CLASS: X standard

PART-I [Marks 14]

MARKS: 100
$14 \times 1=14$

Answer all the 14 questions

1. Euclid's division lemma states that for positive integers a and b, there exist unique integers q and r such that $a=b q+\mathrm{r}$, where r must satisfy.
(a) $1<r<b$
(b) $0<r<b$
(c) $0 \leq r<b$
(d) $0<r \leq b$
2. Using Euclid's division lemma, if the cube of any positive integer is divided by 9 then the possible remainders are
(a) $0,1,8$
(b) $1,4,8$
(c) $0,1,3$
(d) $1,3,5$
3. If the HCF of 65 and 117 is expressible in the form of $65 \mathrm{~m}-117$, then the value of m is
(a) 4
(b) 2
(c) 1
(d) 3
4. The sum of the exponents of the prime factors in the prime factorization of 1729 is
(a) 1
(b) 2
(c) 3
(d) 4
5. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
(a) 2025
(b) 5220
(c) 5025
(d) 2520
6. $7^{4 k} \equiv$ \qquad $(\bmod 100)$
(a) 1
(b) 2
(c) 3
(d) 4
7. Given $F(1)=1, F(2)=3$ and $F_{n}=F n-1+F_{n-2}$ then $F 5$ is
(a)3
(b) 5
(c) 8
(d) 11
8. The first term of an arithmetic progression is unity and the common difference is 4 . Which of the following will be a term of this A.P.?
(a) 4551
(b) 10091
(c) 7881
(d) 13531
9. If 6 times of 6th term of an A.P. is equal to 7 times the 7 th term, then the 13th term of the A.P. is
(a) 0
(b) 6
(c) 7
(d) 13
10. An A.P. consists of 31 terms. If its 16 th term is m, then the sum of all the terms of this A.P. is
(a) 16 m
(b) 62 m
(c) 31 m
(d) 312 m
11. In an A.P., the first term is 1 and the common difference is 4 . How many terms of the A.P. must be taken for their sum to be equal to 120 ?
(a) 6
(b) 7
c) 8
(d) 9
12. The next term of the sequence $3 / 16,1 / 8,1 / 12$. $/ 118$, , , is
(a) $1 / 24$
(b) $1 / 27$
(c) $2 / 3$
(d) $1 / 81$
13.If the sequence $t_{1} . t_{2}, t_{3}$ are in A.P. then the sequence $t_{6}, t_{12}, t_{18,}, \ldots, \ldots$ is
(a) a Geometric Progression (b) an Arithmetic Progression
(c) neither an Arithmetic Progression nor a Geometric Progression (d) a constant sequence
14.The value of $\left(1^{3}+2^{3}+\right.$ \qquad $\left.15^{3}\right)-(1+2+$ \qquad
(a) 14400
(b) 14200
(c) 14280
(d) 14520

PARTS-II [MARKS: 20]

Answer all the questions [Question number 28 is compulsory]
$10 \times 2=20$
15. If the Highest Common Factor of 210 and 55 is expressible in the form $55 x,-325$, find x
16. Find the greatest number that will divide 445 and 572 leaving remainders 4 and 5 respectively
17. State Euclid's division lemma
18. Find the least positive value of x such that $78+x \equiv 3(\bmod 5)$
19. The general term of a sequence is define as
an=

$$
\left\{\begin{aligned}
n(n+3) ; n € N \text { is odd } \\
n^{2}+1 ; n € N \text { is odd } \quad \text { Find the eleventh and eighteenth terms. }
\end{aligned}\right.
$$

20. Find the first six terms of the sequences If $\mathrm{a} 1=1, \mathrm{a} 2=1 \mathrm{an}=2 \mathrm{an}-1+\mathrm{an}-2$.
21. Find the number of terms in the A.P. 3, 6, 9, 12,..., 111
22. Find the $19^{\text {th }}$ term of an A.P. $-11,-15,-19$ \qquad
23. Find the middle term(s) of an A.P. 9, 15, 21, 27,..., 183
24. In a G.P. $729,243,81$ find t7
Kindly send me your key answers to our email id - padasalai.net@gamil.com
www.Padasalai.Net.
25. Find the sum $3+1+1 / 3+$ \qquad $+\infty$
26. Find the value of (i) $1+2+3+$. 50
27. Find the sum of $1^{2}+2^{2}+3^{2}+$. $+19^{2}$
28. If $1+2+3+$ \qquad $.+\mathrm{k}=325$ then find $1^{3}+2^{3}+3^{3}+$ \qquad $+k^{3}$

PARTS-III [MARKS: 50] Answer all the questions [Question number 42 is compulsory] $10 \times 5=50$

29. In an A.P., sum of four consecutive terms is 28 and the sum of their squares is 276 . Find the four numbers
30. The sum of three consecutive terms that are in A.P. is 27 and their product is 288 . Find the three terms
31. The 13 th term of an A.P. is 3 and the sum of first 13 terms is 234 . Find the common difference and the sum of first 21 terms
32. Find the sum of all natural numbers between 300 and 600 which are divisible by 7
33. The $104^{\text {th }}$ term and $4^{\text {th }}$ term of an A.P. are 125 and 0 . Find the sum of first 35 terms
34. Raghu wish to buy a laptop. He can buy it by paying 40,000 cash or by giving it in 10 installments as 4800 in the first month, 4750 in the second month, 4700 in the third month and so on. If he pays the money in this fashion, find (i) total amount paid in 10 installments. (ii) how much extra amount that he has to pay than the cost?
35. Find the sum $a-b+3 a-2 b+5 a-3 b+$

36. The sum of first $\mathrm{n}, 2 \mathrm{n}$ and 3 n terms of an A.P. are $\mathrm{S} 1, \mathrm{~S} 2$ and S 3 respectively. Prove that S3=3(S2-S1)
37. IfS $n=(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+$. \qquad n then
prove that $(x-y) S n=\left[\begin{array}{cc}\begin{array}{ll}x^{2}(x n-1)-y^{2}(y n-1) \\ x-1 & y-1\end{array}\end{array}\right]$
38 In a G.P. the 9 th term is 32805 and 6th term is 1215 . Find the 12th term
38. Find the sum to n terms of the series $5+55+555+$ \qquad n terms
39. Find the sum of $15^{2}+16^{2}+7^{2} 2^{2}$ $+28^{2}$
40. Find the sum of $10^{3}+11^{3}+$
41. IfS1, S2, \qquad .,Sm are the sums of n terms ofm A.P.'s whose firsttermsare 1, 2,3...mand whose common differences are $1,3,5$,. \qquad ($2 \mathrm{~m}-1$) respectively, then show that

$$
\mathrm{S} 1+\mathrm{S} 2, \ldots \ldots .+\mathrm{Sm}=1 / 2 \mathrm{mn}(\mathrm{mn}+1)
$$

PARTS-IV [MARKS: 16]

Answer both questions

$$
2 \times 8=16
$$

43. a) Draw a circle of radius 4 cm . At a point L on it draw a tangent to the circle using the alternate segment
b) Draw a triangle $P Q R$ of base $P Q=4.5 \mathrm{~cm}, \mathrm{R}=60^{\circ}$ and the median from R to $R G$ is 6 cm
44. a) Draw the graph of $y=2 x^{2}$ and hence use it to solve $2 x^{2}-x-6=0$
(OR)
b) Draw the graph of $y=x^{2}+3 x+2$ and hence use it to solve $x^{2}+2 x+1=0$

Prepared by
S.Murugavel M.Sc.,B.Ed.,

TGT in Mathematics
Puducherry state
Email id: murugavel213@gmail.com

