HIGHER SECONDARY FIRST YEAR Unit – I Fundamentals of Computers :: Chapter – II Number Systems Evaluation Ouestions Part I

I. <u>Choose the best answer</u>

- 1. Which refers to the number of bits processed by a computer's CPU? Word length.
- 2. How many bytes does 1 KiloByte contain? 1024
- 3. Expansion for ASCII. American Standard Code for Information Interchange
- 4. 2^50 is referred as. Peta.
- 5. How many characters can be handled in Binary Coded Decimal System? 64
- 6. For 11012 what is the Hexadecimal equivalent? **D**
- 7. What is the 1's complement of 00100110? **11011001**
- 8. Which amongst this is not an Octal number? **876**

II. <u>Very Short Answers</u>

- 1. What is data?
- > The term data comes from the word datum, which means a raw fact.
- > The data is a fact about people, places or some objects.
- Computer handles data in the form of '0'(Zero) and '1' (One).
- 2. Write the 1's complement procedure.

Step 1: Convert given Decimal number into Binary.

Step 2: Check if the binary number contains 8 bits , if less add 0 at the left most bit, to make it as 8 bits.

Step 3: Invert all bits (i.e. Change 1 as 0 and 0 as 1)

3. Convert (46)₁₀ into Binary number.

2	46		
2	23 - 0		
2	11 - 1		
2	5 - 1		
2	2 - 1		
	1 - 0		
$46_{10} = 101110_2$			

- 4. We cannot find 1's complement for (28)₁₀. State reason.
 We cannot find 1's complement for (28)₁₀. Because it is a positive number.
 1's complement apply only with negative number.
- 5. List the encoding systems for characters in memory.

Several encoding systems used for computer.

- BCD Binary Coded Decimal
- EBCDIC Extended Binary Coded Decimal Interchange Code
- ASCII American Standard Code for Information Interchange
- Unicode
- ISCII Indian Standard Code for Information Interchange

III. Short Answers

- 1. What is radix of a number system? Give example
 - A numbering system is a way of representing numbers.
 - The most commonly used numbering system in real life is Decimal number system, others Binary, Octal, Hexadecimal number system.
 - > Each number system is uniquely identified by its base value or radix.
 - > Radix or base is the count of number of digits in each number system.
 - \circ Decimal Number System Radix or base $10 (150)_{10}$
 - Binary Number System Radix or base $2 (101110)_2$

Kindly Send Me Your Key Answers to Our email id - padasalai.net@gmail.com

- \circ Octal Number System Radix or base 8 (226)₈
- Hexadecimal Number System Radix or base $16 (7E)_{16}$.
- 2. Write note on binary number system.
 - There are only two digits in the Binary system, namely, 0 and 1.
 - The numbers in the binary system are represented to the base 2 and the positional multipliers are the powers of 2.
 - The left most bit in the binary number is called as the Most Significant Bit (MSB) and it has the largest positional weight.
 - The right most bit is the Least Significant Bit (LSB) and has the smallest positional weight.
 - \succ Example 1101₂.
- 3. Convert (150)₁₀ into Binary, then convert that Binary number to Octal

- 4. Write short note on ISCII
 - Indian Standard Code for Information Interchange (ISCII) is the system of handling the character of Indian local languages.
 - > This as a 8-bit coding system. Therefore it can handle 256 (28) characters.
 - This system is formulated by the department of Electronics in India in the year 1986-88 and recognized by Bureau of Indian Standards (BIS).
 - > Now this coding system is integrated with Unicode.
- 5. Add a) $-22_{10}+15_{10}$ b) $20_{10}+25_{10}$
 - a) -22₁₀+15₁₀

Binary equivalent of 22	10110	
8 bit format	00010110	
1's Complement	11101001	
Add 1 to LSB	1	
2's Complement	11101010	
Binary equivalent of 15	1111	
8 bit format	00001111	'
Binary addition of -22 and 15	11101010	
	00001111	
	11111001	

b) 20₁₀+25₁₀

Binary equivalent of 20	10100		2 20	25
8 bit format	00010100		2 <u>10 - 0</u> LSB 🕈	2 12 – 1LSB
Binary equivalent of 25	11001		2 5 - 0	26-0
8 bit format	00011001		2 2 - 1	2 3 - 0
			MSB 1 - 0	MSB 1 - 1
Binary addition of 20 and 25	00010100			
	00011001		00010100	
	00101101		00011001 +	
	<u></u>	4	00101101	

IV. Short Answers

1. A) Write the procedure to convert fractional Decimal to Binary.

The method of repeated multiplication by 2 has to be used to convert such kind of decimal fractions.

The steps involved in the method of repeated multiplication by 2.

- Step 1: Multiply the decimal fraction by 2 and note the integer part. The integer part is either 0 or 1.
- Step 2: Discard the integer part of the previous product. Multiply the fractional part of the previous product by 2. Repeat Step 1 until the same fraction repeats or terminates (0).
- Step 3: The resulting integer part forms a sequence of 0s and 1s that become the binary equivalent of decimal fraction.
- Step 4: The final answer is to be written from first integer part obtained till the last integer part obtained.
- B) Convert $(98.46)_{10}$ to Binary.

Find 1's Complement and 2's Complement for the following Decimal number
 A) -98 B) -135

A) -98		
Binary equivalent of 98 8 bit format	1110110 01110110	2 <u>198</u> 2 <u>49 - 0 LS</u> B
1's Complement	10001001	2 <u>29 - 1</u> 2 <u>14 - 1</u>
Add 1 to LSB 2's Complement	10001010	2 <u>7 - 0</u> 2 <u>3 - 1</u>
		MSB <u>1-1</u>

Kindly Send Me Your Key Answers to Our email id - padasalai.net@gmail.com

B) -135	2 135	
Binary equivalent of 135 1's Complement	10000111 01111000	2 <u>67 - 1 L</u> SB▲ 2 <u>33 - 1</u>
Add 1 to LSB	1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2's Complement	01111001	2 4 - 0
		2 <u>2 - 0</u> MSB <u>1 - 0</u>

3) A) Add 1101010₂ + 101101₂

B) Subtract 1101011₂ - 111010₂

ار می

A)	1101010 + 101101 10110111 101101 - 1011 10110 10110 1010 10110 10110 10110 1	B)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
	010 ₂ + 101101 ₂ = 1011	.01112	1101011 ₂ - 111010 ₂ = 110001 ₂ 1-0=0 1-1=0 10-1=	