HIGHER SECONDARY FIRST YEAR
 Unit - I Fundamentals of Computers :: Chapter - II Number Systems - One Marks

1. The term data comes from the word datum, which means a raw fact.
2. The data is a fact about people, places or some objects.
3. Computer only handles data in the form of ' $\mathbf{0}$ '(Zero) and ' $\mathbf{1}$ ' (One).
4. ' 0 ' or ' 1 ' are called Binary Digits(BIT).
5. Binary Digit(BIT) is the basic unit of data in computers.
6. Bit is the basic unit of data in computers.
7. A collection of 4 bits is called nibble.
8. A collection of 8 bits is called Byte.
9. A byte is considered as the basic unit of measuring the memory size in the computer.
10. The number of bits processed by a Computer's CPU refers to Word length.
11. A word length can have $\mathbf{8}$ bits, $\mathbf{1 6}$ bits, $\mathbf{3 2}$ bits and $\mathbf{6 4}$ bits. Present day Computers use 32 bits or 64 bits.
12. 1 KiloByte represents $\mathbf{1 0 2 4}$ bytes that is $2^{\wedge} 10$.
13. 1 MegaByte represents $\mathbf{1 0 2 4}$ KiloByte that is $2^{\wedge} 20$.
14. 1 GigaByte represents $\mathbf{1 0 2 4}$ MegaByte that is $2^{\wedge} 30$.
15. 1 TeraByte represents $\mathbf{1 0 2 4}$ GigaByte that is $2^{\wedge} 40$.
16. 1 PetaByte represents $\mathbf{1 0 2 4}$ TeraByte that is $2^{\wedge} 50$.
17. 1 ExaByte represents $\mathbf{1 0 2 4}$ PetaByte that is $2^{\wedge} 60$.
18. 1 ZettaByte represents $\mathbf{1 0 2 4}$ ExaByte that is $2^{\wedge} 70$.
19. 1 YottaByte represents $\mathbf{1 0 2 4}$ ZettaByte that is $2^{\wedge} 80$.
20. The most commonly used coding scheme is the American Standard Code for Information Interchange (ASCII).
21. The range of ASCII values for lower case alphabets is from $\mathbf{9 7}$ to $\mathbf{1 2 2}$ and
22. The range of ASCII values for the upper case alphabets is 65 to 90.
23. Number systems are Decimal, Binary, Octal, Hexadecimal number system.
24. Each number system is uniquely identified by its base value or radix.
25. Decimal Number System consists of $\mathbf{0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9}($ base 10).
26. There are only two digits in the Binary system $\mathbf{0}$ and $\mathbf{1}$ (base 2).
27. The left most bit in the binary number is called as the Most Significant Bit (MSB) and it has the largest positional weight.
28. The right most bit is the Least Significant Bit (LSB) and has the smallest positional weight.
29. Octal number system digits are $\mathbf{0 , 1 , 2 , 3 , 4 , 5 , 6}$ and 7 (base 8).
30. A hexadecimal number is represented using base 16 (0 to 9 , A to F).
31. To convert Decimal to Binary "Repeated Division by 2" method can be used.
32. To convert Decimal to Octal "Repeated Division by 8" method can be used.
33. To convert Decimal to Hexadecimal "Repeated division by 16" method can be used.
34. ISCII system is formulated by the department of Electronics in India in the year 1986$\mathbf{8 8}$ and recognized by Bureau of Indian Standards (BIS). Now this coding system is integrated with Unicode.
35. Unicode was generated to handle all the coding system of Universal languages.
36. Unicode is $\mathbf{1 6}$ bit code and can handle $\mathbf{6 5 5 3 6}$ characters.
37. Unicode scheme is denoted by hexadecimal numbers.
