HIGHER SECONDARY FIRST YEAR
 Unit - I Fundamentals of Computers :: Chapter - II Number Systems
 Evaluation Ouestions
 Part I

I. Choose the best answer

1. Which refers to the number of bits processed by a computer's CPU? Word length.
2. How many bytes does 1 KiloByte contain? 1024
3. Expansion for ASCII. American Standard Code for Information Interchange
4. $2^{\wedge} 50$ is referred as. Peta.
5. How many characters can be handled in Binary Coded Decimal System? 64
6. For 11012 what is the Hexadecimal equivalent? D
7. What is the 1 's complement of 00100110 ? 11011001
8. Which amongst this is not an Octal number? 876
II. Verv Short Answers
9. What is data?
$>$ The term data comes from the word datum, which means a raw fact.
$>$ The data is a fact about people, places or some objects.
$>$ Computer handles data in the form of ' 0 ' (Zero) and ' 1 ' (One).
10. Write the 1 's complement procedure.

Step 1: Convert given Decimal number into Binary.
Step 2: Check if the binary number contains 8 bits, if less add 0 at the left most bit, to make it as 8 bits.
Step 3: Invert all bits (i.e. Change 1 as 0 and 0 as 1)
3. Convert (46) ${ }_{10}$ into Binary number.

4. We cannot find 1 's complement for (28$)_{10}$. State reason.

We cannot find 1 's complement for (28) ${ }_{10}$. Because it is a positive number. 1 's complement apply only with negative number.
5. List the encoding systems for characters in memory.

Several encoding systems used for computer.

- BCD - Binary Coded Decimal
- EBCDIC - Extended Binary Coded Decimal Interchange Code
- ASCII - American Standard Code for Information Interchange
- Unicode
- ISCII - Indian Standard Code for Information Interchange

III. Short Answers

1. What is radix of a number system? Give example
$>$ A numbering system is a way of representing numbers.
$>$ The most commonly used numbering system in real life is Decimal number system, others Binary, Octal, Hexadecimal number system.
$>$ Each number system is uniquely identified by its base value or radix.
$>$ Radix or base is the count of number of digits in each number system.

- Decimal Number System - Radix or base 10 - (150) ${ }_{10}$
- Binary Number System - Radix or base $2-(101110)_{2}$
- Octal Number System - Radix or base 8 - (226) 8
- Hexadecimal Number System - Radix or base 16 - (7E) ${ }_{16}$.

2. Write note on binary number system.
$>$ There are only two digits in the Binary system, namely, 0 and 1.
$>$ The numbers in the binary system are represented to the base 2 and the positional multipliers are the powers of 2 .
$>$ The left most bit in the binary number is called as the Most Significant Bit (MSB) and it has the largest positional weight.
$>$ The right most bit is the Least Significant Bit (LSB) and has the smallest positional weight.
$>$ Example 1101_{2}.
3. Convert (150) ${ }_{10}$ into Binary, then convert that Binary number to Octal

Decimal to Binary conversion	Binary to Octal conversion Group 3 bit format 010010110		
		Octal	Binary Equivalent
$275-0$		0	000
$237-1$		1	001
$218-1$	$0100101102=226_{8}$	2	010
2 l		3	011
22 $4-1$ 1		4	100
$2 \longdiv { 2 - 0 }$		5	101
1 -0		6	110
		7	111
$150{ }_{10}=10010110_{2}$			

4. Write short note on ISCII
$>$ Indian Standard Code for Information Interchange (ISCII) is the system of handling the character of Indian local languages.
$>$ This as a 8 -bit coding system. Therefore it can handle 256 (28) characters.
$>$ This system is formulated by the department of Electronics in India in the year 198688 and recognized by Bureau of Indian Standards (BIS).
$>$ Now this coding system is integrated with Unicode.
5. Add a) $-22_{10}+15_{10} \quad$ b) $20_{10}+25_{10}$
a) $-22_{10}+15_{10}$

Binary equivalent of 22	10110
8 bit format	00010110
1's Complement	11101001
Add 1 to LSB	1
2's Complement	$\mathbf{1 1 1 0 1 0 1 0}$
Binary equivalent of 15	1111
8 bit format	$\mathbf{0 0 0 0 1 1 1 1}$
Binary addition of -22 and 15	11101010
	00001111
	11111001

2 22 2 $11-0$ 2 LSB 2 $5-1$ 2 $2-1$ MSB 1 $1-0$	
11101001	11101010
$1+$	00001111 +
11101010	11111001

b) $20_{10}+25_{10}$

Binary equivalent of 20	10100
8 bit format	$\mathbf{0 0 0 1 0 1 0 0}$
Binary equivalent of 25	11001
8 bit format	$\mathbf{0 0 0 1 1 0 0 1}$
Binary addition of 20 and 25	00010100
	00011001
	$\mathbf{0 0 1 0 1 1 0 1}$

220	25
$2 \overline{10-0}$ LSB 4	$2 \overline{12-1}$ LSB ${ }^{\text {a }}$
$25-0$	26 -0
22	23 - 0
MSB 1-0	MSB 1
00010100	
$00011001+$	
00101101	

IV. Short Answers

1. A) Write the procedure to convert fractional Decimal to Binary.

The method of repeated multiplication by 2 has to be used to convert such kind of decimal fractions.

The steps involved in the method of repeated multiplication by 2 .
Step 1: Multiply the decimal fraction by 2 and note the integer part. The integer part is either 0 or 1 .
Step 2: Discard the integer part of the previous product. Multiply the fractional part of the previous product by 2 . Repeat Step 1 until the same fraction repeats or terminates (0).
Step 3: The resulting integer part forms a sequence of 0 s and 1 s that become the binary equivalent of decimal fraction.
Step 4: The final answer is to be written from first integer part obtained till the last integer part obtained.
B) Convert (98.46) ${ }_{10}$ to Binary.

2. Find 1's Complement and 2's Complement for the following Decimal number
A) -98
B) -135

A) -98			
Binary equivalent of 98	1110110	MSB	
8 bit format	01110110		
1's Complement	10001001		
Add 1 to LSB	1		27 7-0
2's Complement	10001010		2 3-1
			1-1

B) -135		$2 \mid 135$	
Binary equivalent of 135	10000111	22222MSB2	67-1 LSB4
1's Complement	01111000		33-1
Add 1 to LSB	1		16-1
2's Complement	01111001		8-0
			4-0
			2-0
			1-0

3) A) Add $1101010_{2}+101101_{2} \quad$ B) Subtract $1101011_{2}-111010_{2}$

$\begin{gathered} \text { A) } \begin{array}{c} \frac{1101010}{101101} \\ \frac{10110111}{} \\ 1101010_{2}+101101_{2} \end{array}=10110111_{2} \end{gathered}$	$\begin{array}{r} 1101011- \\ \frac{111010}{100001} \\ \hline 1101011_{2}-111010_{2}=110001_{2} \end{array}$	$\begin{aligned} & 0+1=1 \\ & 1+0=1 \\ & 1+1=10 \\ & 1+1+1=11 \end{aligned}$ $\begin{aligned} & 1-0=0 \\ & 1-1=0 \\ & 10-1=1 \end{aligned}$

