-3)}
$$

www.Padasalai.Net.
36. Ifthe function f is defined by $f(x)=\left\{\begin{array}{cl}x+2, & \text { if } x>1 \\ 2, & \text { if }-1 \leq x \leq 1 \\ x-1, & \text { if }-3<x<-1\end{array}\right.$
i) $f(3)$
iif(0)
iii) $f(-1.5)$
iv) $f(2)+f(-2)$
37. The function' t ' which maps temperature in Celsius (C) into temperature in Fahrenheit it (F) is defined by $\mathrm{t}(\mathrm{C})=\mathrm{F}$ where $\mathrm{F}=\underline{9} \mathrm{C}+32$
Find
(i) $t(0)$
(ii) $t(28)$
(iii) $t(-10)$
(iv) the value of C when $t(C)=212$
(v) the temperature when the Celsius value is equal to the Fahrenheit value.
38. Find the value of k, such that $\mathrm{fog}=\mathrm{g}$ of $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-2$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}+\mathrm{k}$
39. If $f(x)=2 x+3, g(x)=1-2 x$ and $h(x)=3 x$ prove that fo(goh) $=(f o g)$ oh
40. Consider the functions $f(\mathrm{x}), g(\mathrm{x}), h(\mathrm{x})$ as given below Show that (fog) $h=f o(g o h)$ in each case. $f(x)=x-4, g(x)=x^{2}, h(x)=3 x-5$
41. Find x if $g f f(x)=f g g(x)$, given $f(x)=3 x+1$ and $g(x)=x+3$.
42. If the function $f:\{-5,9] \longrightarrow R$ is define by $f(x)=\left\{\begin{array}{l}6 x+1, \text { if }-5 \leq x<2 \\ 5 x^{2}-1, \text { if } 2 \leq x<6 \\ 3 x-4, \text { if } 6 \leq x \leq 9\end{array}\right.$
iii) $2 f(4)+f(8) \quad$ iv $\quad 2 f(-2)-f(-6)$

$$
f(4)+f(-2)
$$

PARTS-IV [MARKS: 16]

Answer both questions

2x8=16

43. a) Construct a triangle similar to a given triangle $P Q R$ with its sides equal to $7 / 3$ of the corresponding sides of the triangle PQR (scale factor 7/3)
b) Construct a triangle $\triangle P Q R$ such that $Q R=5 \mathrm{~cm}, P \ddagger 30^{\circ}$ and the altitude from P to $Q R$ is of length 4.2 cm .
44. a)Discuss the nature of solutions of the following quadratic equations $x^{2}+x-12=0$ (or)
b) Draw the graph of $y=x^{2}+3 x-4$ and hence use it to solve $x^{2}+3 x-4=0$

Prepared by S.Murugavel M.Sc.,B.Ed.,
Email: murugavel213@gmail.com

